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Summary. A central problem in biomechanical studies of personalized human left ventricular
modelling is estimating the material properties and biophysical parameters from in vivo clini-
cal measurements in a timeframe that is suitable for use within a clinic. Understanding these
properties can provide insight into heart function or dysfunction and help to inform personal-
ized medicine. However, finding a solution to the differential equations which mathematically
describe the kinematics and dynamics of the myocardium through numerical integration can be
computationally expensive.To circumvent this issue, we use the concept of emulation to infer the
myocardial properties of a healthy volunteer in a viable clinical timeframe by using in vivo mag-
netic resonance image data. Emulation methods avoid computationally expensive simulations
from the left ventricular model by replacing the biomechanical model, which is defined in terms
of explicit partial differential equations, with a surrogate model inferred from simulations gener-
ated before the arrival of a patient, vastly improving computational efficiency at the clinic. We
compare and contrast two emulation strategies: emulation of the computational model outputs
and emulation of the loss between the observed patient data and the computational model out-
puts. These strategies are tested with two interpolation methods, as well as two loss functions.
The best combination of methods is found by comparing the accuracy of parameter inference
on simulated data for each combination. This combination, using the output emulation method,
with local Gaussian process interpolation and the Euclidean loss function, provides accurate
parameter inference in both simulated and clinical data, with a reduction in the computational
cost of about three orders of magnitude compared with numerical integration of the differential
equations by using finite element discretization techniques.
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1. Introduction

It is widely recognized that, when integrated with in vivo data from cardiac magnetic resonance
imaging (MRI), computational modelling of cardiac biomechanics can provide unique insights
into cardiac function in both healthy and diseased states (Wang et al., 2015; Chabiniok et al.,
2016; Gao, Aderhold, Mangion, Luo, Husmeier and Berry, 2017). For example, recent mathe-
matical studies have demonstrated that passive myocardial stiffness is much higher in diastolic
heart failure patients compared with healthy subjects (Xi et al., 2014). Similarly, myocardial
contractility could be much higher in acute myocardial infarction patients than it is in healthy
volunteers (Gao, Aderhold, Mangion, Luo, Husmeier and Berry, 2017). In particular, the my-
ocardial passive properties not only affect left ventricular (LV) diastolic filling but also influence
the pumping function in heart chamber contractions (systole) through the ‘Frank–Starling’ law
(Widmaier et al., 2016), the relationship between stroke volume and end diastolic volume.

To assess LV function comprehensively, it is necessary to determine passive myocardial stiff-
ness. Traditionally myocardial passive properties can be determined by a series of ex vivo or
in vitro experiments (Dokos et al., 2002). The widely used Holzapfel–Ogden (HO) constitutive
law (Holzapfel and Ogden, 2009) can give a detailed description of the myocardium response
in passive state, including the effects of collagen fibre structure. However, determining the ma-
terial parameters of this model is challenging for clinical applications, as one cannot perform
invasive experiments as in Dokos et al. (2002). One possibility of estimating these parameters
non-invasively is by cardiac MRI, which allows both early and end diastolic states to be mea-
sured. We can then compare, for a given patient, these measurements with the predictions from
the biomechanical model, which defines the likelihood. The biophysical parameters defining
the myocardial properties (as described by the HO law) can then be inferred in an approximate
maximum likelihood sense by using an iterative optimization procedure, as discussed in Gao
et al. (2015). In the context of mathematical physiology, this procedure is referred to as solving
the inverse problem.

The inverse problem itself can be solved by using a variety of methods and many studies
have demonstrated that it is possible to estimate constitutive material parameters by using in
vivo measurements even with very complex constitutive relations (Guccione et al., 1991; Remme
et al., 2004; Sermesant et al., 2006; Sun et al., 2009). However, because of the strong correlation
between the material parameters and sparse noisy data, the formulated inverse problem is highly
non-linear (Xi et al., 2011; Gao et al., 2015). Furthermore, determining the unknown param-
eters in this way is very time consuming, with the process taking days or weeks to converge,
even with a modern multicore workstation (Gao et al., 2015; Nikou et al., 2016). The primary
reason for this is the high computational expense of simulating from the biomechanical model,
which requires a numerical integration of the underlying partial differential equations with finite
element discretization. This procedure must be repeated hundreds or thousands of times during
the iterative optimization of the material parameters.

As a result of the high computational costs of simulating the biomechanical model, estimating
myocardial properties by using a process which uses this model as a simulator is not suitable
for realtime clinical diagnosis. A potential approach to overcome this problem is emulation (e.g.
Kennedy and O’Hagan (2001), Conti et al. (2009) and Conti and O’Hagan (2010)), which has
recently been explored in the closely related contexts of cardiovascular fluid dynamics (Melis
et al., 2017), the pulmonary circulatory system (Noè et al., 2017) and ventricular mechanics
(Achille et al., 2018).

Emulation methods are far more computationally efficient as most of the computation can
be done in advance, making the in-clinic diagnosis faster. With emulation approaches, we
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simulate a large number of samples at different parameter specifications in advance and use
these simulations combined with an interpolation method to replace the computationally ex-
pensive simulator in the optimization procedure. The choice of parameter combinations from
which simulations are taken can be determined effectively by using a space filling design, in
this case produced by a Sobol sequence (Sobol, 1967), to spread the parameter combinations
chosen in a way that aims to maximize the information about the simulator for a given number
of simulations via several uniformity conditions. Optimizing this design is an active research
area (see for example Overstall and Woods (2017)), which is beyond the remit of the present
paper though.

The work that is presented here is designed as a proof-of-concept study to assess the accuracy
of alternative emulation strategies for learning the material properties of a healthy volunteer’s LV
myocardium based on only non-invasive, in vivo MRI data. For that, we use a patient-specific
model with a fixed, patient-specific LV geometry, and focus on the statistical methodology
for biophysical parameter estimation. Additionally, we use a reduced parameterization of the
HO law with the biomechanical model based on the work of Gao et al. (2015) in MRI data.
On the basis of this approach, we compare different emulation strategies, loss functions and
interpolation methods.

The first of the emulation approaches that we have tested is based on emulating the outputs of
the simulator (Section 3.3.1), in this case the simulated clinical data based on the biomechanical
model described. Here, individual interpolators are fitted to each of the simulator outputs,
using our chosen interpolation technique. We can then calculate the loss function between
the predicted output of the individual models and the observed new data points from which we
wish to learn the underlying myocardial properties. Minimizing this loss function via a standard
optimization routine then produces estimates of the material parameters of the new subject. A
variety of loss functions can be used within our emulation methods and we have compared
two different functions here. The first of these is the Euclidean loss function, which assumes
independence between outputs, and the second is the Mahalanobis loss function (Mahalanobis,
1936) which allows for correlations.

The second emulation approach involves emulating a loss function rather than the outputs
directly (Section 3.3.2), where again we use both the Euclidean and the Mahalanobis loss func-
tions. For new MRI data, we calculate the loss, which quantifies the discrepancy between the
model predictions and the data. Statistical interpolation is then used to obtain a surrogate loss
function over the biophysical parameter space, which can be minimized with standard iterative
optimization routines.

In addition to testing these two emulation paradigms, we test two interpolation techniques
based on Gaussian processes (GPs) (Rasmussen and Williams, 2006). The first of these is a
low rank GP emulation method, which uses the complete data set for interpolation but uses a
low rank approximation to scale to high dimensions (Wood, 2003). The second method uses a
local GP, where the interpolation is based on the K-nearest-neighbours that are closest to the
current values of the material parameters. Using a reduced number of training points from the
simulations at each stage of the optimization procedure and thereby lowering the computational
costs is important, as because of the cubic computational complexity in the number of training
points a standard GP would not be suitable for clinical decision support in realtime.

In this work, we firstly compare different combinations of emulation methods, interpolation
methods and loss functions to determine which method provides the best estimate of the material
LV properties. We do this via a simulation study (Sections 5.1, 5.2, 5.3 and 5.4), using additional
independent simulations from the simulator as out-of-sample test data. Knowledge of the true
parameter values enables us to assess the accuracy of the different combinations of methods. We



1558 V. Davies, U. Noè, A. Lazarus, H. Gao, B. Macdonald, C. Berry, X. Luo and D. Husmeier

then test the best combination of methods on real MRI data from the healthy volunteer from
whom we have taken the LV geometry (Section 5.5), to assess the accuracy of biomechanical
constitutive parameter estimation in a timeframe that is suitable for clinical applications.

2. Left ventricle biomechanical model

The LV biomechanical model describes the diastolic filling process from early diastole to end
diastole. There are many models that can be used to describe this process and these are reviewed
in detail in Chabiniok et al. (2016). The model that is used here is similar to those used in Wang
et al. (2013) and Gao et al. (2015). The biomechanical model that was initially described in Wang
et al. (2013) can be thought of as consisting of five parts: initial discretized LV geometry, the
constitutive law (the HO law), the constitutive parameters, the finite element implementation,
and corresponding initial and boundary conditions. Linking this biomechanical model to patient
MRI data can allow the inference of unknown material parameters describing heart mechanics,
potentially leading to improved disease diagnosis and personalized treatments (Gao, Mangion,
Carrick, Husmeier, Luo and Berry, 2017).

The mathematical model takes three inputs: the initial discretized LV geometry constructed
from MRI images at early diastole (Section 2.1), corresponding initial and boundary conditions
(Section 2.2) and constitutive parameters (Section 2.3). Based on these inputs, the mathematical
model, implemented in ABAQUS (Simulia, Providence, Rhode Island, USA), simulates the
diastolic filling process by using the HO law (Section 2.3) and a finite element implementation
(Gao et al., 2015). The output of the mathematical model then gives a model of the LV state
at end diastole, which can be compared with the corresponding in vivo magnetic resonance
images. These magnetic resonance images at end diastole are used to measure circumferential
strains taken at 24 locations (these are based on the American Heart Association definition as in
Gao et al. (2015)) and the end diastolic volume. These measurements can be compared against
those generated by the biomechanical model for various constitutive parameters to learn the
parameters that are associated with the volunteer from whom the magnetic resonance images
were taken.

Each simulation from the mathematical model without parallelization takes about 18 min
on our local Linux workstation (Intel(R) Xeon(R) central processor unit (CPU), 2.9 GHz, 32
Gbytes memory), or around 4.5 min with parallelization on six CPUs. Note that 18 or 4.5 min
are required for just a single parameter adaption step of an iterative optimization, or a single
addition to the emulator.

2.1. Initial discretized left ventricular geometry
The initial discretized LV geometry can be obtained through constructing a three-dimensional
model based on the MRI scans (Wang et al., 2013). The scans consist of a series of six or
seven short axis cine images which cover the ventricle. (The MRI study was conducted on a
Siemens MAGNETOM Avanto (Erlangen, Germany) 1.5-T scanner with a 12-element phased
array cardiac surface coil. Cine MRI images were acquired by using the steady state precession
imaging protocol. Patient consent was obtained before the scan.) For each cardiac cycle there
are usually around 35 frames from end diastole to early diastole. The images of the early diastole
are then used to create the initial discretized LV geometry, whereas the end diastole images will
provide the final measurements of the circumferential strains and the LV volume. To create
the discretized LV model, the endocardial (inner) and epicardial (outer) boundaries of the left
ventricle are segmented from cine images at early diastole as done in Gao, Wang, Berry, Luo
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(a) (b) (c)

Fig. 1. Biomechanical LV model reconstructed from in vivo MRI from a healthy volunteer: (a) segmented
ventricular boundaries superimposed on a long axis magnetic resonance image; (b) the reconstructed LV
geometry discretized with tetrahedron elements; (c) vector plot of fibre direction f, which rotates from endo-
cardium to epicardium

and Griffith (2014), e.g. Fig. 1(a). A three-dimensional model of the left ventricle can then
be constructed in Solidworks (Dassault Systems SolidWorks Corp., Waltham, Massachusetts,
USA), e.g. Fig. 1(b). Finally, Fig. 1(c) is constructed by using a rule-based fibre generation
method (see Gao, Carrick, Berry, Griffith and Luo (2014), giving us the initial discretized LV
geometry that was used in the biomechanical model. In the context of the present study, we
consider this a fixed input and focus our work on developing parameter inference methods
rather than a tool that can work for all possible subjects. Extensions to allow for different LV
geometries is the subject of future work.

2.2. Initial and boundary conditions
The initial and boundary conditions, in particular LV pressure, play an important role in my-
ocardial dynamics. Unfortunately, blood pressure within the cavity of the left ventricle can only
be measured invasively, by direct catheter measurement within the LV cavity. Because of poten-
tial complications and side effects, these measurements are not available for healthy volunteers.
We have therefore fixed the boundary conditions, including the pressure, at values that are
considered sensible for healthy subjects, based on the work of Bouchard et al. (1971).

2.3. Constitutive law
The final part of the biomechanical model is the constitutive law for characterizing the mate-
rial properties of the myocardium. In this study, we use the invariant-based constitutive law
(Holzapfel and Ogden, 2009), based on the following strain energy function:

Ψ= a

2b
[exp{b.I1 −3/}−1]+ ∑

i∈{f ,s}
ai

2bi
[exp{bi.I4i −1/2}−1]

+ afs

2bfs
{exp.bfsI

2
8fs/−1}+ 1

2
K.J −1/2, .1/

in which a, b, af , bf , as, bs, afs and bfs are unknown material parameters, and I1, I4i and I8fs are
the invariants corresponding to the matrix and fibre structure of the myocardium, which are
calculated as
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I1 = tr.C/,

I4f = f0 · .Cf0/,

I4s = s0 · .Cs0/,

I8fs = f0 · .Cs0/

in which f0 and s0 are the myofibre and sheet orientations, which are determined through a rule-
based approach (Wang et al., 2013) and are known before the simulation (initial conditions). C

is the right Cauchy–Green deformation tensor, defined as C=FTF, where F is the deformation
gradient describing the motion of the myocardium and hence how its shape changes in three
dimensions with time. The term 1

2 K.J −1/2 accounts for the incompressibility of the material,
where K is a constant (106) and J is the determinant of F. The HO law forms a major part of the
biomechanical model, and the eight constitutive parameters, a, b, af , bf , as, bs, afs and bfs, are
unknown inputs into the model, which we wish to learn. Assessing the accuracy of parameter
estimation for real data can be based on stretch–stress curves, as discussed in section 1 of the
on-line supplementary materials.

However, it has previously been found in Gao et al. (2015) that the eight parameters are
strongly correlated, which suggests that a model reduction is advisable to ensure identifiability.
They further demonstrated that myofibre stiffness, which is the parameter that is most relevant
for clinical applications, can be estimated from in vivo data with a reduced parameterization;
see section 2 of the on-line supplementary materials. In fact, Hadjicharalambous et al. (2017)
even estimated passive myocardial stiffness using a reduced form of the HO law with only a
single unknown parameter. In the present study, similarly to Gao et al. (2015), we group the
eight parameters of equation (1) into four, so that

a=θ1 a0, b=θ1 b0,

af =θ2 af0, as =θ2 as0,

bf =θ3 bf0, bs =θ3 bs0,

afs =θ4 afs0, bfs =θ4 bfs0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.2/

where θi ∈ [0:1, 5], i = 1, 2, 3, 4, are the parameters to be inferred from in vivo data and a0, b0,
af0, as0, bf0, bs0, afs0 and bfs0 are reference values from the published literature (Gao, Aderhold,
Mangion, Luo, Husmeier and Berry, 2017). (The reference values are, up to two decimal places,
a0 =0:22, b0 =1:62, af0 =2:43, as0 =0:56, bf0 =1:83, bs0 =0:77, afs0 =0:39 and bfs0 =1:70.) Our
results obtained with this dimension reduction are consistent with the experimental results that
were reported in Dokos et al. (2002).

3. Statistical methodology

This section reviews the notion of a simulator and emulator, as well as establishing the notation
that is used throughout the rest of the paper. It also provides details about the emulation strategies
that will be used in this paper, as well as the interpolation methods that are considered. The code
for our emulation strategies, as well as the simulated data (described in Section 4), is provided
at github.com/vinnydavies/left-ventricle-jrss-c.

3.1. Simulation
A simulator m is a mathematical model that relies on a computationally expensive numerical
solution of the underlying system’s equations. In the present study, the mathematical model is

https://github.com/vinnydavies/left-ventricle-jrss-c
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the soft tissue mechanical description of the left ventricle based on the HO strain energy func-
tion, as discussed in the previous section. The inferential process, i.e. estimating the unknown
inputs or parameters θ0 underlying the observed clinical data y0, is computationally expensive
and infeasible in settings where solutions are required within a short timeframe, for instance
in the context of clinical decision support. The prohibitive computational time that makes in-
ference challenging is due to the time that is needed for a single (forward) simulation from the
computational model, where by forward simulation we mean generating a (possibly multivariate)
output y = .y1, : : : , yJ / = m.θ/ for a given parameter vector or input θ. In the context of the
present study, J =25, and the outputs yi are the 24 circumferential strains and the LV volume
at end diastole, as predicted by the mathematical model.

Given our clinical data, y0, which are the measured circumferential strains and the end-of-
diastole LV volume obtained from MRI, we can estimate the unknown parameter vector θ0 by
finding the corresponding input to the simulator which gives rise to an output which is as close
as possible to the observed clinical data y0. Although our clinical data are assumed to come
from the same data-generating process m for an unknown input θ0, in practice there will be
a systematic deviation due to noisy measurement and model mismatch. A standard approach
to estimating the unknown input or parameter vector θ is to choose the loss function as the
negative log-likelihood:

l.θ|m, y0/=αd{m.θ/, y0}+Z, .3/

for a given metric function d measuring the distance between a simulation y=m.θ/ and data y0,
and some positive constants α and Z. We can then estimate the input to the model by minimizing
the true loss (3):

θ̂=arg min
θ

l.θ|m, y0/, .4/

effectively giving us the maximum likelihood estimate of θ. This method becomes prohibitive if a
single simulation exceeds a certain amount of time, as it does with the biomechanical model that
is considered in the present work. The numerical procedure based on finite element discretization
requires approximately 18 min for a single simulation, or 4.5 min with parallelization on six
CPUs on our computing system (a dual Intel Xeon CPU E5-2699 v3, 2.30 GHz, 36 cores and
128 Gbytes memory). Any optimization of the true loss (3) would require the evaluation of the
simulator at every iteration of the optimization routine, potentially hundreds or thousands of
times, with each iteration taking between 4.5 and 18 min. This is computationally limiting if we
wish to use the method for clinical decision support in realtime.

3.2. Emulation
An emulator is a statistical model that is a cheap and fast approximation to the true compu-
tational model (simulator) m, in this case the biomechanical model. It is used to replace the
simulator to speed up both computations and inference, and it is also referred to as a metamodel
(or surrogate model) as it represents a model of a model. An emulator can be built by using any
interpolation technique such as regression splines, polynomial regression or GPs; see Section
3.4 for more details. Once a method has been chosen and the emulator has been fitted to the
training data, we shall denote it as m̂.

To fit a statistical model and to replace the simulator, we need training data from the simulator
itself in the form of simulations D = {.θ1, y1/, : : : , .θN , yN/} = {Θ, Y}. In the context of the
present application, the input vectors θi are the biomechanical parameter vectors that were
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discussed in Section 2.3. These inputs into the simulator, Θ, are chosen on the basis of a space
filling design, using Sobol sequences. These so-called low discrepancy sequences are known to
lead to improved convergence in the context of quasi-Monte-Carlo algorithms; see for example
Gerber and Chopin (2015). A more efficient coverage of the input space is possible by using
more advanced statistical design methods, as for example discussed in Overstall and Woods
(2017), but these explorations are beyond the remit of the present work.

The outputs of the simulator, Y, are the resulting clinical values based on the assumed data-
generating process m. In the present application, the output vectors yi are the vectors of 24
circumferential strains and LV volume at end diastole. Although generating large numbers of
simulations is computationally expensive, this can be massively parallelized in advance and
before the arrival of the patient at the clinic.

Previously, given the clinical data y0 and a simulator m, we could not estimate the unknown
input θ0 by using the loss function (negative log-likelihood) given in equation (3) sufficiently
fast for effective use within a clinical environment. This was due to the high simulation time
that is required for each single input. Now, however, we can replace the true loss function (3)
with a surrogate loss function l based on an emulation method; see Section 3.3 for details.
Minimization of the surrogate loss (surrogate negative log-likelihood) for any metric function
d will be fast and suitable for realtime precision medicine, as it does not involve any simulation
from the computationally expensive model.

We can use a variety of metric functions within our surrogate loss l. The most obvious of these
is the Euclidean norm ‖m̂.θ/−y0‖2. Under the assumption of independent and identically nor-
mally distributed errors (i.e. deviations of the clinical data from the emulator outputs) with zero
mean and variance σ2, the Euclidean loss function is equivalent to the negative log-likelihood,
up to a scaling factor and an additive constant Z.σ/:

l.θ|m̂, y0/= 1
2σ2 ‖m̂.θ/−y0‖2 +Z.σ/, .5/

where m̂ is the GP predictive mean, which is used to replace the expensive computational model
m. An extension of the Euclidean loss which allows for correlations between the outputs is the
Mahalanobis loss function

l.θ|m̂, y0/= 1
2 .m̂.θ/−y0/TΣ−1.m̂.θ/−y0/+Z.Σ/, .6/

which is equivalent to the negative log-likelihood of a multivariate Gaussian distribution with
covariance matrix Σ up to a constant, Z.Σ/. To minimize the computational costs at the clinic,
the covariance matrix is precomputed from the training data, Σ= cov.Y/, and then kept fixed.
Its main purpose is to allow for the spatial correlations between the 24 circumferential strains
at different locations on the left ventricle.

3.3. Emulation frameworks
3.3.1. Output emulation
Emulating the outputs of the simulator, the LV model, involves fitting multiple individual mod-
els, one for each of the J outputs of the simulator m. These outputs, yj, j = 1, : : : , J , are fitted
using the inputs of the simulator, Θ, with an appropriate interpolation method; see Sections
3.4.1 and 3.4.2. Given the multiple independent models m̂ = .m̂1, : : : , m̂J /, estimates of the pa-
rameter vector θ̂0 can be found for any new set of outputs y0 by minimizing the difference
between y0 and m̂.θ/ with a loss function:
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θ̂0 =arg min
θ

l.θ | m̂, y0/: .7/

The loss function l in equation (7) can take a variety of forms, including the Euclidean and the
Mahalanobis loss functions given in equations (5) and (6). An algorithmic description of the
output emulation method is given in algorithm 1 in Table 1.

The advantage of emulating the outputs is that the statistical models can be fitted in advance,
before the data have been collected from the clinic, meaning that, when a patient comes into
the clinic, an estimation of the biomechanical parameter vector θ̂0 can be carried out relatively
quickly. The disadvantage is that multiple potentially correlated model outputs must be fitted,
leading to higher computational costs at training time than emulating the loss function directly.

3.3.2. Loss emulation
An alternative strategy is loss emulation. This entails direct emulation of the losses ln = l.θn|m, y0/

rather than the simulator outputs yn =m.θn/, for n=1, : : : , N. To follow this approach we fit a
single real-valued emulator to training data:

Dl ={.θn, ln/ : n=1, : : : , N}, .8/

where ln = l.θn|m, y0/ is the loss function, for a given metric d, evaluated at the nth design
point from the corresponding simulation output, yn = m.θn/. The metric d should be chosen
according to the problem, and it can capture the correlation between the model outputs. Now
it is possible to fit a single real-valued emulator l̂.θ|m, y0/ of l.θ|m, y0/ based on the training
data Dl, using a single statistical model instead of a vector of model outputs. Estimation of the
parameters can now be done cheaply by minimizing the emulated loss function:

θ̂0 =arg min
θ

E{l̂.θ|m, y0/}, .9/

where E denotes the conditional expectation predicted by the interpolation method, in our case
the conditional mean of a GP. An algorithmic description of the loss emulation method is given
in algorithm 2 in Table 2. For further illustration, an additional example, on the Lotka–Volterra
system, can be found in Noè (2019).

The advantage of loss emulation over output emulation is a reduction of the training complex-
ity, as a multi-dimensional vector is replaced by a scalar as the target function. The disadvantage
is that, as opposed to output emulation, the emulator can only be trained after the patient has
come into the clinic and the training data have become available. This implies that, on produc-
tion of the training data, the emulator must be trained and the resulting emulated loss function
must be optimized, leading to higher computational costs at the time that a clinical decision
must be made. However, these computational costs are still low compared with running the
simulator.

Loss emulation is closely related to Bayesian optimization, reviewed for example in Shahriari

Table 1. Algorithm 1: inference using an emulator of the outputs

Step 1: simulate from the model m.θ1/,: : : , m.θN/ at space filling inputs θ1,: : : ,θN
Step 2: fit J independent real-valued emulators m̂ = .m̂1,: : : , m̂J /, one for each of the j =1,: : : , J

outputs of the simulator
Step 3: given data y0 and the emulator m̂, construct the surrogate-based loss function

l.θ | m̂, y0/
Step 4: minimize the surrogate-based loss function to give the estimates θ̂0
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Table 2. Algorithm 2: inference using an emulator of the losses

Step 1: simulate from the model m.θ1/,: : : , m.θN/ at space filling inputs θ1,: : : ,θN
Step 2: calculate the set of loss functions l.θn |m, y0/, for n=1, : : : , N, between each individual

simulation and the observed data y0
Step 3: emulate the losses by using a single real-valued model l̂.θ |m, y0/
Step 4: estimate θ̂0 by minimizing the mean of the loss emulator E{l̂.θ |m, y0/}

et al. (2016) and Noè (2019), which is a strategy to include further query points iteratively by
trading off exploration versus exploitation via some heuristic or information theoretic criterion.
However, every additional query point requires a computationally expensive simulation from
the mathematical model, which prevents fast clinical decision making in realtime and renders
Bayesian optimization infeasible for the purposes of our study.

3.4. Interpolation methods
We have considered several interpolation methods, based on GPs. GPs have been widely used in
the context of emulation; see for example Kennedy and O’Hagan (2001), Conti et al. (2009) and
Conti and O’Hagan (2010). For a comprehensive introduction to GPs, the reader is referred to
Rasmussen and Williams (2006). Each of the interpolation methods can be used with both of
the emulation paradigms that were described in Section 3.3.

3.4.1. Local Gaussian process
When the sample size N is large, it is not feasible to use exact GP regression on the full data
set, because of the O.N3/ computational complexity of the N ×N training covariance matrix
inversion. A possible approach is to use sparse GPs as in Titsias (2009), which considers a
fixed number of m inducing variables u = .u1, : : : , um/, with m � N, corresponding to inputs
Z= .z1, : : : , zm/T. The locations of the inducing points and the kernel hyperparameters are cho-
sen with variational inference, i.e. by maximizing a lower bound on the log-marginal-likelihood,
which can be derived by applying Jensen’s inequality. The computational costs of this approach
are O.Nm2/. Initially we tried sparse GPs with 100, 500 and 1000 inducing points but, using the
code accompanying the paper by Titsias (2009), the prediction time was between 0.5 and 0.6 s for
100 inducing points, around 1 s for 500 and of the order of a few seconds for 1000 inducing points
(dual Intel Xeon CPU E5-2699 v3, 2.30 GHz, 36 cores and 128 Gbytes memory). This means that
minimization of the surrogate-based loss would still be slow as approximately 1 s is required for a
single evaluation. The optimization time would exceed 2.5 h for 500 inducing points when using
10000 function evaluations. With the cost of variational sparse GP models with larger numbers
of inducing points being so large, we can use only about 100 inducing points to keep to our
goal of realtime in-clinic decision making. However, using such few inducing points was found
to lead to around a quarter of the outputs of the biomechanical model being poorly predicted.

With the performance of the variational sparse GPs being poor when the number of inducing
points is selected to give a clinically relevant decision time, we instead use a local GP approach
based on the K nearest neighbours instead (Gramacy and Apley, 2015). This method uses the
standard GP prediction formulae that were described in Rasmussen and Williams (2006), but
subsetting the training data. Whenever we require a prediction at a given input, we find the
training inputs representing the K nearest neighbours in input domain, which will form the
local set of training inputs, and the corresponding outputs will represent the local training
outputs. Note that, every time that we ask for a prediction at a different input, the training sets
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need to be recomputed and the GP needs to be trained again. However, because of the small
number of neighbours K �1000 that were usually selected, this method is computationally fast
and accurate; see Gramacy and Apley (2015) for a discussion.

Gramacy and Apley (2015) further discussed adding a fixed number of distant points to help
in the estimation of the length scale parameters, but this comes with extra computational costs
required by the iterative choice of which point to add to the set of neighbours. Given the time
limitations that are required by our goal (realtime clinical decision support systems) we do not
pursue this approach. Furthermore, this is mostly relevant when the interest lies in building
predictive models that can make good predictions when the training data are distant from each
other. Since we are working on a compact set which is densely covered by the Sobol sequence,
this is less relevant. For generic training data D ={.θ1, y1/, : : : , .θN , yN/}={Θ, y}, we give an
algorithmic description in algorithm 3 in Table 3.

In algorithm 3, the K×K training covariance matrix is K= [k.θ′
i, θ

′
j /]Ki,j=1, the K×1 vector of

covariances between the training points and the test point is k.θÅ/= .k.θ′
1, θÅ/, : : : , k.θ′

K, θÅ//

and μ= .μ.θ′
1/, : : : , μ.θ′

K// is the K ×1 prior mean vector. We consider a constant mean func-
tion μ.θ/ = c. For the kernel k.·, ·/ we choose the automatic relevance determination squared
exponential kernel (see for example Rasmussen and Williams (2006)), as widely used in the emu-
lation of computer codes literature; see for example Fang et al. (2006) and Santner et al. (2003).
The kernel hyperparameters are the output scale (determining the function variance) and the
input length scales: one length scale for each dimension. These hyperparameters are estimated
by maximizing the log-marginal-likelihood by using the quasi-Newton method. The standard
deviation of the additive Gaussian noise σ is initialized at a small value, σ =10−2, to reflect the
fact that the mathematical model of the left ventricle is deterministic. (Even for deterministic
models, a small non-zero value for σ is usually assumed, to avoid numerical instabilities of the
covariance matrix inversion.)

The CPU time that was required to obtain a prediction from the local GP is approximately
0.18 s (dual Intel Xeon CPU E5-2699 v3, 2.30 GHz, 36 cores and 128 Gbytes memory) by
using the K = 100 nearest neighbours of a given point. The number of neighbours K needs
to be selected on the basis of the computational time that is allowed to reach a decision in a
viable timeframe, but keeping in mind that K also controls the accuracy of the emulation. In our
experiments we found that K = 100 was sufficiently fast for the method to be applicable in the
clinic while leading to accurate predictions at the test inputs, as discussed below in Section 5.

For this method, the surrogate-based loss and the emulated loss were optimized by us-
ing the global search constrained optimization algorithm by Ugray et al. (2007), over the
bounded domain [0:1, 5]4, which is implemented in MATLAB’s Global Optimization toolbox.
(Available from https://uk.mathworks.com/products/global-optimization.
html: we use the default choice of 2000 trial points and 400 stage 1 points. Consider run-
ning a local solver from a given starting point θ0, ending up at the point of local minimum θ̂.
The basin of attraction corresponding to that minimum is defined as the sphere centred at θ̂

Table 3. Algorithm 3: predicting from a local GP at θ*

Step 1: find the indices N .θÅ/ of the points in Θ having the K smallest Euclidean distances from θÅ
Step 2: training inputs, ΘK.θÅ/={θ′

1,: : : ,θ′
K}={θi : i∈N .θÅ/}

Step 3: training outputs, yK.θÅ/={y′
1,: : : , y′

K}={yi : i∈N .θÅ/}
Step 4: train a GP by using the data DK.θÅ/={ΘK.θÅ/, yK.θÅ/}
Step 5: predictive mean, m̂.θÅ/=μ.θÅ/+k.θÅ/T.K +σ2I/−1.yK.θÅ/−μ/
Step 6: predictive variance, s2.θÅ/=k.θÅ,θÅ/−k.θÅ/T.K +σ2I/−1k.θÅ/

https://uk.mathworks.com/products/global-optimization
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and having radius equal to ‖θ0 − θ̂‖. All starting points falling inside the sphere are assumed
to lead to the same local minimum θ̂; hence no local solver is run and they are discarded. In
simple words, stage 1 of the global search algorithm scatters initial points in the domain and
scores them from best to worst by evaluating the function value and constraints. Then an inte-
rior point local solver (Byrd et al., 2000) is run from each trial point, starting from the point
that was scored best (lowest function value), and excluding points that fall into the basins of
attraction of previously found minima. When all the stage 1 points have been analysed, stage 2
generates more random points and the same procedure is run a second time.)

3.4.2. Low rank Gaussian processes
Along with local GPs based on the K nearest neighbours, described in Section 3.4.1, we re-
port results for another type of statistical approximation: low rank GPs, as described in sec-
tion 5.8.2 of Wood (2017), whose main ideas are summarized here for generic training data
D ={.θ1, y1/, : : : , .θn, yn/}={Θ, y}.

Let C = K + σ2I be the n × n covariance matrix of y and consider its eigendecomposition
C = UDUT with eigenvalues |Di,i|� |Di+1,i+1|. Denote by Uk the submatrix consisting of the
first k eigenvectors of U, corresponding to the top k eigenvalues in D. Similarly, Dk is the diagonal
matrix containing all eigenvalues that are greater than or equal to Dk,k. Wood (2017) considered
replacing C with the rank k approximation UkDkUT

k obtained from the eigendecomposition.
Now, the main issue is how to find Uk and Dk sufficiently efficiently. A full eigendecomposition
of C requires O.N3/ operations, which somewhat limits the applicability of the rank reduction
approach. A solution is to use the Lanczos iteration method to find Uk and Dk at the substantially
lower cost of O.N2k/ operations; see section B.11 in Wood (2017). Briefly, the algorithm is
an adaptation of power methods to obtain the truncated rank k eigendecomposition of an
N × N symmetric matrix in O.N2k/ operations. However, for large N, even O.N2k/ becomes
prohibitive. In this scenario the training data are randomly subsampled by keeping nr inputs and
an eigendecomposition is obtained for this random selection with O.n2

r k/ computational cost.
We used the implementation that was found in the R package mgcv by Wood (2017), with the

following settings: nr =2000 (the package default), k =2000 for output emulation, and k =1000
for loss emulation. The kernel that was used was an isotropic Matérn 3/2 kernel, with length scale
set to the default of Kammann and Wand (2003): λ= maxij ‖θi −θj‖. The remaining model
hyperparameters are estimated by maximizing the log-marginal-likelihood. The final model used
an interaction term between each of the four model parameters, as well as a second interactive
term between the inverses of the model parameters:

ỹj ∼βj1+f.θ/+f.τ /+ε for j =1, : : : , J .10/

where τ = 1=θ, f.θ/ ∼ GPLR{μ.θ/, K.θ, θ′/}, f.τ / ∼ GPLR{μ.τ /, K.τ , τ ′/} and GPLR.·/ de-
notes a low rank GP. The model specification with the two interaction terms was found to
reduce the variation in the predictive accuracy as the volume increases and the strains decrease.
This can be seen in the predictions of the test and training data in Figs 2 and 3 of the on-line
supplementary materials.

Minimization of the surrogate-based loss l.· | m̂, y0/ and the emulated loss l̂.· |m, y0/ was
performed by the conjugate gradient method implemented in the R function optim (Nash,
1990), with the maximum number of iterations set to 100. To avoid being trapped in local
minima, 50 different starting points from a Sobol sequence were used. The best minimum
found, subject to not violating the [0:1, 5]4 hyperinterval constraint, was kept as the estimate,
discarding the remaining 49 optima.
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3.4.3. Multivariate output Gaussian processes
The previous two subsections have focused on single-output GPs, while potentially correcting for
the correlation structure of the outputs via a modified objective function, using the Mahalanobis
distance that is defined in equation (6). We can model the correlation structure between the
outputs directly via

cov{y.θi/, y.θj/}=K.θi, θj/A .11/

where K.θi, θj/ is the covariance between yk.θi/ and yk.θj/ for any output k, and A is a matrix of
the covariances between the outputs, i.e. the circumferential strains and the LV volume. Various
approaches have been proposed in the literature. The approach that was taken in Conti and
O’Hagan (2010) and Conti et al. (2009) is to place a non-informative prior on A and to inte-
grate A out in the likelihood. This leads to a closed form solution in terms of a matrix–normal
distribution; see Conti and O’Hagan (2010) and Conti et al. (2009) for explicit expressions. How-
ever, we found that in combination with algorithm 3—to deal with the O.N3/ computational
complexity—the computational costs of running the emulator were of the order of hours, rather
than minutes, which renders this approach not viable for clinical decision support in realtime.

An alternative approach is to model the correlation structure of the outputs explicitly via

cov{yk.θi/, yl.θj/}=K.θi, θj/A.uk, ul/ .12/

taking into account covariates uk and ul associated with the kth and lth outputs, yk and yl

respectively. Roberts et al. (2013) pursued this approach in the context of time series analysis,
where uk and ul are scalar variables indicating different time points. In our application, uk and
ul are vectors indicating the locations on the surface of the left ventricle associated with the
circumferential strains. Because of the highly non-Euclidean geometry of this space, the choice
of kernel is not obvious. A naive approach that we tried is to project the locations onto a linear
space defined by the first principal component (Huang, 2016). The results were not encouraging,
because of the information loss that was incurred by the map. Future work could try projections
onto non-linear maps, like Hilbert curves (Hilbert, 1891; Hamilton and Rau-Chaplin, 2007),
generative topographic maps (Bishop et al., 1998) or self-organizing maps (Kohonen, 1982).

A further alternative is the method of Alvarez and Lawrence (2009, 2011), who have pro-
posed sparse convolved GPs for multioutput regression. Their method assumes that there is
an underlying process which governs all of the outcomes of the model and treats it as a latent
process. Modelling this latent process as a GP leads to a GP prior over the outputs, inducing
cross-covariance between the outputs and effectively introducing correlations between them.
We can use the interpolation method of Alvarez and Lawrence (2009, 2011) within either of
the emulation frameworks that were introduced in Section 3.3. There are, however, problems
with doing this: training a convolved GP with N training points requires the inversion of a
DN ×DN matrix (where D=25 is the number of outputs) which is currently infeasible with all
of the training data (N = 10000), even when choosing the number of inducing points by using
the method that was proposed in Alvarez and Lawrence (2009, 2011). Instead we can choose a
strategy that is similar to that proposed in Section 3.4.1. This again, however, proves to be com-
putationally expensive as fitting a single local emulator requires more than 15 min (Intel Xeon
CPU E5-606, 2.13 GHz), without consideration of the computational costs of the subsequent
optmization of the LV model parameters. When this is included within either of the emulation
methods (algorithms 1 and 2), the time becomes too large for a clinical decision support system,
as it is infeasible to make a prediction within a clinically relevant timeframe.
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Since the focus of our study is to develop an emulation framework for a clinical decision
support system that can work in realtime, we have restricted our analysis to the univariate
methods that were described in Sections 3.4.1 and 3.4.2.

4. Data and simulations

For training the emulator, we used 10000 parameter vectors generated from a Sobol sequence
(Sobol, 1967) in a compact four-dimensional parameter space, with θ1, : : : , θ4 ∈ [0:1, 5]4, where
the parameter bounds reflect prior knowledge that was available from Gao et al. (2015). The
four-dimensional parameter vectors are then transformed to the original eight-dimensional pa-
rameter space using transformation (2). The eight-dimensional parameter vectors are then in-
serted into the HO strain energy function (1). Following the finite element discretization method
that was described in Wang et al. (2013), the soft tissue mechanical equations are numerically
solved to produce a 25-dimensional output vector associated with each parameter vector; these
are 24 circumferential strains and the LV volume at end diastole. The Sobol sequence is extended
to generate an independent test set of an additional 100 parameter vectors, for which the same
procedure is followed to associate them with output vectors of circumferential strains and LV
volume. As a real data set, we used 24 circumferential strains and the LV volume at end diastole
obtained from the cardiac MRI images of a healthy volunteer, following the procedure that was
described in Gao et al. (2015).

5. Results

To summarize, we have introduced two emulation frameworks which can be used to infer the
parameters of the LV biomechanical model; see Sections 3.3.1 and 3.3.2. We have applied these
methods with two loss functions, the Mahalanobis loss function and the Euclidean loss func-
tion, and two interpolation methods, low rank GPs and local GPs; see Sections 3.4.1 and 3.4.2.
Testing each combination of these methods means that there is a total of eight alternative pro-
cedures.

We have applied and assessed the proposed methods in a two-pronged approach. Firstly, in
Sections 5.1, 5.2, 5.3 and 5.4, we have tested the eight combinations of methods on synthetic
data, where the true parameter values of the underlying biomechanical model are known; see
the previous section for details on how the training and test data were generated. We compare
the methods by using the mean-square error (MSE). The distribution of 100 MSEs is given in
Fig. 2 and summarized with the median and the first and third quartiles in Table 4, representing
three of Tukey’s five-number summary.

Finally, we have applied the method with the best performance in Section 5.5 to clinical data
generated from a healthy volunteer’s cardiac MRI scan, where we can compare our performance
against the gold standard results of Gao et al. (2015).

5.1. Comparison of interpolation methods
Looking at the two interpolation methods, the local GP method (boxplots 5–8 in Fig. 2) out-
performs the low rank GP method (boxplots 1–4 in Fig. 2). The reason for the difference in
performance between the two methods is the size of the noise variance that is estimated. With
the low rank GP method, a larger noise variance is estimated as the interpolation must fit to the
entire data set. The larger variance of the errors is in mismatch with the deterministic nature of
the process that we aim to model and is the consequence of the loss of modelling flexibility result-
ing from the low rank approximation and a potential violation of the stationarity assumption
that is intrinsic to our choice of kernel.
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Fig. 2. Boxplots of the MSE distribution in the prediction of all the model parameters (the methods from left
to right on each plot are as follows: low rank GP (LR) output emulation (Out) with Mahalanobis loss function
(Mah) and Euclidean loss function (Euc), LR–GP loss emulation (Loss) with Mahalanobis loss function and
Euclidean loss function, local GP (LOC) output emulation with Mahalanobis loss function and Euclidean loss
function, and LOC loss emulation with Mahalanobis loss function and Euclidean loss function; the outliers
are due to non-convergence of the optimization algorithm and the strong correlation between the parameters
of the HO law): (a) boxplots of the MSE in parameter space for all the eight methods; (b) the same boxplots
but with a reduced scale on the y-axis

Table 4. Median (first quartile, third quartile) of the MSE (in parameter space) in
the prediction of all the model parameters†

Interpolation Emulation Results for Euclidean Results for Mahalanobis
method target loss function loss function

Low Rank GP Output 0.0048 (0.0012,0.0107) 0.0030 (0.0011,0.0062)
Low Rank GP Loss 0.6814 (0.2222,1.5234) 0.0113 (0.0041,0.0377)
Local GP Output 0.0001 (0.0000,0.0003) 0.0009 (0.0003,0.0022)
Local GP Loss 0.2201 (0.0588,0.6777) 0.0013 (0.0002,0.0063)

†The interpolation methods considered are low rank GPs and local GPs; the target
of the emulation is either the model output or the loss, and two loss functions are
compared, Euclidean and Mahalanobis. The method with the best predictive perfor-
mance, the output emulation method with local GP interpolation and the Euclidean
loss function, is given in italics.

Conversely, with the local GP method, a much smaller error variance is estimated, which
more closely matches the deterministic data generation method. This is a result of there being
only a small number of points that the interpolant must fit. These points are local, giving more
detail of the local surface than the low rank GP method, which uses all the points but takes a
rank k eigendecomposition of the kernel matrix. The local GP method also provides a natural
way to accommodate non-stationary processes.

5.2. Comparison of emulation frameworks
Out of the two emulation frameworks, the output emulation method (boxplots 1, 2, 5 and 6 in
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Fig. 2) gives the most accurate parameter estimates, outperforming the loss emulation method
(boxplots 3, 4, 7 and 8 in Fig. 2) for all interpolation methods and loss functions. The output
emulation method provides accurate estimates for all the combinations of interpolation methods
and loss functions, whereas the loss emulation method provides poor estimates in some cases.
The improved parameter estimation of the output emulation method is a result of using multiple
separate emulators. These multiple emulators better model the complex non-linear relationships
between the parameters and the outputs than is possible with the single emulator that is used
with the loss emulation method. In the loss emulation method, the differences between the pa-
tient data and the simulations are summarized in one loss function, which entails a larger loss
of information.

5.3. Comparison of loss functions
In terms of the accuracy of the parameter inference, the Euclidean loss and Mahalanobis loss
perform differently in different emulation methods. For the loss emulation method the Maha-
lanobis loss function (boxplots 3 and 7 in Fig. 2) clearly outperforms the Euclidean loss function
(boxplots 4 and 8 in Fig. 2) in all cases. The reason for the difference is that the loss function
summarizes how similar the patient data are to the simulations and this is done more realisti-
cally by the Mahalanobis loss function in this case. This is because there are spatial correlations
between the outputs due to measuring the circumferential strains at different neighbouring lo-
cations on the left ventricle. The Mahalanobis loss function accounts for this through including
a correlation estimate, whereas the Euclidean loss function does not.

In comparison with the loss emulation method, for the output emulation method it is less
clear which loss function gives the best results. The Mahalanobis loss function is marginally
better for the low rank GP method (boxplot 1 is better than boxplot 2 in Fig. 2), whereas the
Euclidean loss function gives the best performance for the local GP method (boxplot 6 is better
than boxplot 5 in Fig. 2). The reason why the Euclidean loss function performs best for the local
GP method is presumably because of potential inaccuracies in the covariance matrix that is used
for the Mahalanobis loss function. The covariance matrix is a global measure based on the whole
data set and may not accurately represent the true correlations between the local points because
of limited numerical precision. (Using a local covariance matrix was also tested, but limited
accuracy and numerical stability of the covariance matrix due to using only a small number of
local points meant that the performance did not improve over the global covariance matrix.) This
is potentially aggravated by a lack of numerical stability when inverting the covariance matrix.

5.4. Overall best method in simulation study
In conclusion, the results of our simulation study show the following results.

(a) The local GP method outperforms the low rank GP method and is the better of the two
interpolation methods.

(b) The best emulation method is the output emulation method and this outperforms the
loss emulation method in all the combinations of interpolation method and loss function
tested.

(c) The Mahalanobis loss function gives the best performance for the loss emulation method.
(d) For the output emulation method, the Mahalanobis method is marginally better for the

low rank GP method, but for the local GP method the Euclidean loss function gives the
best parameter estimates.

(e) Overall, the simulation study results show that the best performing combination of meth-
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ods is the output emulation method, using the local GP as the interpolation method and
the Euclidean loss function (boxplot 6 in Fig. 2).

This combination of methods will be used on the cardiac MRI data of the healthy volunteer in
Section 5.5.

5.5. Application to cardiac magnetic resonance imaging data
Fig. 2 and Table 4 show that the method which gives the most accurate parameter prediction
is the emulation of the outputs method combined with the local GP interpolation and the
Euclidean loss function. We have applied this strategy to estimate the material parameters for
the heart model of a healthy volunteer described in Section 2, using the set of 24 circumferential
strains and the LV cavity volume extracted from cardiac MRI images, as described in Section
4. The true model parameters are not known in this case, so as opposed to the simulation
study we do not have a proper ‘gold standard’ for evaluation. We therefore use the following
alternative procedure. We first estimate the constitutive parameters with the method of Gao
et al. (2015) and Gao, Aderhold, Mangion, Luo, Husmeier and Berry (2017), i.e. with the
method using the computationally expensive simulator. From these parameters, we calculate
the stretch–stress relationships along the directions of the sheets and the myocytes, following
the procedure that was described in Holzapfel and Ogden (2009). We use these graphs as a
surrogate gold standard, which we compare with the corresponding graphs obtained from the
parameters that were obtained with our emulation approach.

Fig. 3 shows, as broken curves, the estimate of the stretch–stress relationship for the healthy
volunteer by using the gold standard method of Gao et al. (2015) and Gao, Aderhold, Man-
gion, Luo, Husmeier and Berry (2017). For comparison, the full curves show the estimates of
the stress–stretch relationship that was obtained from the best emulation method identified in
Sections 5.1–5.4, the emulation of the outputs method combined with the local GP interpolation
method and the Euclidean loss function.

For uncertainty quantification, we numerically estimated the Hessian at the minimum sur-
rogate loss (5). Its inverse represents an approximate lower bound on the variance–covariance
matrix in parameter space. (The Hessian is the empirical Fisher information matrix. The lower
bound would be exact (Cramer–Rao lower bound) if we could take an expectation with respect
to the data distribution. Recall that saying that matrix A is a lower bound on matrix B means
that B − A is positive semidefinite.) The uncertainty in the estimate can then be obtained by
sampling from a multivariate normal distribution, with the covariance set to the inverse of the
Hessian, MVN{θ̂, H.θ̂/−1}, and calculating the corresponding confidence intervals.

The results in Fig. 3 show that the emulation method accurately estimates the stretch–stress re-
lationship in the myocyte direction. The agreement between the gold standard and the prediction
with our emulation method is nearly perfect, with a deviation that is less than the predicted single-
standard deviation width. For the stretch–stress relationship in the sheet direction, the agreement
is also very good, although the deviation exceeds the predicted standard deviation in this case.
A possible explanation is that parameter sensitivity in the sheet directions is very low when only
using regional circumferential strains and the LV cavity volume to formulate the objective func-
tion, as reported in Gao et al. (2015); thus the uncertainty of estimating the stiffness in the sheet
direction will be higher than that in the myocyte direction. It is expected that higher accuracy
will be achieved when radial (transmural) strains are included when inferring the parameters.
Although the differences between the stretch–stress curves that were obtained with the simulator
and our emulator are minor, there is a substantial difference in the computational costs. For the
simulator, i.e. the original procedure that was described in Gao et al. (2015) and Gao, Aderhold,
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Fig. 3. Plots of the Cauchy stress against the stretch along (a) the sheet direction and (b) the myocyte
direction: , literature curves taken from the gold standard method in Gao, Aderhold, Mangion, Luo,
Husmeier and Berry (2017); , estimates of the curves from the best emulation method, the emulation
of the outputs method combined with the local GP interpolation method and the Euclidean loss function; ,
95% confidence intervals, approximated by using the sampling method described in Section 5.5

Mangion, Luo, Husmeier and Berry (2017), the computational costs are of the order of over a
week. The estimation procedure with the emulator proposed, in contrast, could be carried out in
less than 15 min (dual Intel Xeon CPU E5-2699 v3, 2.30 GHz, 36 cores and 128 Gbytes memory),
giving us a reduction in the computational complexity by about three orders of magnitude.

Hence, whereas the former procedure is only of interest in a pure research context, the latter
procedure gives us estimation times that are acceptable in a clinical decision context. This is an
important first step towards bringing mathematical modelling into the clinic and making a real
impact in healthcare.

6. Discussion

We have developed an emulation framework that can be used to infer the material properties
of the left ventricle of a healthy patient in a clinically viable timeframe. We have focused on
developing an emulation framework that can be used in future more generalized work and have
therefore tested two emulation methods, two interpolation methods and two loss functions; see
Section 3. Each combination of these methods has then been evaluated in a simulation study
to determine the best method. The best method was found to be the output emulation method,
using the local GP as the interpolation method and the Euclidean loss function; see Table 4.

We have then applied the proposed emulation method to cardiac MRI data and demon-
strated that it can accurately estimate the stretch–stress relationship along the myocyte and
sheet directions of the left ventricle from a healthy volunteer. Our method provides a notable
improvement in computational time with a speed-up of approximately three orders of magni-
tude. In particular, whereas conventional parameter estimation based on numerical simulations
from the mathematical LV model, following for example the approach of Gao et al. (2015),
leads to computational costs of the order of weeks, the proposed emulation method reduces the
computational complexity to the order of a quarter of an hour, while effectively maintaining
the same level of accuracy. This is an important step towards a clinical decision support system
that can assist a clinical practitioner in realtime.



Biomechanical Model of the Left Ventricle 1573

A limitation of the current approach is the fact that the LV geometry is fixed. This LV geometry
varies from patient to patient, and these variations need to be taken into consideration for
applications to wider patient populations. We discuss how potentially to address this challenge
in the next section.

7. Future work

The next step for this work is to design a method that is capable of fast parameter inference for
multiple patients on whom we have not directly trained the emulator. For each new patient we
would need to replace the single geometry that is used here as an input, with the new patient’s data
on arrival at the clinic. With no time limits on the inference, we could simply replicate this study
with a different input geometry. However, to treat patients in a clinically viable timeframe we
must be able to train the emulator for the unobserved patients before they enter the clinic. We can
do this by using simulations from multiple LV geometries as our training data. Low dimensional
representations of each geometry can then be included as variables in the interpolation method of
the emulator and we can learn how these changes affect the output of the biomechanical model.
When new patient data then arrive, these low dimensional representations can be calculated and
included in the loss function, which must be minimized in the emulation method.

A straightforward approach for achieving this low dimensional representation is principle
component analysis (PCA), illustrated in Fig. 4(a), where the high dimensional LV geometries
are mapped onto a low dimensional space that captures the maximum variation in the popu-
lation. A variation along the PCA directions can be mapped back into the high dimensional
LV geometry space to illustrate typical organ deformations, as illustrated in Fig. 4(b). However,
although fast and easy to implement, the limitation of PCA is its restriction to linear subspaces.
If the LV geometries that are extracted from the patient population are grouped along a non-
linear submanifold in the high dimensional LV geometry space, as illustrated in Fig. 4(c), PCA
is suboptimal. A variety of non-linear extensions of and alternatives to PCA have been proposed
in the machine learning and computational statistics literature. The most straightforward exten-

(a) (b) (c)

Fig. 4. Illustration of dimension reduction for the representation of the left ventricle: (a) illustration of PCA
(a set of LV geometries extracted from a set of patients forms a cloud of vectors in a high dimensional vec-
tor space (here reduced to 2 for visual representation); PCA provides a set of linear orthogonal subspaces
along the directions of maximum variance (here only one, the leading component, is shown)); (b) a varia-
tion along the principal component can be mapped back into the high dimensional vector space to show
the corresponding changes of the LV geometry (here indicated by different colour shadings); (c) PCA is a
linear technique and hence suboptimal if the LV geometries from the patient population are grouped along a
non-linear submanifold
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sion is kernel PCA (Scholkopf et al., 1998), which conceptually maps the data non-linearly into
a high dimensional vector space and makes use of Mercer’s theorem, whereby the scalar product
in this high dimensional space is equivalent to a kernel in the original data space and therefore
never has to be computed explicitly. Alternative non-linear dimension reduction methods to be
explored are generative topographic maps (Bishop et al., 1998), self-organizing maps (Kohonen,
1982) and variational autoencoding neural networks (Kingma and Welling, 2014).

8. Software

The software developed for and used in our study can be downloaded from https://github.
com/vinnydavies/left-ventricle-jrss-c.
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GP emulator. Alan Lazarus investigated the multivariate output GP approach. Dirk Husmeier
led and co-ordinated the statistical emulation and inference work. All authors discussed the
results and contributed to writing the paper.
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Noè, U. (2019) Bayesian nonparametric inference in mechanistic models of complex biological systems. PhD

Thesis. University of Glasgow, Glasgow.
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