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Simulation of action potential 
propagation based on the ghost 
structure method
Yongheng Wang1, Li Cai1,2, Xiaoyu Luo   3, Wenjun Ying4 & Hao Gao3

In this paper, a ghost structure (GS) method is proposed to simulate the monodomain model in irregular 
computational domains using finite difference without regenerating body-fitted grids. In order to 
verify the validity of the GS method, it is first used to solve the Fitzhugh-Nagumo monodomain model 
in rectangular and circular regions at different states (the stationary and moving states). Then, the GS 
method is used to simulate the propagation of the action potential (AP) in transverse and longitudinal 
sections of a healthy human heart, and with left bundle branch block (LBBB). Finally, we analyze the 
AP and calcium concentration under healthy and LBBB conditions. Our numerical results show that 
the GS method can accurately simulate AP propagation with different computational domains either 
stationary or moving, and we also find that LBBB will cause the left ventricle to contract later than the 
right ventricle, which in turn affects synchronized contraction of the two ventricles.

The heart is a rhythmic pump that maintains blood circulation throughout the body1. The rhythmic beating of 
the heart is caused by the regular spread of action potential (AP) within the heart. Abnormal conduction of AP 
in the heart can cause arrhythmias. Symptoms of arrhythmia include extrasystole, tachycardia, ventricular fibril-
lation, etc., of which ventricular fibrillation is the leading cause of cardiac sudden death2,3. Sudden cardiac death 
accounts for 15% of global deaths, and about 80% of sudden cardiac death is the result of ventricular arrhythmias4. 
Furthermore, about a quarter of patients with heart failure are diagnosed with LBBB5, which causes asynchronous 
AP propagation and contraction of the left ventricle, and then potentially leads to the global left ventricle dys-
function6. Therefore, it is of great significance to study the mechanism of arrhythmia, such as through numerical 
modelling, which can explore extreme situations that is difficult to perform in experiments. For several decades, 
the electrical activity of the heart has been modeled by a system of singularly perturbed reaction-diffusion partial 
differential equations that couples a set of ordinary differential equations used to describe the cell membrane 
dynamics7,8. The effects of different types of the electrical stimulation on arrhythmia can then be studied by solv-
ing these differential equations numerically. At present, numerical simulation of electrical activity has become a 
powerful tool for studying and understanding cardiac electrophysiology and arrhythmia9–11.

To mathematically model cardiac action potential, a cardiomyocyte model is required. With the abundance of 
experimental data, myocyte models have been continuously improved. A large number of mammalian cardiomy-
ocyte models already exist in the literature12, such as Beeler-Reuter model13, Luo-Rudy model14, Fenton-Karma 
model15, etc. In order to accurately study the human heart, a large number of human cardiomyocyte models 
have also been proposed, such as ten Tusscher model16, Grandi-Pasqualini-Bers (GPB) model17, etc. For exam-
ple, the GPB model can be used to describe Ca2+ handling and ionic currents in human ventricular myocytes, 
and its effectiveness has been validated against available experimental data7,17,18. In 1969, Schmitt et al.8 pro-
posed a bidomain model for AP propagation in tissue level, then was further developed in the late 1970s19–21. The 
bidomain model describes active cardiomyocytes on a macroscopic scale by membrane ion current, membrane 
potential and extracellular potential22. Based on a given membrane potential, the bidomain model can model-
ling both the extracellular potential and the body-surface potential23. Recently, Bendahmane et al.24 introduced 
a “stochastically forced” version of the bidomain model that accounted for various random effects, and further 
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established the existence of weak solutions to the stochastic bidomain model, which was proved by means of an 
auxiliary nondegenerate system and the Faedo-Galerkin method. The bidomain model is considered to be the 
most complete model to describe the electrical activity of the heart25,26. However, solving the bidomain equa-
tions is computationally expensive because of the required fine spatial and temporal discretization, which limits 
the size and duration of the problem that can be modeled27. The monodomain model is a simplification of the 
bidomain model. Compared with the bidomain model, the monodomain model is less computational demand-
ing28,29, has been widely used to simulate AP propagation30,31. Cloherty et al.32 developed a biophysically detailed 
two-dimensional monodomain model of the rabbit sinoatrial node and surrounding atrial tissue. This model 
yielded new insights into the mechanisms of AP propagation from the sinus node to the atrium, such as the 
effects of vagal stimulation on pacemaker position. Belhamadia et al.33 simulated the electrophysiological waves 
of a three-dimensional heart through a monodomain simulation by proposing an accurate numerical method 
based on a time-dependent anisotropic remeshing strategy, which greatly reduced the number of elements and 
enhanced the accuracy of the prediction of the electrical wave fronts. Kunisch et al.34 proposed an optimal control 
approach to a simplified reaction-diffusion system describing cardiac defibrillation, which allowed for joint opti-
mization of shape and duration of defibrillation pulses. Various cell membrane models have been used with the 
monodomain model, but some models are not based on any experimentally measured quantities, such as the the 
simplest and most widely used FitzHugh-Nagumo model35. The Ftzhugh-Nagumo monodomain model has been 
used to describe the propagation of potential in heterogeneous heart tissues36,37.

Different numerical methods have been developed to solve the monodomain model. Zhang et al.38 used the 
element-free Galerkin method for studying the effects of myocardial geometrical complexity, material inhomo-
geneity, and material anisotropicness on the electrical transmission. Shuaiby et al.36 presented a finite element 
method which coupled with the modified FitzHugh-Nagumo model in the simulation of the cardiac excitation 
isotropic propagation. Rahman et al.37 used the Galerkin finite element method to solve the FitzHugh-Nagumo 
monodomain model. Cai et al.39 proposed a completely discrete implicit-explicit finite element scheme for solving 
the FitzHugh-Nagumo monodomain model. In this scheme, a simple linearization technique used to make the 
process of solving equations more efficient. The numerical results were reported to verify the convergence results 
and the stability of the scheme. Liu et al.40 proposed a fractional Fitzhugh-Nagumo monodomain model with 
zero Dirichlet boundary conditions. Later, Liu41 further developed a decoupling technique to solve the fractional 
FitzHugh-Nagumo monodomain model, and proposed a new spatially second-order accurate semi-implicit alter-
nating direction method to solve this model on approximate irregular regions.The model generalized a standard 
monodomain model that described the propagation of potentials in heterogeneous cardiac tissue. Bu et al.42 
developed a new Crank-Nicolson alternating direction implicit Galerkin finite element method and discussed 
the stability and convergence of method.

Modelling LBBB will continue to deepen our understanding on its pathology and treatments, including the 
mechanical discoordination43, electrical dyssynchrony44 and their interactions45. Kevin et al.46 mapped the left 
ventricle endocardial electrical activation, myocardial circumferential shortening, and myocardial blood flow of 
LBBB at different time, and then employed a serial two-dimensional echocardiography to assess the ventricular 
remodelling. The results showed that asynchronous ventricular activation would affect myocardial circumfer-
ential shortening and myocardial blood flow, and eventually lead to the left ventricle remodelling. Lange et al.44 
proposed a computational model of human heart that included a false tendons, Purkinje network, and papillary 
muscles, and investigated effects of different types of false tendons on hearts with electrical conduction abnormal-
ity caused by LBBB. They found that the false tendons could be visualized as an alternative conduction pathway, 
and compensates for propagation delay with LBBB. Kerckhoffs et al.43 employed a computational model of a LBBB 
heart to model asymmetric hypertrophy, their results showed that LBBB led to a step increase in left ventricle 
mechanical discoordination. Usyk et al.47 developed a three-dimensional model of a dilated failing heart with 
LBBB, and investigated how biventricular pacing could improve systolic mechanical performance and synchrony.

The heart has a complex geometry. When a general difference scheme is used to solve the heart potential 
propagation, finite difference discretization of higher-order derivatives at irregular boundaries can be very com-
plicated and challenging. To address this, we propose a ghost-structure (GS) method in this study, in which 
the transmembrane potential is described by the Eulerian form, while the membrane dynamics, including ion 
concentration, stimulation current density, and ion current, are described by the Lagrangian form. The transfor-
mation between the Lagrangian variable and the Eulerian variable is achieved by an integral transformation with 
a delta function. This GS method can solve the monodomain model in the moving region which is similar to that 
of immersed boundary method18,48–51,52 in dealing with fluid-solid coupling problems.

The remaining of the paper is organised as follows. The section “Results” verifies the validity of the GS 
method through various numerical examples. In the verification example, we simulate the two-dimensional 
Fitzhugh-Nagumo monodomain model on a rectangular and circular regions. For AP propagation in human 
ventricles, we compare AP propagations in a healthy heart and a disease heart with LBBB. Then followed by 
“Discussion” and “Conclusion”. In the section “Model introduction”, we discuss the bidomain and monodomain 
model, and reaction-diffusion systems. In the section “The ghost structure method”, we introduce the ghost struc-
ture method and its discrete scheme in space and time.

Results
FitzHugh-Nagumo monodomain model.  In this section, some numerical examples are given to verify 
the efficiency of the proposed GS method. In neurons, numerous types of ion channels can influence the mem-
brane potential. The voltage-gated ion channels are controlled by the membrane potential, while the membrane 
potential is influenced by these same ion channels, which causes feedback loops which allow for complex tem-
poral dynamics, including oscillations and regenerative events such as AP. Firstly, the GS method is used to solve 
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a two-dimensional FitzHugh-Nagumo model in a rectangular and circular regions40,53. The FitzHugh-Nagumo 
model is

∂
∂

=
∂
∂

+
∂
∂

+
u
t

K u
x

K u
y

I
(1)x y ion

2

2

2

2

= − − −I u u u a v(1 )( ) (2)ion

ε β γ σ∂
∂

= − −
v
t

u v( ) (3)

where, u is a normalized transmembrane potential, v is a recovery variable. Kx and Kx are the components of 
diffusion coefficient K. The model parameters a = 0.1, ε = 0.01, β = 0.5, γ = 1, σ = 0. The rectangular region is 
[0, 2.5] × [0, 2.5] with zero Dirichlet boundary conditions, and the initial conditions in this rectangular case are 
chosen as
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Relevant numerical results of this example can be found in the literature40,53, including stable spiral waves. 
In order to validate the GS method, the computational domain of the regular ghost structure is taken as [−0.1, 
2.6] × [−0.1, 2.6] with 275 × 275 grids with a time step of dt = 0.1.

In this Fitzhugh-Nagumo model, when Kx = Ky = 10−4, Fig. 1 gives the spiral wave of the stable rotation solu-
tion at t = 1000. As can be seen from Fig. 1, for the rectangular region, the spiral wave of the model generates a 
clockwise rotation curve. Figures 1(a,b) give the spiral waves obtained by the GS method and Liu40,53, respectively. 
It can be found that the spiral wave structure obtained by the GS method is consistent with the results obtained 
by Liu40.

Figure 2(a,b) show the numerical results obtained by the GS method and Liu et al.40,53 with Kx = 10−4, 
Ky/Kx = 0.25, and Fig. 2(c,d) are the results with Ky = 10−4, Kx/Ky = 0.25. It can be found that for Kx = 10−4, 
Ky/Kx = 0.25 and Ky = 10−4, Kx/Ky = 0.25, the spiral wave structures obtained by the GS method are nearly identi-
cal as those obtained by Liu et al.40,53.

Secondly, using the same model parameters and boundary condition, the computational domain is changed to 
be a circle Ω = {(x, y)|(x − 1.25)2 + (y − 1.25)2 ≤ 1.252} with the following initial conditions:

Figure 1.  Spiral waves in the Fitzhugh-Nagumo model at t = 1000: (a) result of GS method; (b) result of Liu.
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The computational domain of the ghost structure remains the same as the rectangular case. Figure 3(a,b) 
show the numerical results obtained by the GS method and Liu41 with Kx = Ky = 10−4 at t = 1000. It can be seen 
from Fig. 3 that the results obtained by the GS method in the circular region are also identical to those obtained 
by Liu41.

Finally, we simulate the transmembrane potential propagation in moving regions by using the same model 
parameters and boundary condition. To do this, we assume the Lagrangian point in the rectangular and circular 
region mentioned above expands in the normal direction → = −

−
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where Xc describes the centroid coordinate of the computational domain. The physical position of each 
Lagrangian point at time t, namely χ(X, t), satisfies = →χ∂

∂
k nX X( ) ( )t

t
X( , ) . The computational domain of the regu-

lar ghost structure is taken as [−0.75, 3.25] × [−0.75, 3.25] with 408 × 408 grids, and the time step dt = 0.1, which 
is the same as the time step of potential propagation. For Kx = Ky = 10−4, the right figures in the Figs 4 and 5 give 
the transmembrane potential propagation in the moving rectangular and circular regions at different times, 

Figure 2.  Spiral waves in the Fitzhugh-Nagumo model with anisotropic diffusion ratios at t = 1000, (a) 
Kx = 10−4, Ky = 0.25 × Kx, result of the GS method; (b) Kx = 10−4, Ky = 0.25 × Kx, result of Liu; (c) Ky = 10−4, 
Kx = 0.25 × Ky, result of the GS method; (d) Ky = 10−4, Kx = 0.25 × Ky, result of Liu.
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respectively. The left figures are from corresponding stationary regions. By comparing Figs 4 with 5, it can be 
found that the moving region affects both the propagation velocity and shape of spiral waves. The mean propaga-
tion velocities at point (1.5, 1.5) in the moving rectangular and circular regions are 0.134 and 0.137, respectively, 
which are higher than the values in the stationary regions (0.116 and 0.115). The width of the spiral wave in mov-
ing regions (rectangular region: 0.304, circular region: 0.306) is also slightly larger than the width in stationary 
region (rectangular region: 0.273, circular region: 0.271).

AP propagation on ventricular section.  The electrical conduction system of the heart triggers myocar-
dial contraction by electrical impulses transmitted through the sinus node. As shown in Fig. 6, electrical pulses 
pass through the atrium to the atrioventricular node and enter the ventricle along the left bundle branch, right 
bundle branch and Purkinje fiber. When an electrical pulse is transmitted to the cardiomyocytes and triggers the 
AP production, an excitation-contraction coupling occurs in cardiomyocytes. Myocardial contraction is highly 
dependent on the dynamics of calcium in a single myocardial cell54, which is becasue myofilament contraction is 
regulated by an increase of the intracellular calcium transient (CaT). Therefore, the excitation-contraction cou-
pling of myocytes essentially depends on the calcium-induced calcium release55.

In this section, we employ the GPB model to model the myocyte electrophysiology, which describes various 
ionic current Iion and Ca2+ dynamics. The reasons for choosing the GPB model are that (1) it matches experimen-
tal data well17; (2) it is adequate to analyse AP with detailed Ca2+ dynamics, which plays a crucial role in 
excitation-contraction in myocardium54. In order to understand the AP propagation in ventricles, we select one 
transverse and one longitudinal sections obtained from a real human heart51,56,57. The computational domain for 
the ghost structure of the transverse and longitudinal sections of the ventricle are 130 mm × 110 mm and 
140 mm × 140 mm, respectively, and the spatial step size in each direction is 0.14 mm. The discrete time step is 
0.08 ms, the membrane capacitance Cm = 1 μF/cm2 and the surface-to-volume ratio58 Am = 0.24 μm−1. The human 
ventricular conductivity is listed in Table 1. σi

L and σe
L are the longitudinal intra- and extracellular conductivities, 

respectively. σi
t and σe

t are the transversal intra- and extracellular conductivities, respectively. As shown in Table 1, 
the ventricular conductivity depends on the region and direction of cardiomyocyte. In this study, we employ the 
data obtained by Potse et al.28 in Table 1.

The right and left bundle branches and Purkinje are the main conduction system in the ventricles. The right 
and left boundle branches divide into a few major branches and subsequently into Purkinje fibers59 as shown in 
Fig. 6. Purkinje fibers penetrate into the ventricular muscle, entangled in endocardium, and form a network. The 
network of Purkinje fibers do not contribute to the activation of ventricular muscles until it reaches the middle 
and lower third of the septum and ventricle45. Purkinje fibers allow for rapid, coordinated, and synchronous 
physiologic depolarization of the ventricles. Therefore, we consider the initial electrical stimulation to be located 
in the middle and lower third segments of the septum and endocardium60, as indicated by the blue region in 
Fig. 6(a). For a healthy heart in Fig. 6(a), the blue region of endocardial surface will have the electrical stimulus 
transmitted from the Purkinje network. The LBBB refers to the blockage of the left bundle branch conduction. 
In this study, we consider complete left bundle branch block. Thus, no electrical stimulus is transmitted in the 
left branch, but through the interventricular septum from the right ventricular endocardium to the left ventricle 
endocardium45,61. As shown in the Fig. 6(b), only the blue region in the right ventricle receives the electrical stim-
ulus from the Purkinje fibers.

To understand the effects of LBBB, we now compare AP propagations in a healthy heart with and without 
LBBB. Figure 7 shows AP propagation in the transverse section of heart at different times. Figure 7(a–d) illustrate 
the state of AP propagation under healthy condition. Figure 7(e–h) shows AP propagation across the transverse 
section of heart with LBBB. Figure 8 shows AP propagation on the longitudinal section of heart. In the transverse 
section of heart, the healthy heart completes the AP propagation within approximately 347.2 ms, which is faster 

Figure 3.  Spiral waves in the Fitzhugh-Nagumo model at t = 1000: (a) result of the GS method; (b) result of Liu.

https://doi.org/10.1038/s41598-019-47321-2


6Scientific Reports |         (2019) 9:10927  | https://doi.org/10.1038/s41598-019-47321-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

than the propagation with LBBB (540 ms). As shown in Fig. 7, under healthy conditions, when t = 40 ms, the AP 
spreads to most of the right ventricle and half of the left ventricular region. However, in the LBBB case, only half 
of the right ventricular region is excited, and the AP has not yet arrived at the left ventricular. When t = 120 ms, 
the whole healthy heart is repolarized, but still half of the left ventricle is not excited in the LBBB case. In the 
longitudinal section, the heart with LBBB needs 1011.2 ms to complete the AP propagation, which is 2.4 times 
the time (416 ms) that the healthy heart completes the propagation. As shown in Fig. 8, at t = 120 ms, almost 
the whole healthy heart is stimulated, but for the heart with LBBB, only the right ventricle is stimulated. When 
t = 360 ms, the AP only spreads to the apex of the heart with LBBB, while in the healthy heart, almost all regions 
return to the resting potential. Therefore, the LBBB causes significant delay in the activation of the left ventricle.

To further explain how LBBB affect ventricular contraction, we select four points on the transverse and lon-
gitudinal sections, as shown in Fig. 6. Transmembrane potential and calcium ion concentration at each point are 
then analyzed. As shown in Fig. 9, the points in the healthy case are stimulated almost simultaneously, but not in 

Figure 4.  Spiral waves in the Fitzhugh-Nagumo model: the left figures show the results in a stationary 
rectangular region; the right figures show the results in a moving rectangular region.
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the heart with LBBB, much delayed at points 4, 7 and 8. Comparing Fig. 9(a) with Fig. 9(b), the activation time 
of the point in the interventricular septum (such as point 2) in the LBBB case is similar to that in the healthy 
case. However, the activation time is significantly affected by LBBB at points away from the right ventricle. The 
farther away from the right ventricle, the later the activation. Figure 10 shows the calcium ion concentration 
at selected points. Since myofilament contraction is regulated by intracellular calcium transient, it can be seen 
from Fig. 10(a,c) that all points in the healthy cases can contract at the same time. While in the heart with LBBB 
(Fig. 10(a–d)), the points in the interventricular septum (e.g. points 2, 3 and 6) are essentially unaffected and will 
contract at nearly same time, but points 4 and 7 are about 250 ms late when they start to contract. For the point 
farthest from the right ventricle, namely point 8 at the lateral wall, the contraction time is about 600 ms later. 
Therefore, the LBBB will cause significant contraction delay in the left ventricular lateral wall, could potentially 
lead to heart failure in the long term.

Figure 5.  Spiral waves in the Fitzhugh-Nagumo model: the left figures show the results in a stationary circular 
region; the right figures show the results in a moving circular region.
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Discussion
The validity of the GS method is verified by some standard examples of the FitzHugh-Nagumo monodomain 
models. Based on the GS method, we capture the patterns of heterogeneity and complex connectivity of electro-
physiological dynamics in biological tissues by solving the Fitzhugh-Nagumo monodomain model in rectangular 
and circular regions. The spiral wave obtained by the GS method is the same as that obtained by others, and it is 
verified that the GS method can effectively solve the monodomain model in the rectangular and circular regions. 
By comparing with the results in the stationary region, propagation velocity and shape of spiral waves in the 
moving region change. The propagation velocity in the moving region is higher than the velocity in the stationary 
region. The width of the spiral wave in the moving region is also slightly larger than the width in the station-
ary region. Since the GS method permits nonconforming discretization of the transmembrane potential and 
membrane dynamics, the monodomain model can be directly solved using finite different method in a regular 
ghost structure. Another advantage of the GS method is in dealing with the moving regions. Compared to Liu’s 
method40, the GS method needs to use the delta function to transform the Lagrangian and Eulerian variables, and 
the membrane dynamics need to be solved in a finer Lagrangian grid. In this sense, the GS method will require 
higher computational resource than Liu’s implementation40. For the stationary rectangular region, the compu-
tational time of the GS method is about 3 hours, since we have not fully optimized the implementation for high 
performance computing but only employed OpenMP functionality for dealing with “for”. It is expected that once 
we employ MPI and GPU computing, the computational time can be reduced significantly.

The AP propagation on the transverse and longitudinal sections of human heart is successfully simulated by 
the GS method. In a real heart, the AP transmits involves varieties of conduction cells, such as myocyte, sinoatrial 
node cells, atrioventricular nodal cells, Purkinje fibers, and fibroblasts. The electrical activity of the heart begins 

Figure 6.  Sketch for electrical conduction system and the sections of human heart: the left figure shows the 
longitudinal section, and the right figure shows the transverse section of heart at the dotted line position.

Clerc73 (1976) Roberts and Scher74 (1982) Colli-Franzone75 (1993) Potse28 (2006)

σi
L 0.174 0.344 0.3 0.3

σi
t 0.0193 0.0596 0.0315 0.03

σe
L 0.625 0.117 0.2 0.3

σe
t 0.236 0.0802 0.1341 0.12

Table 1.  Conductivity values of human ventricle.
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with the sinoatrial node at the right atrium. Pulses from the sinoatrial node travel through the left and right 
atrium and meet at the atrioventricular node. From the atrioventricular node, electrical impulses travel along the 
bundle and are transmitted to the right and left ventricles through the right and left bundle branches. Finally, the 
bundle at the end of the bundle branch is divided into millions of Purkinje fibers. Nowadays, many researchers 
have begun to study electrophysiology by including various conduction cells. The sinoatrial node is the normal 
pacemaker of the mammalian heart. There are a few mathematical models of sinoatrial nodes. For example, 
based on the Severi-DiFrancesco model of a rabbit sinoatrial node cell and the electrophysiological data from 
human sinoatrial node cells, Fabbri et al.62 proposed a comprehensive model of the electrical activity of a human 
sinoatrial node cell. The AP and CaT obtained by Fabbri were close to experimentally recorded values. In order 
to illustrate the functional role of various genetic isoforms of ion channels in generating cardiac pace-making 
AP, Kharche et al.63 developed a mathematical model for spontaneous AP of mouse sinoatrial node cells. In that 
model, biophysical properties of membrane ionic currents and intracellular mechanisms were considered. Results 
showed that their model could reproduce the physiological exceptionally short AP and high pacing rates of mouse 
sinoatrial node cells effectively.

Because of the importance of Purkinje system in both normal ventricular excitation and ventricular arrhyth-
mias, modelling of the Purkinje system is essential for a realistic ventricle model of the heart61. Recently, inclu-
sion of Purkinje network in AP modelling has attracted much attention64. For example, Oleg et al.65 developed a 
detailed model of the canine Purkinje-ventricular junction and varied its heterogeneity parameters to determine 

Figure 7.  The AP propagation of transverse section of human heart at different times: The first row (a–d) 
illustrates the AP propagation of the healthy heart; The second row (e–h) illustrates the AP propagation of the 
heart with LBBB.
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the relationship between wave conduction velocity, tissue structure, and safety of discontinuous conduction at 
nonuniform junctions. Oleg found that fast or slow conduction was unsafe, and there existed an optimal veloc-
ity that provided the maximum safety factor for conduction through the junction. Vergara et al.66 developed a 
model for the electrophysiology in the heart to handle the electrical propagation in the Purkinje system and myo-
cardium. Their results illustrated the importance of using physiologically realistic Purkinje-trees for simulating 
cardiac activation. However, the majority of current anatomical models have not included models of the Purkinje 
network61. Instead, a simplified approach is adopted by applying electrical stimulus in the middle and lower third 
segments of the septum and endocardium60. The same approach is used in this study. This is partially due to the 
fact that extensive branching of the Purkinje fibers makes modelling Purkinje network extremely challenging as 
suggested by Tawara59, who carried out a formidable study lasting over 2 years to reconstruct the conduction sys-
tem from experimental data. Since the focus of this study is to develop a numerical method for AP within myo-
cardium, like many other studies67,68, we only consider myocytes, and other conduction cells are not simulated.

When the bundle branch is injured after myocardial infarction, or cardiac surgery, it may stop transmitting 
electrical impulses completely. This will result in a change in the path of ventricular depolarization. According to 
the anatomical location of the defect that leads to the bundle branch block, the block is further divided into the 
right bundle branch block and the left bundle branch block. Since the electrical pulse can no longer use the pre-
ferred path through the bundle branch, it can only spread through muscle fibers, which slows down the electrical 
propagation and changes the directional propagation of the electrical pulse. Lange et al.44 performed simulations 
to investigate the effect of different types of false tendons on hearts with the electrical conduction abnormality in a 
LBBB heart. Their results indicated that, LBBB affected the activation time of left and right ventricles, and the false 

Figure 8.  The AP propagation of longitudinal section of human heart at different times: (a–d) illustrates the AP 
propagation of the healthy heart; (e–h) illustrates the AP propagation of the heart with LBBB.
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tendon could compensate for the propagation delay caused by the LBBB. As demonstrated in this study, LBBB 
leads to delayed triggering of electrical excitation of the left ventricle, resulting in the loss of ventricular electrical 
synchrony, and potentially causing mechanical discoordination.

Conclusion
In this study, we have developed a GS method by immerse the actual irregular electrophysiology computational 
domain into a larger rectangular region. Action potential propagation using the monodomain model is solved 
successfully with the GS method. In a rectangular and a circular regions, by using the GS method to solve the 
FitzHugh-Nagumo monodomain model, we capture the patterns of heterogeneity and complex connectivity 
of electrophysiological dynamics in biological tissues, and demonstrate the validity of the method. Numerical 
results show that the GS method can effectively simulate the AP propagation in irregular region. Furthermore, 
we employ the GS method to simulate the transmembrane propagation in moving regions and analyze the influ-
ence of moving region on transmembrane propagation. Our results show that the moving regions affect not only 
the propagation velocity but also the shape of spiral waves. Subsequently, we simulate the AP propagation on 
the transverse and longitudinal sections of a healthy heart and a heart with LBBB by using the GS method. The 
numerical results demonstrate how LBBB affects action prorogation in ventricles.

Model Introduction
Monodomain model.  Simulating myocardial electrical activity needs to describe the anisotropic excitation 
conduction based on the ion channel model of myocardial cells. In general, a bidomain model based on the 
Poisson equation is used to describe the electrical coupling between myocytes and the electrical conduction cells 
in the tissue. At the microscopic level, myocardium can be seen as consisting of two separate regions separated 
by the cell membrane: the intracellular space (Ωi) and the extracellular space (Ωe). The bidomain model consists 
of the equations for the intracellular potentials (φi) and the extracellular potentials (φe), thus the transmembrane 
potential is Vm = φi − φe. The governing equations of the bidomain model are

σ σ σ φ∇ ⋅ ∇ = −∇ ⋅ + ∇V( ) (( ) ) (8)i m i e e

Figure 9.  The AP propagation of human heart in different points: (a) four points in transverse section of the 
healthy heart; (b) four points in transverse section of the heart with LBBB; (c) four points in longitudinal section 
of the healthy heart; (d) four points in longitudinal section of the heart with LBBB.
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l
e
t  are the conductivity tensor. Am is the surface-to-volume ratio, i.e., 

the amount of membrane found in a given volume of tissue. Im is the transmembrane current density. Cm is the 
membrane capacitance, Iion is the ionic current through a number of different types of ion channels. Is is an 
imposed stimulation current.

Assuming the anisotropy ratios in intracellular and extracellular spaces are the same, let σe = λσi, then Eq. (8) 
will be reduced to

σ φ
λ

σ∇ ⋅ ∇ = −∇ ⋅


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∇


V( ) 1
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Substituting Eq. (10) into Eq. (9), we will obtain the governing equation of the monodomain model, that is
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Reaction-diffusion system.  Both the bidomain model and the monodomain model are reaction-diffusion 
systems. They are singularly perturbed systems for model parameters and reasonable initial data69. When the 
diffusion phenomenon is included in the system, the threshold phenomenon ensures the stability of the traveling 
wave solution. The so-called threshold phenomenon, that is, there is a threshold value of the transmembrane 
potential Vm in the uniform space, for the electrophysiology model Eq. (9) or Eq. (11), when the potential is lower 
than the threshold value, it quickly returns to the stable state; when the potential is higher than the threshold 
value, it will produce a large excursion before it returns to the stable state. In cardiac tissue, an initial perturbation 
with a sufficiently large transmembrane potential Vm triggers AP propagation.

Figure 10.  The concentration of calcium ion of human heart in different points: (a) four points in transverse 
section of the healthy heart; (b) four points in transverse section of the heart with LBBB; (c) four points in 
longitudinal section of the healthy heart; (d) four points in longitudinal section of the heart with LBBB.
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Figure 11 shows a typical AP curve for a human myocyte, which consists of four phases, the depolarization 
phase (phase 0), the early repolarization phase (phase 1), the plateau phase (phase 2), the repolarization (phase 
3), and the resting phase (phase 4). In a cardiac cycle, once a myocyte is excited, it can not be excited again for a 
period of time, the so-called effective refractory period (ERP). During this period, the depolarization of adjacent 
cardiomyocytes does not trigger already-excited myocytes. When entering the resting phase (phase 4), myocytes 
are ready for next excitation. ERP is usually characterized by the interval between the depolarization (phase 0) 
and repolarization (phase 3) phases. As a protective mechanism, ERP can control the heart rate, prevent arrhyth-
mias and coordinate muscle contractions.

The ghost structure method.  In this ghost structure method, the transmembrane potential Vm is 
described by an Eulerian form and discretized with a regular Cartesian grid, while the membrane dynamics is 
described by a Lagrangian form and calculated by the cell membrane model. As shown in Fig. 12, the entire com-
putational domain (the ghost structure region) is represented by Ω, where X = (X1, X2) ∈ Ωc is Eulerian (physical) 
coordinates. The region where myocytes sit is expressed as Ωc, X = (X1, X2) ∈ Ωc are fixed Lagrangian (material) 
coordinates. The mapping χ(X, t) ∈ Ω gives the physical position of each Lagrangian point at time t. Therefore, the 
physical region occupied by myocardium at time t is denoted as Ωc(t) = χ(X, t), and the region of non-myocardial 
cells at time t is denoted as Ωnon(t) = Ω − Ωc. The Lagrangian and Eulerian variables are transformed by the inte-
gral transformation of the delta function. Finally, the full governing equations of the monodomain model in the 
GS method are

Figure 11.  Sketch for the transmembrane potential Vm.

Figure 12.  Sketch of the computational domain for the GS method.
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where Vm(x, t) is the Eulerian transmembrane potential, Iion(x, t) is the Eulerian ionic current, and Is(x, t) is the 
Eulerian stimulation current density. ∼V tX( , )m , I tX( , )ion , and I tX( , )s  are the transmembrane potential, ionic cur-
rent and stimulation current density in Lagrangian form, respectively. y is a Lagrangian vector of ionic fluxes and 
their corresponding channel gating variables are described by the suitable ordinary differential equations Eq. (14). 
f represents the right hand side of the ordinary differential equations used to describe ion channels. g represents 
a nonlinear function that relates the ionic flux to the total ionic current. Eq. (14) and Eq. (15) are cardiac mem-
brane models used to solve the current-voltage relationship. δ(x) is a two-dimensional delta function that trans-
forms the transmembrane potential and ion current between the Eulerian and Lagrangian coordinates. In this 
study, we calculate ion currents by Eq. (13) and Eq. (14) through the GPB model, and then convert I tX( , )ion  into 
the Eulerian ion current in the ghost structure region. Finally, the Eulerian transmembrane potential Vm(x, t) is 
obtained by solving Eq. (12).

Spatial discretization.  The regular ghost structure region Ω is discrete by a N1 × N2 Cartesian grid with 
spat ia l  steps ∆ =x

N1
1

1
 and ∆ =x

N2
1

2
.  The center  of  the Cartesian gr id is  represented as 

= + ∆ + ∆( )( ) ( )i j xx x ,i j,
1
2 1

1
2 2 , where i = 0, ..., N1−1, j = 0, ..., N2−1. The transmembrane potential Vm and 

the current Iion are defined at the center of the grid and are represented by (Vm)i,j and (Iion)i,j, respectively. The 
divergence of ∇Vm is approximated at the central point of the grid, as illustrated in Fig.  13, 

= ∆ − ∆− ( )( )i x j xx ,i j, 1
1
2 21

2
 and ∆ ∆= −− ( )( )x i x j x,i j,

1
2 1 21

2
.

The gradient of Vm is approximated at the center point of the grid again using the following difference scheme,

Figure 13.  Sketch of the staggered-grid.
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The divergence of σi∇Vm is defined also at the centre of the grid as
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The initial value of Vm at each Eulerian point in the entire computational domain needs to be approximated 
based on the transmembrane potential at the Lagrangian point and the integral transformation of the delta func-
tion. In order to solve more accurately, the transmembrane potential at the Lagrangian point in Ωc and the delta 
function are required to update the transmembrane potential at the Eulerian point outside the structure Ωc at 
regular intervals. The mutual transformation between the Eulerian variable and the Lagrangian variable will be 
explained in the subsection “Lagrangian-Eulerian interaction”.

Time discretization.  For the ordinary differential equations Eq. (14), the third-order TVD Runge-Kutta 
method70 is used to solve the system:
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For the nonlinear partial differential equation Eq. (12), it can be rewritten as
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. In this paper, the third-order TVD Runge-Kutta 
method is also used to solve the nonlinear reaction-diffusion equation Eq. (21)
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Lagrangian-Eulerian interaction.  Let τh = ∪Ωe be a triangulation of Ωc, in which e indexes the elements 
of the mesh of the irregular computational domain, The nodes of mesh are denoted as =X{ }l l

M
1, the finite element 

basis functions are denoted by φ =X{ ( )}l l
M

1. In this paper, nodes of the mesh are regarded as Lagrangian points. The 
Lagrangian points must be finer than the Cartesian points to avoid leaks71. In the calculation process, the integral 
transformation form of delta function is used to realize the conversion between the Eulerian variable and 
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Lagrangian variable. The approximation of the smooth delta function is δ = ∏ Ψ= rx( ) ( )h i
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Based on the above delta function, the approximate values of physical quantities at each Eulerian point can be 
obtained directly by using the values of Lagrangian points around the Eulerian point. In order to obtain the 
approximate value of physical quantity in Eulerian coordinate system more accurately, we use the Gaussian quad-
rature rule with quadrature points XQ

e , where ∈ ΩXQ
e e, and accociated weights ω = ...Q N( 1, , )Q

e e . In the GS 
method, the value of each Gaussian integral point is obtained through the basis function of the finite element 
mesh, and then the approximate value of the physical quantity at the Eulerian point is obtained by using the inte-
gral transformation form of the delta function. Taking Iion(x, t) as an example, the current Iion of the Gaussian 
integration point in the element is obtained by the value of the Lagrangian point through the element basis func-
tion of the finite element method, and the approximate value Iion of the Iion at the Eulerian point is
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Similarly, we can use the integral transformation form of the corresponding delta function to obtain the 
approximate value of Vm at each Gaussian integral point by using the transmembrane potential Vm at Eulerian 
points, that is

∑ δ χ= − ∆ ∆
∼V t V t x xX x x X( , ) ( ) ( ( , ))

(27)
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e
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e

,
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In order to update the ion current at the next time step through the cell membrane model, we need to obtain 
the transmembrane potential ∼Vm at the Lagrangian point or the grid nodes. The transmembrane potential ∼Vm at 
grid nodes is obtained by using the approximate value of Gaussian integral point from Eq. 27 and a L2 projection 
method48.

All simulations are performed on a windows workstation with Intel(R) Xeon(R) Gold 5115 (20 cores, 
2.40 GHz, 64 GB memory), implemented in C++.
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