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1. Introduction
Eukaryotic cells exhibit a complicated rheology in response to mechanical stimuli, arising
primarily through deformation of their cytoskeleton, a complex network of crosslinked
filamentous proteins including actin filaments, microtubules and intermediate filaments (e.g.
vimentin). In addition to stretching of the filaments themselves, the system also dissipates energy
both through transport of viscous fluid through this network and through transient crosslink (CL)
dynamics [1–3]. Depending on the rate at which the deformation is applied, cells have been shown
to behave as visco-elastic, soft-glassy, or poro-elastic materials [4–7]. This complex rheology
underpins a wide variety of cellular behaviour including migration and growth. In particular,
epithelial cells can undergo an epithelial-mesenchymal transition, where these cells disassemble
their cytoskeleton to become migratory [2]. Such transitions underpin healthy growth and
development during embryogenesis and tissue repair [8,9], but also accompany progression of
tumour cells towards more aggressive (i.e. invasive) phenotypes. Hence, a thorough knowledge
of cell rheology (and in particular its mechanical properties) is a likely pre-requisite for successful
anti-cancer treatments [2,10].

Tensegrity models of the cell cytoskeleton postulate that certain elements are pre-stretched
which must be balanced by other elements under compression [11]. It is now well established that
both actin and vimentin filaments in vivo are pre-stretched (i.e. under tension) [1,12]. On the other
hand, microtubules have been shown to bear significant compressive loads [13,14] due to their
large bending stiffness. Although actin and microtubules have generally attracted more attention
in the literature, the intermediate filament vimentin also greatly impacts cell mechanics due to its
capacity to withstand very large strains (especially in comparison with actin and microtubules)
[15,16].

Most models describing the mechanical behaviour of individual cytoskeletal filaments have
been derived using the theory of semi-flexible polymer chains [17], incorporating not only their
elastic stretching and bending, but also uncoiling of their undulations under an applied stress [18].
As result, the distance between two ends of the filament differs from its stress-free contour length,
so models relate the axial force applied to one end of the filament to the end-to-end distance
normalized with respect to the contour length [17]. Similar relationships have also been derived
based on the theory of Cosserat rods [19,20].

Due to the complexity of cell cytoplasm in vivo, in silico approaches are useful to elucidate the
mechanisms underlying the mechanical behaviour on the network scale. Existing mathematical
models typically fall into two categories. Discrete models of cell mechanics (including molecular
dynamics simulations) enable the inclusion of detailed biophysics on the microscale derived from
first principles, but also contain large number of discrete elements and their interactions which
makes them computationally expensive [21–25]. On the other hand, continuum models of cell
mechanics are typically much less computationally demanding, allowing fast parameter sweeps,
but, because they are proposed to match macroscopic (i.e. cell-scale) phenomena, the manner in
which microscale (molecular-scale) parameters and processes influence the macroscale response
is often unclear [3].

The mechanical response of crosslinked networks of semiflexible filaments (e.g. actin or
collagen) subject to various loading configurations has been studied using discrete network
models elucidating key length and energy scales [26–29]. Under bulk deformations (uniaxial
or shear strain), the dominant modes of deformation – material stretching, entropic stretching
and bending – have been linked to the regions of affine and non-affine deformations in the
parameter space consisting of the filament length and the crosslink density [26]. A similar
approach has been subsequently used to mimic localized perturbations in cytoskeletal networks
via point forces applied at a single crosslink [27]. Local deformations were further explored in
recent years, modelling the stress stiffening of extracellular matrices induced by contractile cells
pulling on the adjacent fibers [28,29]. However, at high filament densities encountered in vivo, the
discrete simulations become computationally expensive [26] and as the networks are typically
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highly disordered, there is no simple and reliable way to derive the corresponding continuum
(computationally faster) model. Furthermore, scaling arguments do not account for the in vivo
network pre-stress discussed above which makes direct utilization of the deduced power laws
impossible.

The vast majority of macroscale continuum models are inferred by ensemble averaging based
on polymer physics [17,30]. The models stemming from rubber elasticity form the oldest and
largest group, including chain, full-network and microsphere models [31–35]. The latter have been
applied to actin networks resulting in hyper-elastic and visco-elastic constitutive models [36–38].
Other approaches utilized Doi–Edwards theory [39] or the effective medium approach [40].
Discrete lattice models have also been employed, but to the best of our knowledge, rigorous
upscaling techniques have not been used to derive a macroscale model. It is also worth noting
that these discrete lattices often have unrealistic topologies - models using triangular lattices with
coordination number 6 are not representative of crosslinked cytoskeletal networks and further
care is needed to achieve a biologically realistic node connectivity [41,42]. Efforts involving
more rational and rigorous mathematical methods (such as discrete-to-continuum upscaling or
homogenization) to systematically bridge between these two approaches are still largely missing.
This problem also pertains to collagen networks where predictions of discrete and continuum
models often disagree [43,44].

Rational mathematical modelling has been successfully applied to study dynamic aspects of
cytoskeletal reorganization during cell motility, including the dynamics of actin, myosin and
other crosslinking proteins at the leading edge. This approach leads to mathematical formulations
that are often amenable to analytical study and can provide explicit solutions, e.g. predicting
the dependency of cell velocity on properties of the substrate [45,46]. However, such rational
techniques have seldom been applied to study mechanics of crosslinked networks.

Recent research has focused on the effective transport properties of cytoplasm as a porous
medium [47,48]; as a result, the forces generated within the cytoskeleton as it is deformed by
the transported object remain incompletely understood. The force required to move a spherical
object (bead) inside a living cell was recently measured using the optical tweezers, elucidating
dependence on key parameters such as bead size and pulling velocity [7,15]. The primary goal
of current study is to formalize these dependencies using a theoretical model built from first
principles. To this end, we develop a multiscale framework for mechanical response during
prescribed motion of an internal organelle or bead which rationally encodes a state-of-the-art
microscale constitutive law for the axial stretching of individual semi-flexible filaments.

The paper is organized as follows. First, in Section 2 we introduce a discrete model of the cell
cytoskeleton consisting of a two-dimensional crosslinked network with prescribed displacement
of a set of CLs. In Section 3 we upscale this discrete force balance using discrete-to-continuum
asymptotics, arrive at a macroscale continuum model equipped with appropriate boundary
conditions and infer the corresponding stress tensor and strain-energy density. In Section 4
we compare simulations of the discrete and continuum models and numerically explore how
net force exerted on the transported bead depends on key model parameters. In Section 5 we
consider the limit of small deformations in the continuum problem and compute an asymptotic
approximation to the net force as a function of bead displacement, valid whenever the bead size
is much smaller than the macroscopic length scale.

2. Discrete model and nondimensionalization

(a) Initial network

(i) Geometry

We consider a planar square region within a eukaryotic cell of fixed side length D̃, well away
from the nucleus and the cell membrane (Figure 1a). This region is parameterized by coordinates
X̃ and Ỹ , along the two edges of the square with origin at the centre. Focusing on mesh-forming
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crosslinking proteins (e.g. filamin) we propose a simple model assuming that the cytoskeleton
can be modelled as a square grid of semi-flexible filaments. Although this arrangement is highly
idealized, it facilitates a formal upscaling. Moreover, the force-displacement curves arising from
this square-grid arrangement are in strong quantitative agreement with an ensemble average of
force-displacement curves computed from simulations of the same model applied to disordered
networks of filaments; see Appendix A for further details. Initially the filaments are assumed to
be equally spaced and are oriented (after averaging out microscale fluctuations) parallel to either
the X̃ or Ỹ axes (blue lines in Figure 1a), with crosslinks (CLs) at their intersections, forming a
regular two-dimensional grid. These CLs divide each filament into N filament segments (FSs).
Initially these crosslinks are a distance R̃= D̃/N apart, so crosslink (i, j) is located at

X̃i,j =
(
X̃i, Ỹj

)
= (i, j) R̃, where i, j =− 1

2N,− 1
2N + 1, ..., 12N − 1, 12N ; (2.1)

we assume that N is even for simplicity. Note that throughout this work, tildes denote
dimensional variables and parameters.

Figure 1: Panel (a) shows a cell schematic with a small inserted bead (red). Zooming onto the
bead, we idealize the undeformed cytoskeleton as a regular grid of curved filaments (created
with BioRender.com). Displacing the bead by a distance R̃b at an angle φ∗, we compute the
locations of all crosslinks (black dots) in the perturbed network, as shown in panel (b). The
calculation is based on a realistic microscale constitutive law for axial response of individual FSs
(panel c) and assumes local force balance at CL (i, j) (panel d) with contributing forces drawn as
black arrows. Panel (c) also documents that equation (2.9) provides an excellent approximation to
model (2.3) for forces below tensile strength using default parameters for vimentin as estimated
in Supplementary Section S2.

At subcellular scales, thermal effects play an important role causing undulations in
cytoskeletal filaments even in the absence of external force. As result, a FS connecting arbitrary
two neighbouring CLs need not be straight and its end-to-end distance need not be equal to its
contour length (or arclength). For simplicity, we assume that all filaments are of the same stress-
free contour length L̃, with the stress-free contour length of FSs being Λ̃= L̃/N , noting that these
two quantities are typically distinct from the domain size D̃ and inter-CL distance R̃. Our model
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contains a relatively large number of parameters; for convenience, our notation is summarized in
Section S1 of Supplementary Material.

(ii) Pre-stretch

In later sections, we specialize our modelling framework to actin and vimentin networks;
tensegrity models of the cytoskeleton postulate that these elements are typically pre-stretched
[11]. For a fixed R̃, the filament pre-stretch is controlled by the normalized end-to-end distance

ξ =
R̃

Λ̃
=

D̃

L̃
, (2.2)

which generates an axial force due to pre-stress denoted f̃p. Although the macroscale pre-stress
has been measured experimentally [13,49,50], the complexity of cytoskeleton in vivo (the number
of different filaments and crosslinks and their interactions) makes it difficult to estimate f̃p and so
this will be considered a free parameter (similar to previous studies, e.g. [51]). The corresponding
values of Λ̃ and ξ then follow from the microscale constitutive law for the axial force discussed in
the next section.

In experiments, the macroscale pre-stress is usually estimated by measuring the total force
exerted on a particular surface within the cell, and then normalizing by the cross-sectional area
of that surface [13]. Applying an analogous method to the boundary of our square domain, we
estimate the macroscale pre-stress of our filament networks by summing the force exerted by each
of the adjoining filaments on that boundary and dividing by the boundary length. In this way, we
estimate the total macroscale pre-stress as

σ̃p =
(N − 1)f̃p

D̃
.

(b) Deformed network

(i) Applied deformation

As a model for optical tweezers experiments [7,15], we consider the motion of circular bead of
radius ã initially placed at the origin of the domain (Figure 1b). In this paper we restrict attention
to quasi-static deformations, neglecting inertia and assuming zero net force on every CL for all
time. In this simple model, we assume that CLs are free to rotate with no unfolding, unbinding,
breakage or slippage. Thus, the energy supplied by the prescribed motion of the bead is stored
as elastic energy in the filament network. The deformed coordinates of CL (i, j) are denoted as
x̃i,j = (x̃i,j , ỹi,j).

(ii) Implicit microscale constitutive law for axial force in a filament segment

We denote r̃ as the distance between CLs after deformation. In this study we follow models for
semi-flexible filaments, and let the axial force f̃ in each FS be a function of the end-to-end (straight-
line) distance between its two end points normalized by its stress-free contour length r= r̃/Λ̃

(Figure 1c) [17,20]. Thus, tortuosity of individual FSs is accounted for implicitly. We use a well-
established constitutive law for a single semi-flexible filament under tension, which includes the
interplay between thermal undulations, bending stiffness and material extensibility [17,52], in the
form

r̃

Λ̃
= r(f̃ ; Λ̃) =

(
1 +

f̃

πỸ b̃2

)1−

√√√√ k̃B T̃

πΛ̃p

(
f̃ +

(
π2k̃B T̃ Λ̃p/Λ̃2

))
 , (2.3)

where π2k̃B T̃ Λ̃p/Λ̃
2 is the Euler buckling threshold force, k̃B ≈ 1.38× 10−23m2kg s−2K−1 is the

Boltzmann constant, T̃ = 300 K is the absolute temperature, Ỹ is the Young’s modulus, Λ̃p is the
persistence length and b̃ is the radius of the filament under consideration. The constitutive law
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(2.3) for an individual filament assumes that the stress-free contour length Λ̃ and the end-to-
end distance r̃ are comparable (i.e. the normalized end-to-end distance r is close to 1, [18]). The
first factor in (2.3) accounts for extensibility of the material while the second factor constitutes a
model for an inextensible filament balancing thermal effects with its bending stiffness. Fixing all
material parameters and substituting the initial values for r̃= R̃ and f̃ = f̃p provides an implicit
relationship between f̃p and Λ̃. Note that for extensible filaments, direct inversion to obtain f̃ as a
function of r is cumbersome [17,20]. For a detailed description of the energy stored in individual
FSs, see Supplementary Section S3.1.

(c) Force balance at a crosslink
The local force balance at each CL requires that the net force (Figure 1d) must be zero [53,54]. As
the forces equilibriate at every CL, it follows that the total moment of forces about any CL is also
zero. Note that apart from the axial forces, one would typically also need to introduce restoring
forces due to the resistance of filaments to bending [54]. However due to the combination of high
filament density and the imposed pre-stretch of actin and vimentin in our model, the response
will be dominated by the elastic stretching and the bending can be neglected [18,26,41,55].

(d) Boundary conditions
All CLs on the outer boundary of the domain are assumed to be pinned, mimicking attachment to
the membrane, nucleus or some other organelle. The bead is assumed to be at least as large as the
mesh size (typically much larger, in line with the optical tweezers experiments [7]) and therefore
a hole of appropriate shape and size must be extracted from the discrete network. To mimick a
rigid body translation, we model the bead motion via an imposed displacement of all CLs within
the initial outline of the bead by a distance R̃b at a pulling angle φ∗ measured anti-clockwise from
the X̃ axis.

(e) Baseline parameter values
We identify baseline parameter values representative of the cytoskeleton and denote these with
the subscript c. For instance, we choose a baseline filament spacing as R̃c = 0.05 µm which, fixing
the domain size as D̃= 5 µm, means that every filament is divided into Nc = 100 FSs [7]. All other
model parameters are listed and the corresponding values representative of the cytoskeleton are
estimated in Supplementary Material (Section S2).

To ensure consistency as we vary the number of filaments, in simulations we hold the domain
size and the total volume of filaments fixed to the baseline values by adjusting the mesh spacing
and the filament radius according to

R̃=
Nc

N
R̃c, b̃=

√
Nc

N
b̃c.

Similarly, we hold the macroscale pre-stress fixed by adjusting the filament pre-stress and
analogously rescale the axial force at arbitrary r according to

f̃p =
Nc

N
F̃p, f̃(r) =

Nc

N
F̃(r),

where F̃(ξ) = F̃p.

(f) Nondimensionalization
We nondimensionalize all lengths based on the domain side length D̃, and forces (including F̃p)
with respect to the enthalpic (elastic) force πỸ b̃2c . We denote as li±1/2,j and li,j±1/2 the deformed
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lengths of FSs connecting CL (i, j) to CLs (i± 1, j) and (i, j ± 1), respectively. At CL (i, j), we
define unit vectors pointing in the directions of the four adjacent FSs as

r̂i± 1
2 ,j

=

(
xi±1,j − xi,j , yi±1,j − yi,j

)
li± 1

2 ,j

, r̂i,j± 1
2
=

(
xi,j±1 − xi,j , yi,j±1 − yi,j

)
li,j± 1

2

,

and upon multiplying by εcN , where εc =N−1
c , the dimensionless force balance takes the form

0=F
(
ξNli− 1

2 ,j

)
r̂i− 1

2 ,j
+ F

(
ξNli+ 1

2 ,j

)
r̂i+ 1

2 ,j
+ F

(
ξNli,j− 1

2

)
r̂i,j− 1

2
+ F

(
ξNli,j+ 1

2

)
r̂i,j+ 1

2
.

(2.4)
The dimensionless magnitude of the bead displacement is denoted as Rb := R̃b/D̃.

(g) Analysis of dimensionless microscale constitutive law
The dimensionless constitutive law for an individual filament (2.3) becomes

r(F ; T1, T2, ξ, εc, N) = (1 + F)

(
1−

√
T1

F/(εcN) + 4π3 (εcξNT2)2 T1

)
, (2.5)

where

T1 =
F̃entropic

F̃enthalpic

=
k̃B T̃

π2Ỹ b̃2cΛ̃p
and T2 =

Λ̃p

2R̃c
(2.6)

are the dimensionless ratios of the entropic force (F̃entropic = k̃B T̃ /(πΛ̃p)) to the enthalpic force
(F̃enthalpic = πỸ b̃2c ) and one half of the ratio of the persistence length to the end-to-end distance,
respectively1. Note that all dimensionless parameters featuring in (2.5) are independent of the
force due to pre-stress Fp and N , with the exception of ξ. Given that F(ξ) =Fp, we obtain

ξ = {1 + Fp}
{
1− (εcN)−1

(
Fp (εcN)−3 T −1

1 + 4π3T 2
2 ξ2

)−1/2
}
, (2.7)

which provides a quartic polynomial for pre-stretch ξ as function of Fp, which cannot easily be
inverted analytically. However, for vimentin filaments we compute T1 ≈ 1.9× 10−8 and T2 ≈ 10

(based on parameters listed in Table S1 in Supplementary Material) and so provided εcN =O(1)

and Fp ≫T1 (i.e. the force due to pre-stress is much greater than the entropic force; for εcN ≫ 1

we do not need any additional conditions) we approximate

ξ = 1 + Fp. (2.8)

The approximation (2.8) is not sufficiently accurate for actin, since T1 ≈ 10−9 but T2 ≈ 170 (i.e. the
persistence length of actin is much larger than the representative cytoskeletal mesh size), and an
expansion in powers of T −1

2 is required (see Supplementary Material, Section S3.3).
In the main text we focus attention on networks of vimentin filaments. We further consider

networks of actin filaments in Supplementary Material (Section S3.4), although here the critical
stretch for filament breakage is typically very low and so the networks quickly disassemble.

In summary, the dimensionless problem is governed by eight dimensionless parameters (T1,
T2, Fp, εc, N , Rb, φ∗, a) and the microscale constitutive law (2.5), where ξ is given by (2.8). Model
parameters and their default values are listed in Supplementary Material Section S2.

(h) Negligible response to compression and simplified microscale
constitutive law

Neither actin nor vimentin filaments can sustain large compressive stresses due to their low
bending stiffness [17]. We therefore assume that the response to compression is negligible, similar
1The factor of 1/2 was chosen in line with previous studies so that our T2 is a direct analogue of the so-called normalized
filament stiffness [17]. Note further that the r introduced in (2.3) should be regarded as a distance normalized with respect to
the stress-free contour length and even though without units, this quantity is distinct from the nondimensionalized end-to-
end distance (with respect to the macroscale).
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to previous studies for actin networks [36,38] (vimentin filaments have even lower bending
stiffness). Given the weak response of filaments to compression and also the smallness of T1
discussed in the previous section, we can neglect the square root term in (2.5) and using (2.8)
derive a simplified microscale constitutive law (2.5) in the form

F =
{ Fp + (r − ξ) = r − 1, if r > 1

0, if r < 1,
(2.9)

which is continuous at r= 1, i.e. when the filament is straightened out to its full contour length
(r̃= Λ̃), as (2.8) holds. Note that in the case of vimentin, this linearized expression was not
obtained via Taylor expansion of the full model (2.5) about r= ξ, but was instead derived
rationally based on the smallness of T1; it is analogous to previous models studying mechanics of
pre-stressed filament networks [51]. Equation (2.9) provides a very good approximation to (2.3)
using parameters pertinent to the intermediate filament vimentin (Figure 1c) across all values of r.
The model (2.9) will be used in the sections of this paper where we present discrete and continuum
simulations for vimentin. Note that it is possible, in principle, to simulate networks where
filaments are modelled using (2.3) in its full form, but numerical simulations take significantly
longer due to its implicit form.

It should be noted that the discrete model described above does not directly capture the
mechanical behaviour of a disordered cytoskeletal filament network. However, we show in
Appendix A that our regular approach can reproduce the mean mechanical response averaged
over a large number of realisations of disordered networks (provided one accounts for the mean
segment length). Moreover, in our model the filament pre-stress is maintained via the outer
boundary and is thus not self-equilibrated. Despite these limitations, the discrete model described
above is a prototypical model for studying the mechanical deformation of filament networks,
providing a direct link between the microscale parameters and the macroscale response via a
continuum upscaling (Section 3) and yields an explicit analytical formula for the network stiffness
when pulling a small bead (Section 5).

3. Upscaling and continuum model

(a) Upscaling the force balance
We now define a small parameter ε≡N−1 ≪ 1, the (dimensionless) undeformed CL-to-CL
distance. We upscale the discrete model (2.4) in the limit ε→ 0 to form a continuum model. We
assume that there exist smooth functions x(X,Y ) and y(X,Y ) defined on the square domain
− 1

2 <X,Y < 1
2 such that for all i, j we have g(Xi, Yj) = gi,j where g is either x or y. Assuming

x, y and F are sufficiently smooth, we Taylor expand the discrete equations (2.4) (centering about
(Xi, Yj)) and rationally derive a continuum model [56]. Further details of the derivation can be
found in Supplementary Material (Section S4.1). The first non-trivial balance in the momentum
equations givesF

(
ξ
√

x2X + y2X

)
(xX , yX)√
x2X + y2X


X

+

F
(
ξ
√

x2Y + y2Y

)
(xY , yY )√
x2Y + y2Y


Y

= 0, (3.1)

where subscripts denote partial derivatives. This system of two coupled nonlinear equations in
the divergence form constitutes the upscaled problem. Notice that in the (continuum) N →∞
limit, the constitutive law (2.5) converges to F = r − 1 which is identical to (2.9); the resulting
equations under the linearized microscale constitutive law are deduced in Supplementary Section
S4.2.

The momentum balance equations (3.1) are consistent with other classical results in continuum
mechanics (see Supplementary Material, Section S4.3, for details). Since these equations are
expressed in divergence form, we can define Fkl = ∂xk/∂Xl to be the components of the
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corresponding deformation gradient tensor and immediately deduce the nominal stress tensor
in the form

S̃ =
1

R̃c


F̃
(
ξ
√

F 2
11 + F 2

21

)
F11√

F 2
11 + F 2

21

F̃
(
ξ
√

F 2
11 + F 2

21

)
F21√

F 2
11 + F 2

21

F̃
(
ξ
√

F 2
12 + F 2

22

)
F12√

F 2
12 + F 2

22

F̃
(
ξ
√

F 2
12 + F 2

22

)
F22√

F 2
12 + F 2

22

 . (3.2)

This formulation is a special case (reflecting the particular geometry of the undeformed
configuration) of the stress tensor derived for an arbitrary distribution of filament directions using
the Doi–Edwards construction [39]. In the initial configuration, F = I and therefore S̃ = F̃p/R̃cI ,
consistent with our prediction of macroscale pre-stress in Section 2(a). Similarly, we conclude that
the dimensional strain energy density in the deformed configuration is

W̃ (C) =
Ẽ
(
ξ
√

I4(C)
)
+ Ẽ

(
ξ
√

I6(C)
)

R̃2
c

, (3.3)

where Ẽ denotes the energy stored in elastic stretching of the filaments (see Supplementary
Material, Section S3.1), C is the right Cauchy–Green deformation tensor and

√
I4(C) and√

I6(C) represent local stretches in X and Y directions, reflecting the underlying square-
grid geometry of the cytoskeleton with two preferred filament directions. Such anisotropic
contributions to the strain energy are often proposed in phenomenological models for fiber-
reinforced materials (e.g. [57]).

(b) Boundary conditions
The pinning of the outer layer of CLs in the discrete model gives in the continuum limit

x(X,Y ) =X, y(X,Y ) = Y (3.4)

along all boundaries characterized by X =± 1
2 or Y =± 1

2 . In the continuum model, the bead
is represented by a disc of radius ã cut out from the domain, initially centred at (X̃, Ỹ ) = (0, 0)

and displaced by R̃b at a pulling angle φ∗. Note that in the dimensionless setting, we must have
a= ã/D̃=O(1). The bead boundary condition is written for −π <φ≤ π as

x(a cos (φ), a sin (φ)) = a cos (φ) +Rb cos (φ∗), y(a cos (φ), a sin (φ)) = a sin (φ) +Rb sin (φ∗).

(3.5)

4. Discrete and continuum simulations
To facilitate direct comparison between the discrete and continuum predictions, we return to the
dimensional variables and introduce the continuum displacement fields

ũ(X̃, Ỹ ) = x̃(X̃, Ỹ )− X̃ ṽ(X̃, Ỹ ) = ỹ(X̃, Ỹ )− Ỹ , (4.1)

as well as their discrete counterparts

ũi,j = x̃i,j − X̃i ṽi,j = ỹi,j − Ỹj (4.2)

for all i and j. Unless stated otherwise, all lengths (including those indicated in colorbars) are
given in microns and all forces in nanonewtons.

In quasi-static simulations of the discrete model (2.4), we use numerical continuation from the
initial configuration to find steady-state solutions for a variety of bead displacements. In order to
avoid pulling along the initial direction of one of the filaments or exactly along the diagonal, we
choose a default pulling angle as φ∗ = π/6. To avoid FSs crossing each other, we only displace
the bead up to a maximal distance equal to the undeformed mesh size, i.e. 0≤ R̃b ≤ R̃. For every
R̃b, we solve for the locations of CLs outside the bead using fsolve toolbox in MATLAB (based
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on Newton’s method) and then calculate the resultant force acting on the bead by summing up
tensile forces from all attached FSs.

The continuum problem (3.1) is solved in FEniCS using Newton solver and we employed
Lagrange finite elements of degree 1 [58]. As the difference in the predicted force on the bead
using default model parameters, maximum displacement and domain resolutions (the minimum
number of elements across the square in both X̃ and Ỹ directions) equal to 200 and 400 was less
than 0.3% of the value at 200, we conclude that the resolution 400 provides us with a sufficiently
fine mesh giving trustworthy force estimates. We use this value as default from now onwards. In
the continuum model, the net force acting on the bead is then found by numerically integrating

the traction (S̃
T
N where N is the unit normal to the bead) over the bead boundary.

(a) Simulation with default parameters for vimentin
In order to assess the convergence of discrete simulations to the continuum as N →∞, in Figure
2 we plot the force-displacement graphs for various N , fixing all other parameters at their
default value (including εc = 1/100). In each case the graph of the magnitude of the force as a
function of bead displacement (termed the force-displacement curve) is almost perfectly linear
because we restrict attention to (small) deformations up to a single mesh size. For every given
displacement the discrete and continuum predictions of the force approach one another as N

becomes large (Figure 2a) and the results are almost indistinguishable for N = 1/Rc = 100. Note
that the convergence is not monotonic for small N , but this is an artifact caused by the relatively
small number of FSs attached to the bead in such cases. In order to elucidate how the steady state
force distribution changes with increasing bead displacement, in the insets of Figure 2(a) we show
the accumulation of tension in the wake of the moving bead. The solution profiles for such dense
network (N = 100) are not easy to visualize and throughout this work we will therefore zoom
onto a small region in the vicinity of the bead where the perturbation is localized. The magnitude
of the continuum displacement field ||(ũ, ṽ)|| (Figure 2b) shows good agreement with its discrete
counter-part (Figure 2c). Note that the near-perfect symmetries of these fields with respect to the
X̃ and Ỹ axes can be explained by the smallness of the deformation: while the nonlinear system
(S29) does not suggest any symmetry, the structure of the small-deformations limit (5.4)-(5.7)
derived in Section 5 (together with the symmetries of the domain under consideration) indicate
that both components of the displacement field must be even functions of X̃ (Ỹ ) for a fixed Ỹ

(X̃). In summary, this figure shows that the discrete and continuum predictions are in excellent
agreement with one another as the mesh spacing reduces.

(b) Effect of model parameters
In this section we explore dependency on model parameters, namely the pulling angle φ∗ (Section
4(b)i) and the force due to pre-stress F̃p (Section 4(b)ii).

(i) Pulling angle φ∗

In order to assess the anisotropy of the force-displacement curves induced by our assumption of
a regular array of filaments, in Figure 3 we examine the dependency on the pulling angle across
its entire range. Amongst both the discrete and continuum simulations, the force-displacement
curves remain within 1% of one another for the full range of pulling angles (Figure 3a,b).
Furthermore, this difference remains small across the entire range of bead sizes considered
(data not shown), consistent with the predictions of the continuum model in the limit of
small deformations (see Section 5 below). As before, we observe good agreement between the
continuum and discrete model predictions. However, despite the force exerted on the bead being
almost independent of the pulling angle, we note that the overall stress profile is qualitatively
different for different pulling angles (Figure 3c-f): the more aligned the direction of movement is
with the initial direction of the filament, the greater the increase (decrease) in tension in the wake
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Figure 2: (a) The force-displacement graphs for increasing N in the discrete model (symbols)
with default parameters converge to that for the continuum limit (solid blue). The insets depict
solution profiles for R̃b = 0.025µm and 0.05µm. Panels on the right show the magnitude of the
displacement in the undeformed configuration in the continuum (b) and discrete (c) model (the
latter visualized as a scatter plot).

(at the front) of the moving bead. In summary, this figure shows that while the force-displacement
curve is approximately independent of the direction of bead movement, the stress profile within
the material is sensitive to the direction of pulling.

(ii) Force due to pre-stress F̃p

In order to assess the importance of the filament pre-stress (since this is not known
experimentally), in Figure 4(a) we study force response for increasing F̃p and default parameters
otherwise. As might be expected, with increasing (tensile) pre-stress in the filaments, the response
gets stiffer, i.e. the gradient of the force-displacement curve increases. Due to the smallness of
the deformations, the deviations from linear behaviour of the force-displacement curves are
negligible in all studied cases which allows us to introduce a scalar measure of the network
stiffness K̃=dF̃b/dR̃b which we approximate as max(F̃b)/max(R̃b) evaluated at the largest bead
displacement. The network stiffness increases with the pre-stress in a slightly sublinear manner
(see the inset in Figure 4a). As expected, the overall force distribution within the network scales
with the amount of pre-stress (Figure 4b,c).

5. Small-deformation and small-bead analysis
To provide further insight into the force-displacement relationship, and in particular the
dependency on the model parameters, we investigate the limit Rb ≪ 1, i.e. the limit of small
macroscale deformations. Assuming that the bead displacement is small, it is natural to assume
that all components of the deformation gradient tensor are small everywhere in the macroscopic
domain. Note that the small deformations assumption is consistent with our restriction to bead
displacements up to one inter-CL distance in the discrete model. We analyze small deformations
by substituting

x(X,Y ) =X +Rbx̂(X,Y ) +O(R2
b), y(X,Y ) = Y +Rbŷ(X,Y ) +O(R2

b), (5.1)
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Figure 3: In panel (a), discrete (symbols) and continuum (lines) force-displacement graphs are
plotted for default model parameters and for pulling angles 0 (green), π/12 (black), π/6 (blue)
and π/4 (red) radians. As the resulting curves lie very close to one another for both models
(and any fixed φ∗), to make the differences between various pulling angles visible, we zoom
onto the maximum bead displacement in panel (b). Note that the force-displacement graphs for
φ∗∗ ∈ (π/4, π/2) will mirror those for φ∗ = π/2− φ∗∗ due to the square shape of the macroscopic
domain; in other words, due to the symmetry upon swapping X and Y . Panels (c) and (e) show
the discrete solution profiles (zoomed-in onto the bead) at the largest displacement R̃b = R̃=

0.05µm for two extreme values of the pulling angle φ∗ = 0 (c) and π/4 (e) radians - the response is
stiffest when one pulls in the direction of one of the two filament families and softest when pulling
along the diagonal. The corresponding principal stresses and directions of the continuum stress
tensor (ST ) are plotted using ellipses at selected points near the bead in panels (d) and (f). Note
that the continuum results are plotted using the undeformed variables with the corresponding
pre-stress shown via red crossheads inside circles located at the top, that the green arrows indicate
the direction of bead’s motion and that the principal stresses were all normalized with respect to
the same value chosen so that the ellipses do not overlap yet are large enough to be clearly seen.

with Rb ≪ 1 into the continuum problem. Following Section S5.1 of the Supplementary Material,
we arrive at the macroscale equations at O(Rb)(

ξF ′(ξ)x̂X
)
X

+ (F(ξ)x̂Y )Y = 0, (5.2)

(F(ξ)ŷX)X +
(
ξF ′(ξ)ŷY

)
Y
= 0. (5.3)

Note that equations (5.2) and (5.3) are decoupled. Since the constitutive law for the force in the FS
is always monotonically increasing as a function of end-to-end distance (i.e. F ′(ξ)> 0), we can
divide both equations by ξF ′(ξ) to obtain

x̂XX + ωx̂Y Y = 0, (5.4)

ωŷXX + ŷY Y = 0, (5.5)
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Figure 4: Force-displacement graphs for discrete (symbols) and continuum (lines) models for
default model parameters and F̃p = 2 (green), 4 (blue) and 6 (red) nN (a). The inset shows the
dependence of the effective stiffness K̃= F̃max

b /R̃max
b (evaluated at the maximum displacement)

as function of F̃p. Panels on the right show solution profiles at R̃b = 0.05µm for F̃p = 6 (b) and 2

nN (c).

where ω :=F(ξ)/(ξF ′(ξ))> 0. For our particular FS constitutive law, F = r − 1. These equations
are subject to boundary conditions

x̂= ŷ= 0, (5.6)

evaluated on the outer boundary of the domain. Similarly, on the boundary of the bead (circle of
radius a) we impose for any −π <φ≤ π that

x̂(a cos (φ), a sin (φ)) = cos (φ∗), ŷ(a cos (φ), a sin (φ)) = sin (φ∗). (5.7)

For our choice of FS constitutive law we deduce ω= 1− 1/ξ < 1 which will be used in the
elliptical transformation below (Figure 5). To the best of our knowledge it is not possible to
solve (5.4)-(5.7) exactly. However, under the assumption a≪ 1, it is possible to find an asymptotic
approximation valid in the inner region (i.e. close to X2 + Y 2 = a2). This assumption can easily
be justified, as the beads used in optical tweezers experiments are typically small compared to the
cell size [7].

(a) Solution in the limit a≪ 1
As the two equations are decoupled, we solve them separately. The technical details are presented
in Supplementary Material (Section S5.2). The solution strategy for x̂ (ŷ problem is dealt with
analogously) is summarized in Figure 5: we study the outer problem (5.4) subject to the outer
boundary conditions together with the inner problem obtained by rescaling (X̄, Ȳ ) = (X,Y )/a,
which localizes the problem to the neighbourhood of the bead (Figure 5a,b). In the inner region,
we then need to transform the Ȳ coordinate to Z̄ = Ȳ /

√
ω which transforms the governing

equation into Laplace’s equation on a (stretched) domain with an elliptical (inner) boundary
(Figure 5c). Elliptical coordinates (S37) then allow us to transform this problem onto a semi-
infinite strip while keeping the same governing equation so that an analytical solution can
be found easily (Figure 5d). Undetermined constants in the inner solution are obtained by
transforming back to Cartesian coordinates, writing in outer variables and matching with the
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Figure 5: Demonstration of key steps in the solution process using a= 0.02 and ω= 0.2. Starting
from the macroscale variables (X,Y ) (a) and assuming a≪ 1, we rescale to the inner layer (b).
Then, we stretch the Ȳ coordinate by the means of which we transform the governing equation
into Laplace’s equation which is to be solved subject to Dirichlet boundary conditions at an
elliptical inner boundary in (X̄, Z̄) (c). Using elliptical coordinates - note in panel (c) that the blue

curves correspond to µ= constant while yellow to ν = constant, the µ= cosh−1
(
(1− ω)−1/2

)
≈

0.5 representing the inner boundary - we can finally transform this non-trivial geometry unto a
rectangular one in (µ, ν) while keeping the governing equation same (d).

outer x̂. Eventually, we conclude the inner approximation (denoted with superscript I)

x̂I = cos(φ∗)

{
1 +

2 cosh−1((1− ω)−
1
2 )− ln (1− 2q + 2

√
q2 − q)

2 ln (1/a) + ln (4ω/(1− ω))− 2 cosh−1((1− ω)−
1
2 )

}
+O

(
a2
)
, (5.8)

where

q(X̄, Ȳ ) =
−ωX̄2 − Ȳ 2 + (1− ω)−

√
(ωX̄2 + Ȳ 2 − (1− ω))2 + 4(1− ω)ωX̄2

2(1− ω)
. (5.9)
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Similarly, to find an inner approximation for ŷ, we first transform X̄ to W̄ = X̄/
√
ω and then use

elliptical coordinates (S44), where we derive

ŷI = sin(φ∗)

1 +
2 cosh−1((1− ω)−

1
2 )− ln (1− 2q2 + 2

√
q22 − q2)

2 ln (1/a) + ln (4ω/(1− ω))− 2 cosh−1((1− ω)−
1
2 )

+O
(
a2
)
, (5.10)

where

q2(X̄, Ȳ ) =
−X̄2 − ωȲ 2 + (1− ω)−

√
(X̄2 + ωȲ 2 − (1− ω))2 + 4(1− ω)ωȲ 2

2(1− ω)
. (5.11)

Differentiating (5.8) and (5.10) with respect to X and Y we deduce leading-order approximations
for the strain fields away from the bead (see Supplementary Material, Section S5.3).

(b) Stress field and net force exerted on the bead
Substituting the small-deformations ansatz (5.1) into the stress tensor (3.2) we further expand
using Rb ≪ 1 to obtain in the inner layer

S̃ =
πỸ b̃2c

εcD̃

{(
F(ξ) 0

0 F(ξ)

)
+Rb

(
ξF ′(ξ)x̂IX F(ξ)ŷIX
F(ξ)x̂IY ξF ′(ξ)ŷIY

)
+O(R2

b)

}
. (5.12)

As in the full continuum problem, the net force exerted on the bead is calculated by integrating

S̃
T
N over the boundary of the bead X̄2 + Ȳ 2 = 1 using the displacement profiles (5.8) and (5.10)

in the inner layer. Performing these calculations and using the constitutive law (2.9) (details are
included in Supplementary Material, Section S5.4), we derive an analytical expression for the
force response of the material to the bead being pulled through it valid asymptotically (accurate
up to O(a) error) of the form

F̃ b ≈−(cos (φ∗), sin (φ∗))F̃
0
b , (5.13)

where

F̃ 0
b =

2πRb/εc
√

Fp (1 + Fp)

ln

(
2

(√
Fp(1 + Fp)−Fp

)
/a

)πỸ b̃2c . (5.14)

Note that this force on the bead is in the direction opposite to that of the pulling, as expected.
Equation (5.14) elucidates how the force-displacement curve depends on key model parameters,
namely filament’s pre-stress Fp, Young’s modulus Ỹ and radius b̃c, mesh spacing εc and bead
radius a. Finally, we deduce an analytical formula for the (dimensional) effective network stiffness

K̃=
dF̃b

dR̃b

≈ F̃ 0
b

R̃b

=
πỸ b̃2c

R̃c

2π
√

Fp (1 + Fp)

ln

(
2

(√
Fp(1 + Fp)−Fp

)
/a

) . (5.15)

Note from the inset in panel (a) of Figure 4 that for the default bead size, the analytical result is
already in good qualitative agreement with the discrete and continuum models.

(c) Dependence of force response on the bead size
In order to assess the comparison between discrete, continuum and analytical approaches, in
Figure 6(a) we plot force-displacement curves for a number of values of a. The discrete and
continuum model results agree well for all considered values and, as expected, the larger the bead
is the greater the force required for its transport. Moreover, as a decreases, our asymptotic result
(5.14) approaches simulation results of the continuum model. More specifically, as a is reduced
from 0.1 to 0.025, the absolute (relative) approximation error at the maximum displacement
(R̃b = 0.05µm) decreases from roughly 28 nN to 8 nN. Figure 6(b) confirms the increasing
agreement between the direct numerical simulations of the continuum model and our analytical
approximation as a is further reduced. When plotted using logarithmic scales on both axes, the
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continuum model predictions do not collapse onto a straight line indicating that the net force
does not scale with a according to a power law but behaves in the logarithmic manner instead
(c.f. equation (5.14)). Note that the continuum and analytical results almost overlap for a= 1/400.
The discrete solution profiles at the maximum displacement value R̃b = 0.05µm for varying bead
radius a are presented in Figures 6(c,d,e). With decreasing a, the number of FSs exerting force
on the bead decreases linearly, but their individual stretches (and hence forces) are larger. In
summary, this figure confirms that discrete and continuum predictions converge to the analytical
formula (5.14) thus establishing it as a useful predictor of the net force exerted on a small bead.

Figure 6: (a) Force-displacement curves for default model parameters and the bead radius equal to
twice (0.5µm; green) and half (0.125µm; red) the default value (0.25µm; blue), with panels (c), (e)
and (d) showing the corresponding solution profiles at the maximum displacement, R̃b = 0.05µm.
Panel (b) demonstrates the convergence of the continuum simulations onto the prediction of the
a≪ 1 asymptotics.

6. Discussion
In this paper we have developed a multiscale framework for modelling the mechanical response
of the eukaryotic cell cytoskeleton to internal motion of a small internal bead or organelle,
mimicking recent rheological tests using optical tweezers [7]. In particular, we have developed
a discrete model of the cell cytoskeleton by assuming a planar regular square grid of cytoskeletal
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filaments, using a microscale constitutive law for the mechanical response of each filament
segment (Figure 1) [17] . This model is highly idealized, ignoring the complex irregular geometry
of the cytoskeletal network, including three-dimensional effects, and representing the structure
by just one type of filament (in this case the intermediate filament vimentin). However, the
simplicity of our framework allows a rational upscaling of the discrete model, from which we
can construct a macroscale continuum model which encodes the microscale properties of the
individual filaments. This continuum model provides an excellent match to discrete simulations
across the parameter space at a fraction of the computational cost. Furthermore, in the limit of
small bead displacements the continuum model can be solved asymptotically for small bead size
by stretching the geometry of the (bead) boundary region, transforming to elliptical coordinates
and matching with the outer region (Figure 5), from which it is possible to construct a closed
form expression (5.14) for the net force acting on the bead as a function of its size, the Young’s
modulus and radius of the filaments, the angle at which the bead is pulled through the network
relative to the filaments, the network pre-stress and its spacing. In future, expression (5.14) could
in principle be used to infer an estimate of a microscale filament pre-stress from the macroscale
force-displacement data. The option of having both discrete and continuum formulation allows
us to consider a variety of sizes of transported objects. For example, cell organelles are often
much larger than the mesh size so that the continuum description for cytoskeleton is justified and
computationally inexpensive (and one can make use of our analytical result (5.14)). Conversely,
the discrete simulations without a hole would form an appropriate model for transport of small
cytoplasmic molecules which are usually smaller than the mesh spacing [7].

A unified picture emerges from solving these discrete, continuum and analytical models:
the system predicts an approximately linear relationship between the force on the bead and
its displacement, and the gradient of this curve provides an estimate of the network stiffness
(Figure 2). In particular, we show that the anisotropy introduced by the square symmetry of our
networks is present but weak so that the response is nearly isotropic, i.e. the network stiffness is
approximately independent of the angle at which the bead is pulled through the structure (Figure
3), consistent with the optical tweezers experiments [7]. The net force Fb increases sublinearly
with the filament pre-stress across the studied range although the deviation from linear behaviour
is small (Figure 4) and decreases in a logarithmic manner (Fb ∝ (ln (1/a) + const)−1) as the
radius of the bead (a) reduces (Figure 6). We note that a linear increase in network stiffness with
increasing pre-stress is found in tensegrity studies of cell mechanics, even though such linearity
is typically established under bulk (shearing) deformations as opposed to local perturbations
studied here [1].

Numerical simulations in the absence of pre-stress take significantly longer than their pre-
stretched counterparts. Initially stress-free networks thus appear to be the borderline case beyond
which (pre-compressed filaments) neither discrete (MATLAB) solver nor continuum (FEniCS)
solver converge. By analogy with the literature on central force networks we therefore expect
that the problem with initially stress-free network suffers from ill-posedness issues associated
with the so-called stiffness percolation (positive elastic modulus at zero strain) [18]. In our model,
the pre-stress is maintained by the outer boundary enforcing a total filament length greater than
the natural length. Our modelling framework could potentially be generalized to include two or
more cytoskeletal components (e.g. actin stress fibers, microtubules etc), where each component
exhibits differing amounts of pre-stretch (or pre-compression), allowing the system to find an
equilibrated state of pre-stress without enforced displacement at the boundaries. Furthermore,
our analysis in this study is mostly restricted to quasi-static deformations of regularly arranged
filament networks which remain in-tact as the deformation is applied. However, eukaryotic cells
are known to exhibit a complicated rheology involving additional dissipative effects arising from
motion of the filaments through the surrounding cytoplasmic fluid [6] and through transient
crosslink binding/unbinding, sliding and unfolding [22,59–61]. We have recently extended the
framework from this paper to include some of these additional features, modelling the cell as
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a poro-visco-elastic continuum material, allowing exploration of how these different mechanical
responses manifest in different cell types [62].

In this study we have primarily restricted to regularly arranged filament networks with fixed
coordination number. However, the discrete framework presented in this paper can readily be
extended to disordered filament networks and also to include filament breakage, allowing the
possibility of localised non-affine deformations [43]. Indeed, preliminary simulations suggest
that the predictions from the ordered network simulations presented in the main text are a
useful indicator of the behaviour of a disordered filament network (see Appendix A); further
consideration of disordered networks is deferred to future work.

The discrete-to-continuum modelling approach is not restricted to cytoskeletal networks and
could similarly be applied to other crosslinked networks of semi-flexible filaments such as
collagen [44]. Furthermore, our approach could be modified to model cells migrating through
(and interacting with) extra-cellular matrix [25,63,64].
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Appendix A. Application to disordered filament networks
In this appendix we apply the model constructed in Section 2 to disordered networks of filaments.

To generate a (random) disordered network we seed Nf constituent filaments as straight
lines randomly spanning the square domain. We randomly fix the geometry of each filament
by choosing a single point on the line (sampling both the x and y coordinates from a uniform
distribution spanning the range of the square domain) and the gradient of the line (again
sampling from a uniform distribution for the tangent of the angle to the X direction). We
endow each filament with the same microscale constitutive law as the regular networks (the
dimensionless equation (2.9), equivalent to the dimensional equation (S14)) and with the same
pre-stress (see Section S2 of the Supplementary Material). As in the regular model we assume
crosslinks are formed at each filament crossing and at each point where the filament crosses the
outer boundary of the square domain.

In simulations presented here we fix the number of filaments as Nf = 38 (which corresponds
to N = 20 for the regular array). Two representative examples of disordered networks are shown
in Figure 7(a,b). Over 100 random realisations of the network structure this results in an average
of approximately 481 crosslinks across the square domain (compared to 437 for the regular array)
and an average filament segment length of 0.2142 µm (compared to 0.25 µm for the regular array).

To deform the network we displace the crosslink closest to the centre of the domain (displaced
cross-link shown as red circle in Figure 7a,b), focusing attention on a single value of the pulling
angle φ∗ = 0; similar to the simulations in the main paper we consider small deformations up to
0.02 µm.

Applying this displacement protocol to 100 random realisations of the initial network, we
calculate the mean and the standard deviation of the force-displacement curve (shown as the
solid blue line in Figure 7c). The predicted force-displacement curve from the regular network
for an equivalent number of filaments (N = 20) lies within one standard deviation of this mean
(the dashed red line in Figure 7c). However, as discussed above the number of crosslinks and the

http://dx.doi.org/10.5525/gla.researchdata.1443
http://dx.doi.org/10.5525/gla.researchdata.1443
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mean filament segment lengths are not directly comparable. Our analytical model from Section 5
indicates that the gradient of the force-displacement curve is inversely proportional to the initial
filament segment length (see equation (5.15)). In this spirit, one approach to reconcile the two
approaches is to rescale the force-displacement curve from simulations of the regular network by
the ratio of the filament segment length from the ordered network to the mean filament segment
length from the disordered networks; this rescaled force-displacement curve collapses almost
perfectly onto the mean obtained for the disordered networks (the dotted black line in Figure 7c).
Alternatively, we can increase the number of filaments in the ordered network to produce a
filament segment length more comparable to that of the disordered networks. For example, for
N = 24 in the ordered network the system exhibits a filament segment length of 0.2083 µm,
and the corresponding force-displacement curve again shows much closer agreement with the
mean from the simulations of the disordered networks (the dash-dotted green line in Figure 7c).
These preliminary observations suggest that the predictions of the ordered network simulations
presented in the main text are a useful indicator of the behaviour of a disordered filament
network, with the significant advantage that the regular network can be formally upscaled into a
continuum description.
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