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Abstract

In solving two-point boundary-value problems with variable coefficients, we often

shoot from the two boundaries and match the solutions at an interior matching point.

The Evans function D(λ), as a function of the bifurcation parameter λ, is defined such

that the two solutions match if D(λ) = 0. Thus, the problem of finding the bifurcation

values is reduced to finding the roots of D(λ) = 0. The Evans function is often used

together with the compound matrix method so that even stiff problems can be solved.

We consider the following eigenvalue problem:

dy

dx
= A(x, λ)y, a ≤ x ≤ b, (1)

B(x, λ)y = 0, x = a, (2)

C(x, λ)y = 0, x = b, (3)

where A is a 2n × 2n matrix, B and C are n × 2n matrices, all being known functions of

the independent variable x and a parameter λ, and y is a 2n-dimensional vector function.

The aim is to determine values of the parameter (eigenvalues) λ so that non-trivial solutions

exist. Such eigenvalue problems feature in a variety of disciplines. For instance, it often

results from a linear stability/bifurcation analysis of fluid flows (e.g. Afendikov and Bridges

2001), solitary waves (e.g. Pego and Weinstein 1992), and pre-stressed elastic bodies (e.g.

Fu and Pour 2002). One or both of the boundaries x = a, b may be infinite.

1 Determinantal method

This would be the first method one could think of without reading any books. The idea is

to shoot from one end to the other end and to iterate on λ so that the boundary condition

on the other end is satisfied. We may also shoot from both ends towards a middle point and

to iterate on λ so that the two solutions coincide at the middle point.

If we choose to shoot from x = a, then the procedure is as follows:

Assuming that matrix B has rank n, we may then always find n linearly independent

vectors y
(1)
0 ,y

(2)
0 , ...,y

(n)
0 such that

B(a, λ)y
(i)
0 = 0, i = 1, 2, ..., n. (4)

1



Using each of these vectors as the initial value at x = a, we may integrate (1) from x = a

to obtain n independent solutions, say y(i)(x), i = 1, 2, ..., n. A general solution that satisfies

(1) and the boundary condition (2) is then given by

y =
n

∑

i=1

kiy
(i)(x), (5)

where k1, k2, ..., kn are arbitrary constants. We define M(x, λ) to be the 2n×n matrix whose

ith column is y(i), that is

M(x, λ) = [y(1),y(2), ...,y(n)]. (6)

Equation (5) can then be written as

y = M(x, λ)k, (7)

where

k = [k1, k2, ..., kn]T .

On substituting (7) into the other boundary condition (3), we obtain

C(b, λ)M(b, λ)k = 0. (8)

Since k 6= 0, we deduce that

|C(b, λ)M(b, λ)| = 0, (9)

where a pair of vertical bars denotes the determinant of the matrix enclosed. We iterate on

λ so that the determinantal equation (9) is satisfied.

When one of the boundaries or both are infinite, it is usual to shoot from x = a and from

x = b, respectively, so that the two solutions match at a middle point, say x = d. Denote by

y(1)(x),y(2)(x), ...,y(n)(x) the n solutions obtained by shooting from x = a as explained in

the previous paragraph. Then again, a general solution satisfying the left boundary condition

is given by

y =
n

∑

i=1

kiy
(i)(x). (10)

Likewise, we denote by y(n+1)(x),y(n+2)(x), ...,y(2n)(x) the n solutions obtained by shooting

from x = b. Then a general solution satisfying the right boundary condition is given by

y =
2n
∑

i=n+1

kiy
(i)(x), (11)

where kn+1, kn+2, ..., k2n are another set of n constants. The two solutions (10) and (11)

must match at x = d. Thus,

n
∑

i=1

kiy
(i)(x) =

2n
∑

i=n+1

kiy
(i)(x), when x = d, (12)



or equivalently,

N(d, λ)c = 0, (13)

where

N(d, λ) = [y(1),y(2), ...,y(n),y(n+1),y(n+2), ...,y(2n)], (14)

c = [k1, k2, ..., kn,−kn+1,−kn+2, ...,−k2n]T .

We then iterate on λ so that the determinantal equation

|N(d, λ)| = 0 (15)

is satisfied.

We note that whereas the |N(d, λ)| defined above is dependent on d, the matching point,

the following quantity is independent of d:

D(λ) = e−
∫

d

a
tr A(s,λ) ds|N(d, λ)|. (16)

This may easily be proved with the aid of the properties

dy(i)

dx
= A(x, λ)y(i), (17)

and

|Ay(1),y(2), ...,y(2n)| + |y(1), Ay(2), ...,y(2n)| + · · ·

+|y(1),y(2), ..., Ay(2n)| = tr A |y(1),y(2), ...,y(2n)|, (18)

see Chadwick (1976, p.18).

The determinantal method is conceptually easy, but for large or small values of λ the

eigenvalue problem (1) usually becomes stiff and the solutions y(1),y(2), ...,y(n), although

linearly independent initially at x = a, quickly become linearly dependent due to the dom-

inance of exponentially growing solutions. To address this problem, the compound matrix

method was proposed by Ng and Reid (1979a, b, 1985); see also Lindsay and Rooney (1992).

Bridges (1999) gave a very good differential-geometric interpretation of this method and

explained why this new method works.

2 Compound matrix method

Let
{

y(1)(x),y(2)(x), ...,y(n)(x)
}

and
{

y(n+1)(x),y(n+2)(x), ...,y(2n)(x)
}

be two sets of n linearly independent solutions of (1) as defined in the previous section. The

determinant of M defined by (6) has (
2n
n ) minors and we denote them by φ1, φ2, .... For

instance, if n = 2, we have

φ1 =

∣

∣

∣

∣

∣

∣

y
(1)
1 y

(2)
1

y
(1)
2 y

(2)
2

∣

∣

∣

∣

∣

∣

def.
= (1, 2), φ2 =

∣

∣

∣

∣

∣

∣

y
(1)
1 y

(2)
1

y
(1)
3 y

(2)
3

∣

∣

∣

∣

∣

∣

def.
= (1, 3), (19)



and likewise

φ3 = (1, 4), φ4 = (2, 3), φ5 = (2, 4), φ6 = (3, 4).

With the aid of (17), we may easily find the first-order differential equations satisfied by

these φ’s. For instance, when n = 2, we have

φ′

1 =

∣

∣

∣

∣

∣

∣

y
(1)′

1 y
(2)′

1

y
(1)
2 y

(2)
2

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

y
(1)
1 y

(2)
1

y
(1)′

2 y
(2)′

2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑4
i=1 A1iy

(1)
i

∑4
i=1 A1iy

(2)
i

y
(1)
2 y

(2)
2

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

y
(1)
1 y

(2)
1

∑4
i=1 A2iy

(1)
i

∑4
i=1 A2iy

(2)
i

∣

∣

∣

∣

∣

∣

= A11φ1 − A13φ4 − A14φ5 + A22φ1 + A23φ2 + A24φ3.

Writing these (
2n
n ) differential equations as a matrix equation, we have

φ′ = A(x, λ)φ, a ≤ x ≤ b, (20)

where φ is the column vector with elements φ1, φ2, .... When n = 2, the matrix A(x, λ) is

given by

A(x, λ) =



























A11 + A22 A23 A24 −A13 −A14 0

A32 A11 + A33 A34 A12 0 −A14

A42 A43 A11 + A44 0 A12 A13

−A31 A21 0 A22 + A33 A34 −A24

−A41 0 A21 A43 A22 + A44 A23

0 −A41 A31 −A42 A32 A33 + A44



























.

(21)

The boundary condition for φ at x = a is obtained from y
(i)
0 , i = 1, 2, ..., n. For instance,

φ1(a) =

∣

∣

∣

∣

∣

∣

y
(1)
01 y

(2)
01

y
(1)
02 y

(2)
02

∣

∣

∣

∣

∣

∣

,

where y
(1)
01 is the first element in y

(1)
0 etc. We may now integrate (20) from x = a to x = b.

The boundary condition (9) at x = b can be expressed in terms of φ by Laplace expansion.

We iterate on λ so that this boundary condition is satisfied.

Alternatively, we may shoot from x = a and from x = b, respectively, and match the two

solutions at a middle point x = d as in the previous section. In this case, we denote by φ(−)

the φ formed from the minors of

|y(1),y(2), ...,y(n)|,

and by φ(+) the φ formed from the minors of

|y(n+1),y(n+2), ...,y(2n)|.



Obviously, φ(−) and φ(+) are both governed by the differential equation (20). We have

explained just now how φ(−) is obtained. The φ(+) is obtained in a similar manner. The

matching condition (15) can be expressed in terms of φ(−) and φ(+) using Laplace expansion.

Laplace expansion is a straightforward generalization of the usual expansion of a determinant

by a single row or column: it expands a determinant by any number of rows or columns. For

instance, when n = 2, we have

|N(x, λ)| = | [y(1)(x),y(2)(x),y(3)(x),y(4)(x)] | =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y
(1)
1 y

(2)
1 y

(3)
1 y

(4)
1

y
(1)
2 y

(2)
2 y

(3)
2 y

(4)
2

y
(1)
3 y

(2)
3 y

(3)
3 y

(4)
3

y
(1)
4 y

(2)
4 y

(3)
4 y

(4)
4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

y
(1)
1 y

(2)
1

y
(1)
2 y

(2)
2

∣

∣

∣

∣

∣

∣

· (−1)1+2+1+2

∣

∣

∣

∣

∣

∣

y
(3)
3 y

(4)
3

y
(3)
4 y

(4)
4

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

y
(1)
1 y

(2)
1

y
(1)
3 y

(2)
3

∣

∣

∣

∣

∣

∣

· (−1)1+2+1+3

∣

∣

∣

∣

∣

∣

y
(3)
2 y

(4)
2

y
(3)
4 y

(4)
4

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

y
(1)
1 y

(2)
1

y
(1)
4 y

(2)
4

∣

∣

∣

∣

∣

∣

· (−1)1+2+1+4

∣

∣

∣

∣

∣

∣

y
(3)
2 y

(4)
2

y
(3)
3 y

(4)
3

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

y
(1)
2 y

(2)
2

y
(1)
3 y

(2)
3

∣

∣

∣

∣

∣

∣

· (−1)1+2+2+3

∣

∣

∣

∣

∣

∣

y
(3)
1 y

(4)
1

y
(3)
4 y

(4)
4

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

y
(1)
2 y

(2)
2

y
(1)
4 y

(2)
4

∣

∣

∣

∣

∣

∣

· (−1)1+2+2+4

∣

∣

∣

∣

∣

∣

y
(3)
1 y

(4)
1

y
(3)
3 y

(4)
3

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

y
(1)
3 y

(2)
3

y
(1)
4 y

(2)
4

∣

∣

∣

∣

∣

∣

· (−1)1+2+3+4

∣

∣

∣

∣

∣

∣

y
(3)
1 y

(4)
1

y
(3)
2 y

(4)
2

.

∣

∣

∣

∣

∣

∣

Thus,

|N(x, λ)| = φ−

1 φ+
6 − φ−

2 φ+
5 + φ−

3 φ+
4 + φ−

4 φ+
3 − φ−

5 φ+
2 + φ−

6 φ+
1 , (22)

D(λ) = e−
∫

d

a
tr A(s, λ) ds|N(d, λ)|.

We iterate on λ so that the matching condition D(λ) = 0 is satisfied.

The function D(λ) is known as Evans function; it is an invariant of the differential

equation (1). This Evans function was first introduced by Evans (1972, 1975), and further

developed by Alexander et al (1990).

3 Interpretation of φ in terms of wedge/exterior products

Write

u = y(1) ∧ y(2)... ∧ y(n), (23)

where the wedge product obeys the following three rules:

(a ∧ b) ∧ c = a ∧ (b ∧ c), (k1a + k2b) ∧ k3c = k1k3a ∧ c + k2k3b ∧ c, a ∧ b = −b ∧ a,

for all vectors a, b, c and scalars k1, k2, k3.

Take n = 2 as an example. We denote the unit vectors in R4 by e1,e2,e3,e4. We then

have

y(1) =
4

∑

i=1

y
(1)
i ei, y(2) =

4
∑

j=1

y
(2)
j ej . (24)



It then follows that

y(1) ∧ y(2) =
4

∑

i=1

4
∑

j=1

y
(1)
i y

(2)
j ei ∧ ej =

4
∑

i=1,i<j

4
∑

j=1

(y
(1)
i y

(2)
j − y

(1)
j y

(2)
i )ei ∧ ej ,

= φ1 e1 ∧ e2 + φ2e1 ∧ e3 + φ3 e1 ∧ e4 + φ4 e2 ∧ e3 + φ5 e2 ∧ e4 + φ6 e3 ∧ e4. (25)

Thus, we see that the variables φ1, φ2, ..., φ6 used in the compound matrix method are simply

the components of the wedge product y(1) ∧ y(2) relative to the basis

e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4.

We may therefore conclude that if y(1),y(2) are solutions of (1), then y(1) ∧y(2) is a solution

of (20).

We now write

y(1)∧y(2) = φ−

1 (e1∧e2)+φ−

2 (e1∧e3)+φ−

3 (e1∧e4)+φ−

4 (e2∧e3)+φ−

5 (e2∧e4)+φ−

6 (e3∧e4),

and

y(3)∧y(4) = φ+
1 (e1∧e2)+φ+

2 (e1∧e3)+φ+
3 (e1∧e4)+φ+

4 (e2∧e3)+φ+
5 (e2∧e4)+φ+

6 (e3∧e4).

We then have

y(1) ∧ y(2) ∧ y(3) ∧ y(4) = φ−

1 φ+
6 (e1 ∧ e2 ∧ e3 ∧ e4)

+ φ−

2 φ+
5 (e1 ∧ e3 ∧ e2 ∧ e4)

+ φ−

3 φ+
4 (e1 ∧ e4 ∧ e2 ∧ e3)

+ φ−

4 φ+
3 (e2 ∧ e3 ∧ e1 ∧ e4)

+ φ−

5 φ+
2 (e2 ∧ e4 ∧ e1 ∧ e3)

+ φ−

6 φ+
1 (e3 ∧ e4 ∧ e1 ∧ e2)

= (φ−

1 φ+
6 − φ−

2 φ+
5 + φ−

3 φ+
4 + φ−

4 φ+
3 − φ−

5 φ+
2 + φ−

6 φ+
1 )e1 ∧ e2 ∧ e3 ∧ e4.

Thus, by comparing with (22) and generalizing to arbitrary n, we may also write the expres-

sion (16) as

D(λ) = e−
∫

d

a
tr A(s,λ) ds

y(1) ∧ y(2) · · · ∧ y(n) ∧ y(n+1) · · · ∧ y(2n). (26)

More information on exterior multiplication can be found in Arnold (1989, p.170).

4 Examples

Example 1: We first solve the eigenvalue problem

ε4 d4w

dx4
+ 2ε2λ

d

dx

[

sin(x)
dw

dx

]

+ w = 0, x ∈ [0, π], (27)



w =
d2w

dx2
= 0 for x = 0, π, (28)

where ε is known positive parameter (the problem becomes stiff if ε ≪ 1 which can be solved

using the WKB method), and the problem is to find the minimum eigenvalue of λ for which

the above boundary value problem has a non-trivial solution.

Define y = (w,w′, w′′, w′′′)T . Then the above governing equation (27) can be written in

the form (1) with A given by

A =















0 1 0 0

0 0 1 0

0 0 0 1

0 A42 A43 0















,

where

A42 = −2λ

ε2
cos(x), A43 = −2λ

ε2
sin(x).

Since both the governing equation and boundary conditions are symmetric about x = π/2,

we expect that the eigen modes are either symmetric or anti-symmetric about x = π/2. We

focus on the symmetric modes which must satisfy the conditions

w′(
π

2
) = w′′′(

π

2
) = 0,

and the eigenvalue problem is solved for x ∈ [0, π
2 ].

Two independent vectors that satisfy the boundary conditions at x = 0 are

y
(1)
0 =















0

1

0

0















, y
(2)
0 =















0

0

0

1















,

whereas two independent vectors that satisfy the boundary conditions at x = π/2 are

y
(3)
0 =















1

0

0

0















, y
(4)
0 =















0

0

1

0















.

It then follows that

φ+(0) = (0, 0, 0, 0, 1, 0)T , φ−(
π

2
) = (0, 1, 0, 0, 0, 0)T . (29)

The compound matrix equation (20) can now be integrated subjected to (29)1,2 to obtain

the solutions φ+ and φ−, respectively. Plotting D(λ) shows that D(λ) = 0 has an infinite

number of positive roots, the first three being given by

1.10517, 1.34269, 1.62184



when ε = 0.1. For small ε, a WKB analysis (Coman 2004) gives the asymptotic expression

λ = 1 + (2m + 1)ε + O(ε2), m = 0, 1, 2, . . . . For the same ε = 0.1, this expression gives the

first three eigenvalues 1.1, 1.3, 1.5.

Example 2: We next consider the eigenvalue problem

d4w

dx4
− d2w

dx2
+ 2

d2

dx2
(w0w) + λw = 0, x ∈ (−∞,∞), (30)

w(±∞) → 0, (31)

where

w0 =
3

2
sech2(

x

2
).

The problem is to find the minimum eigenvalue of λ for which the above boundary value

problem has a non-trivial solution.

We first note that in the limit x → ±∞, the governing equation (30) tends to

d4w

dx4
− d2w

dx2
+ λw = 0, x ∈ (−∞,∞). (32)

On substituting the trial solution w = ekx into (32), we obtain

k2 =
1

2
(1 ±

√
1 − 4λ).

Thus, since the behaviour of w in the limit x → ±∞ must necessarily be a linear combination

of all solutions of the form ekx, with k determined above, decaying solutions are only possible

for λ < 1/4. We make this assumption from now on.

Again define y = (w,w′, w′′, w′′′)T . Then the above governing equation (30) can be

written in the form (1) with A given by

A =















0 1 0 0

0 0 1 0

0 0 0 1

−(2w′′

0 + λ) −4w′

0 1 − 2w0 0















.

Since both the governing equation and boundary conditions are symmetric about x = 0, we

expect that the eigen modes are either symmetric or anti-symmetric about x = 0. We focus

on the symmetric modes which must satisfy the conditions

w′(0) = w′′′(0) = 0,

and the eigenvalue problem is solved for x ∈ [0,∞).

Two independent vectors that satisfy the boundary conditions at x = 0 are

y
(1)
0 =















1

0

0

0















, y
(2)
0 =















0

0

1

0















.



In the limit x → ∞, equation (1) reduces to

y′ = A∞y, where A∞ = A(∞, λ).

Numerically, we will have to replace ∞ by a sufficiently large positive number, say L. By

considering a solution of the form y = Yekx, we find that a decaying solution at x = L must

necessarily be a linear combination of

y
(3)
0 e−k1L and y

(4)
0 e−k2L,

or equivalently, a linear combination of

y
(3)
0 and y

(4)
0 ,

where

y
(3)
0 =















1

−k1

k2
1

−k3
1















, y
(4)
0 =















1

−k2

k2
2

−k3
2















, k1 =

√

1

2
(1 +

√
1 − 4σ), k2 =

√

1

2
(1 −

√
1 − 4σ).

The appropriate boundary conditions are then given by

φ+(0) =



























0

0

0

0

1

0



























, φ−(L) =



























−k2 + k1

k2
2 − k2

1

−k3
2 + k3

1

−k1k
2
2 + k2

1k2

k1k
3
2 − k2k

3
1

−k2
1k

3
2 + k2

2k
3
1



























. (33)

The compound matrix equation (20) can now be integrated subjected to (33)1,2 to obtain

the solutions φ+ and φ−, respectively. Plotting D(λ) shows that D(λ) = 0 has a single root

3/16 in (0, 1/4). It turns out that at this eigenvalue, equation (30) can be solved exactly to

give

w = sech(
x

2
) − 2sech3(

x

2
).

See, e.g., Pearce and Fu (2010).
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