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We have studied steady flow in a 2-D channel with one plane rigid wall and with a segment
of the other wall replaced by an elastic membrane. Numerical solutions of the full
governing equations have been obtained for Reynolds number Re = 1-600. The numerical
method was 1o solve the Navier-Stokes equations for given membrane shape by using the
finite element scheme FIDAP, and use the membrane equation to iterate for the
membrane shape, The control parameters are the downstream transmural pressure, Py, the
longitudinal tension, T, and the Reynolds Number, Re. For a given Re and FP,, where
Py = Pociornar— Pimermar = 0, there exists a limit of T, say 7., below which no converged
solution was found. There is a somewhat higher value, T,, such that for 7. <T <7, the
membrane bulges out at its upstream end while the downstream part still remains
collapsed. It is extremely difficult, however, to obtain converged solutions with our
numerical scheme as we decrease the tension to T, and below. To investigate whether the
breakdown of the solution could be of physical origin, we analysed a simple 1-D model of
the same flow, similar to that of Jensen & Pedley (1989). The results confirm that, for
given Re and F,, there is a value of T (7,), below which the upstream part of the
membrane bulges out, with collapse only in the downstream part. Similarly, for fixed 7,
there is a value of Re (Re,) above which no fully collapsed solutions are attainable. The
values of T at given Re and P, agree very well with the numerical results, especially for
higher Re. Further, a qualitative comparison of our analytical predictions with the
experimental measurements in a collapsible tube by Bonis & Ribreau (1978), show that it
is near the bulging points that steady flow gave way to self-excited oscillations.

1. INTRODUCTION

THE COLLAPSE OF COMPRESSED ELASTIC TUBES conveying a flow occurs naturally in several
physiological applications, e.g. blood flow in arteries and veins, urine flow in the
urethra and the flow of air in the lungs during a forced expiration (Shapiro 1977,
Kamm & Pedley 1989). In laboratory experiments on a finite length of collapsible tube,
mounted on rigid tubes and contained in a chamber whose pressure can be controlled,
with flow driven through at realistic values of the Reynolds number (in the hundreds or
above), self-excited oscillations invariably arise in particular regions of parameter space
{Conrad 1969; Brower & Scholten 1975). The thorough experiments of Bertram, in
particular, have revealed a rich variety of periodic and chaotic oscillation types,
demonstrating that the system is a nonlinear dynamical system of great complexity
(Bertram 1982; Bertram et al. 1990, 1991). However, despite the existence of a number
of theoretical models, revealing several different oscillation mechanisms, there is as yet
no complete theoretical description of the oscillations in any realizable experimental
conditions.

Most previous models have been either one-dimensional, in which flow variables are
integrated across a vessel cross-section and therefore depend only on the longitudinal
coordinate ¥ and time 7, or the even cruder lumped-parameter models in which they
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are integrated along the vessel too and so depend only on £ The standard 1-D models
[e.g., Shapiro (1977)] led to the conclusion that steady flow cannot exist in a collapsible
tube if the flow velocity is anywhere as large as the speed of propagation of
small-amplitude pressure waves, so choking and unsteady motion must result. Early,
local theories ignored the external, rigid parts of the flow system, so the unsteady
motion that occurs after choking could not be described. The lumped models [e.g.,
Katz ef al. (1969)] can describe the system as a whole, but exclude choking and are of
limited value. In a more recent model of a finite-length tube, the 1-D equations for
fluid flow and tube elasticity are coupled to the up- and downstream rigid segments.
Moreover, the mode!l incorporates important features of the real system, such as
viscous energy loss in the intermittently separated flow downstream of the point of
greatest collapse and longitudinal tension in the tube wall (Cancelli & Pedley 1985;
Jensen & Pedley 1989). This model predicts nonexistence of a steady flow in some
regions of parameter space and instability in others. Nonlinear analysis has enabled
some features of the experimental observations to be qualitatively reproduced (Jensen
1990).

Even in the better models, however, some of the important dynamical factors are
described extremely crudely, using ad hoc formulae that are incapable of systematic
improvement. Two examples are: (a) taking the energy loss downstream of the
constriction to be proportional to —diz°/d%, where i is the cross-sectionally averaged
longitudinal velocity and X the axial coordinate; and (b) stating that the transmural
(external minus internal) pressure difference is equal to the sum of a tube law term (as
if the tube were longitudinally uniform) and a longitudinal tension proportional to
3’Aja%%, where A is the cross-sectional area (as if the tube wall were a 2-D
membrane) (Cancelli & Pedley 1985). The latter is a poor representation of
nonaxisymmetric, large deformation shell theory for a finite-length, end-supported
cylinder, but to improve it requires a substantial computational effort. To improve the
former also requires a big computational programme, in which the full Navier-Stokes
equations are solved numerically for the appropriate geometry.

Because of the difficulty and large computational requirements for the full three
dimensional solution of the above problems, we have embarked on a programme to
provide a complete determination of steady and unsteady flow, including the
self-excited oscillations, in a simpler, but in principle realizable, two-dimensional
version of the same problem. The flow configuration is as depicted in Figure 1: part of
one wall of a two-dimensional channel is replaced by an elastic segment, and steady
flow is assumed upstream. The displacement of the segment is determined from the
hydrodynamic stresses acting on it. In contrast with the usual models, the elasticity of
this segment can be described rationally, by treating it as a membrane, with constant or
variable tension, or as a beam with bending stiffness. Wall inertia, as well as fluid
inertia, can be taken into account. Hitherto, a sequence of subproblems has been
examined, building up towards the full time-dependent solution at high values of the
Reynolds number, Re.

The first subproblem was based on steady lubrication theory, on the assumption that
the wall slope remained small and that inertia was negligible (Pedley 1992). The
membrane tension was either uniform or decreasing with distance downstream as a
result of viscous shear stress. For a given channel, the solution was shown to depend on
two dimensionless parameters involving the flow rate, O, the transmural pressure
difference at the downstream end of the elastic segment (P = p, — py, see Figure 1)
and the membrane tension at the downstream end, T,. One of the main results was the
demonstration that at least one steady solution exists for all positive values of 0, P-



STEADY FLOW IN A 2-D COLLAPSIBLE CHANNEL 151

-—Lu | — L ——IT Ld —
E yard <~ B
M
Q— D
Pu yaA P
/‘L o

7F77 v P EFFFTT I FT T 7T A 7777 sl //A

Pd

=]
RY

Figure 1. The geometry of the 2-D coilapsible channel.

and T,. This analysis was not uniformly valid for all 7, because the wall slope became
large at the downstream end when T, was small. The second sub-problem was
therefore to abandon the lubrication approximation, but still neglect inertia and solve
the Stokes equations for the fluid flow and pressure fields. This has been done with the
Finite Element Method (FEM) applied to the stream-function-vorticity equations
{Lowe & Pedley 1994). Calculation of the membrane deformation has to be performed
iteratively: guess the shape, compute the pressure (and wall shear stress) distributions,
update the shape according to a finite-difference form of the geometrically nonlinear
membrane equations, and so on. For given O and Py, and sufficiently large 7, (assumed
uniform), the results agree with those of lubrication theory. More recent computations
(Lowe & Pedley 1995) have shown that for any set of Q and P values, a solution
cannot be found for arbitrarily small T,. This appears to conflict with the Iubrication
theory results; we believe the cause to lie in the numerical procedure rather than the
difference between the two medels (Silliman & Scriven 1980) and further work is
proceeding.

In this paper, we consider steady flow at nonzero Reynolds number with uniform
tension in the membrane. The approach is to use a standard 2-D Navier-Stokes (N--S)
solver for the flow field, and iterate for the wall position as outlined above. The flow
solver used is FIDAP, an FEM package in primitive variables which is extremely
reliable for 2-I laminar flows. It is again found that, for a given downstream
transmural pressure and Re, a steady solution cannot be attained for sufficiently small
tension.

This result also conflicts with that of the corresponding high-Reynolds-number 1-D
model, a modification of that of Jensen & Pediey (1989), which has a solution for all
T, However, the numerical and model solutions agree in predicting that, as T is
reduced, the membrane tends to bulge out near its upstream end, while remaining
severely collapsed downstream (the same was found using lubrication theory). There is
fair quantitative agreement between the models in the predicted values of 7, at which
bulging first begins (for given P, and ), especially at larger Reynolds numbers.

The problem is formulated in the next section, and the numerical method described
in Section 3. Section 4 contains the numerical resuits, which are discussed with
reference to the simple 1-D model (valid, if anywhere, for high Reynolds number) in
Section 3. Further discussion and conclusions are presented in Section 6.

2. FORMULATION

Steady, incompressible flow of 2 Newtonian fluid in the channel depicted in Figure 1 is

considered. The governing equations for the flow in the channel are expressed in a
nondimensional form:

Rewu;; = —p;+uy, 1)

u,; =0, 2)
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where Re = U,Dp/u is the Reynolds number, U, is the characteristic velocity, here
taken to be the mean velocity at the entrance of the channel, D is the undistorted
channel width, and u, p are the fluid viscosity and density. The dimensionless variables
are related to the physical variables (with overbar) in the following way:

w=a)U, i=1,2 p=pDluly x=3%/D; Y=35/D.

Boundary conditions on u; are those of no slip at the side walls and a parabolic
velocity profile at the entrance. Parallel outflow is assumed which implies u; =0 and
constant normal stress at the outflow boundary far downstream, i.e.

uix, y) =6y(1-y), usx,y)=0 along OE;
ux, y)=0, uy(x, y) = 0 along ED, DC, CB and OA;
—p +20u,(x, y)ax =p,, 1, =0 along AB;

where p, is a given constant.

The downstream boundary is for most calculations taken to be 7 channel widths
downstream of the elastic segment (L, = 7). For lower values of Re, this is long enough
for the parallel boundary condition to be applicable for the outflow. We are aware that,
for high Reynolds number, the downstream length may not be long enough for the flow
to recover entirely from the disturbance caused by the collapsed wall. We have tested
three different downstream lengths, L, =4, L, =7 and L, =11 at Re =500, and the
wall vorticity distributions for these different downstream lengths show that L, =7 is
long enough for this problem [see Figure 3(a) below].

The elastic segment of the upper wall DC is assumed to be a thin membrane,
distorted by the difference between the internal and external pressure. It obeys the
dimensionless equation

pe_P':TIR: (3)

where T=T/ul, T is the uniform tension in the membrane, and R is the
dimensionless radius of curvature. If we express R in terms of the channel width A(x),
equation (3) becomes

Pe—p=Th(1+ k%% (4)

where a prime denotes differentiation with respect to x.

In this paper, we take Re (equivalent to dimensionless flowrate), T, and F,=p,. — p,
{where p, was arbitrarily chosen as zero in the calculations) as control parameters. This
last differs somewhat from the control pressure difference chosen by other workers
(Brower & Scholten, 1975; Bertram 1986; Jensen & Pedley 1989; Lowe & Pedley 1994),
who all used the transmural pressure difference at the downstream end of the
collapsible segment (Pr = p. — pr) instead. Conrad (1969) used P, as defined here.

The parameter values chosen here as follows:

p=1x10"3Pas, p=10kg/m?, D=10"2m,
L=5%10"m, L,=2%10"%m, L,=7%10"%m,
T,=1-610245N/m, P,=p5,— ps=093Pa.
The suffix zero on T and Py, indicates that these are reference values, chosen to permit
direct comparison with Lowe and Pedley’s (1994} results; a range of values for each

parameter was used in the calculations, as indicated below. The nondimensional
parameter values are: L=35, L,=2, L,=7 (see Figure 1). The Reynolds number
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Figure 2. The finite element mesh of the flow domain (mesh-3), with 1642 6-node triangular elements and
3261 nodes.

investigated is in the range of Re=1~600, (or U;=1-600x10"*m/s). The
nondimensionalization of 7 and P, shows that the dimensionless T and P, are not
independent of Re; in fact Ty=T}§/Re, Py=PH/Re, where T¥=1-610245x10’,
P:u= 9'3 x 104.

3. METHOD

We mainly use the finite element method in our numerical calculations. The major
difficulty in the calculations is that the position of the elastic wall determined by
equation (4) is governed by the transmural pressure, p, — p, which is itself affected by
the flow field in the channel, and that in tum is determined by the wall shape. In this
paper, we use successive approximations to approach the final solution, ie., we solve
the flow problem and the wall equation separately, but exchange the boundary
information in an iterative way, In the following section, the method is explained in
detail.

3.1. Tue Frow Doman

We use the FIDAP Fluid Dynamic Package to perform the FEM calculations for the
flow domain. The finite element grid is shown in Figure 2. A 6-node triangular element
is used here since this type of element is flexible and fits well with any boundary
positions that occur in the successive approximations of the wall shape. Velocities, u,,
and pressure, p, are approximated by their nodal values, U; and P, through

ui(x) = ¢T[jb i= 1: 2! (5)
pX)=y'P, (6)

where X is the vector of nodal coordinates, and ¢ and ¢ are the standard interpolation
functions of the 6-node triangular element; their expressions can be found in any FEM
textbook, [e.g., Zienkiewicz (1980)].

Substituting equations {5) and (6) into equations (1) and (2), and invoking the
Galerkin residual method, we obtain the typical finite element matrix equation

K(V)V=F, M
where
U
V=31 {8)
P

are the column veciors of velocities and pressures at the element nodal points; K is the
coefficient matrix composed of integrals of the interpolation functions; F is the general
external force vector introduced by boundary conditions (FIDAP 1992a).

The matrix equation (7) is a set of nonlinear equations which need to be solved
iteratively. A Quasi-Newton iteration method (Broyden-updated) is used here follow-
ing a few fixed point iterations (FIDAP 1992b).
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The convergence criteria for the &th iteration are
TAVEN/ Vi-al <VTOL, | R(Vi(I/(| Roll <RTOL, (9,10)

where R(V,} is the residual vector of equation (7) at the kth iteration, and Ry is the
initial residual vector, Ry = R(V,); ||} is the Euclidean norm, and VITOL and RTOL
are the tolerance values. In this study, we choose VTOL = RTOL = 0-01 and found the
accuracy of the flow solution to be satisfactory. We tested smaller values of VIOL and
RTOL, which needed a few more iterations but still gave convergence to a solution
which was graphically indistinguishable everywhere (except for the singular vorticity at
the upstream corner x =2, y =1 in cases where the membrane bulged out—see below).

3.2. THE ELasTIC WaALL

To sclve the membrane equation (4) numerically, we discretize the elastic segment L
into n line elements with » +1 nodes. In this part of the calculation we take the
number of the nodes and the position of each node to be identical to those in the
boundary DC of the flow domain, so that subsequently information can be readily
exchanged on this boundary. For this reason, the nodes here are in general not equaily
spaced in x. Let

§i=x;—x;_,, Bia1 = Xipy — X5

by using a central finite difference scheme for equation (4), we have

5i+1 5;' 6E‘Si+1 Pe '" P: [ (hi—H = hi—l)z]m
— b~k + By + 14 (22— =0, (11
8+ 6144 i 0; + 811 ' 2 T 8+ 641 0' ( )

or, in matrix form,
' R(P, H)=0, (12)

where H is a column vector of the nodal values of A;, P is the pressure imposed by the
fluid upon the boundary. The Newton-Raphson method is used to solve nonlinear
equation (12). The convergence criterion for the jth iteration is to demand that the
residual vector R, = R(P, H'), satisfy

IRl <&,

where £ is chosen to be in the range of 107*~107° in the iteration. We have checked
that the difference in wall shape between £ = 107" and £ =107° is imperceptible, but
we nevertheless used £ =107° in almost all computations (& =10"* was occasionally
used when convergence of the wall shape solution was very slow).

3.3, Tue CourLED SOLUTIONS FOR THE FLow AND Tue EvLasTic WaLL

Having obtained the numerical schemes for the flow equations and the wall equation,
we now try to find the solution which satisfies the two sets of equations simultaneously,
The successive approximation scheme can be summarized as follows.

(a) Choose an initial wall shape and start the whole iteration. If we use k as the
iteration number, then for & = (, we choose

H O = ppinitial
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(b) At the kth iteration, generate a finite element mesh according to the given wall
shape H™® by using the FIDAP mesh generator FIMESH.

(c) Start a sub-iteration and using the FIDAP solver to solve the nonlinear matrix
equation, equation (7), in the flow domain with boundary H®). The result is that the
updated pressure and velocity vector, V¥, are obtained from

K(V@W@®=F.

(d) Take the pressure, P!, i=1,...,n+1, along the boundary DC from the above
solution, V*), and use it to replace P, in equation (11). We can then start a
sub-iteration to solve the nonlinear membrane equation (12). As a result, the wall
shape now is updated to H**1), where

R(P*, H¥*)=0.

(e) Compare the new wall shape, H**", with the previous one, H“, to check if
they satisfy the following criterion:

HED ~ B =,

where g, is a tolerance parameter, taken to be 107%. If the convergence criterion is
satisfied, then the solution, V*), we obtained for the fiow and pressure fields and the
wall shape, H**?, constitute the coupled solution satisfying both the flow and the
elastic wall equations. In most of the converged cases, convergence was achieved in
fewer than 100 iterations.

Divergence of the whole iteration can occur, especially when the longitudinal tension
T is small. As T is reduced, the other parameters remaining fixed, the solution first
becomes sensitive to small changes of wall shape during sub-iteration {(c). Next, the
curved wall shape appears to “oscillate” between iterations, taking one shape for k
even and another for k odd; in some cases, when the deformation is large, this
oscillation can cause the membrane to appear to intersect the opposite wall. In all such
cases, we deem the numerical steady-state model to have broken down; such
breakdown typically occurred after only about 20-30 iterations.

The question we need to ask is whether this failure of convergence is caused by an
intrinsic property of the original physical system or is simply due to the use of an
inadequate numerical procedure. To investigate the first possibility, we have analysed a
simple one-dimensional model simulating the same problem and this will be discussed
in Section 5.

To minimize the latter possibility, we have conducted four separate tests for accuracy
and convergence, as follows.

(i) Choice of the element mesh

A typical element mesh is shown in Figure 2. The mesh was denser near the compliant
wall, especially in the region of the joints with the rigid walls, where sharp changes in
velocities and pressure are expected. We do not change the number of elements during
the iterations, to avoid additional complexity, but we do adjust the position of each
node for every updated wall boundary to keep the smoothness of the grid.

The number of elements and the allocation of nodes were decided after a series of
mesh refirements undertaken to achieve the required accuracy. We have tested four
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different mesh designs: mesh-1 (with 451 elements and 891 nodes), mesh-2 (with 1044
elements and 2065 nodes), mesh-3 (1642 elements and 3261 nodes), and mesh-4 (2134
elements and 4465 nodes). Other studies [e.g., Ralph & Pedley (1988), Tutty & Pedley
(1993)] have shown that the computed vorticity at the wall is the most sensitive
indicator of numerical inaccuracy, especially near sharp corners. Therefore, the
vorticity distribution along the wall containing the membrane was compared for the
four meshes at Re =500 and the same T and P, Figure 3(b) shows that numerical
pressure and vorticity oscillations exist for mesh-1 since it is too coarse, but the solution
curve starts to look stable for mesh-2 and only slight differences are observed between
mesh-2 and mesh-3, while the solution of mesh-3 is very close to {most of it is
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Figure 3. (a) The wall vorticity distribution for flow at Re=500, T*=T$/16:5, P}=Pl, with
downstream length, L,=3, 7, 11, respectively. (b} The wall varticity distribution for Row at the same
parameter values as above with the mesh chosen as mesh-1, mesh-2, mesh-3, and mesh-4, respectively. Note

that the elastic membrane oocupies the region 2=<x =7,
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graphically indistinguishable from) that of mesh-4. Therefore mesh-3 (Figure 2) is
chosen in our computation.

(ii) Use of a relaxation method to update the wall shape

To avoid the “oscillation” of the wall shape referred to above, we update the wall
shape not only using its current iterative value, but also its previous value:

FH+D) (1 - a)H(kH) + o H®, (13)

Here, the relaxation parameter, e, is chosen in the range of 0-5-0-9; 0-9 was chosen for
the smallest value of tension. The intermediate value, H***1 is used as the next wall
position in step (b). Such relaxation enabled us to obtain a solution for smaller values
of T than without it, but even with « as large as 0-9, a converged solution was in many
cases unattainable if T was too small.

(iii) Approaching the minimum tension decrementaily

The choice of initial wall shape and the flow field can be very important in obtaining a
converged final solution. For larger tension, we can use a straight line as the initial wall
shape and zero initial flow and approach the final solution without any problem. But
this initial guess would fail to give convergence when the tension was small. To achieve
lower tensions, therefore, we start from a large T and decrease it gradually, using the
converged solution for T = T (say) as the initial guess for T =T, —~ 67T. Thus, the initial
wall shape and the flow are adjusted decrementally and this helps us to bring the
tension to a lower value.

(iv) Comparison with the solution obiained by a different numerical method

For very small values of Re, the solutions have been compared with those obtained by
Lowe & Pedley (1994) at Re =0. They wrote a different FEM code which uses the
stream-function and vorticity as dependent variables, and solved the Stokes equation
and the membrane equation for parameter values that are otherwise the same as those
used here. We obtained virtually identical wall shapes for all the five different
parameter groups used by them:

Po=~-991-53, T=2115466; Pr=1689, T =5355;
Pr=905-32, T =161024-5; P,=184-28, T =869097;
P,=4805, T =1540-6.

These values were chosen to correspond with the earlier lubrication theory analysis by
Pedley (1992), who used a different nondimensionalization. Note that they fixed
pressure at point F, while we fixed pressure at the downstream end AB. The pressure
drop from point F to A was estimated by assuming a Poiseuille flow for the rigid part
since only low Re flow was considered. It was also found that Re =0 and Re =1 gave
virtually the same wall shape for these parameter values.

In a more recent work (Lowe & Pedley 1995), these authors have failed to find a
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converged solution, even at Re =0, if the tension is taken to be too small. This holds
both for uniform 7, as here, and for a case in which 7 varies along the channel as a
result of viscous shear stress. On the other hand, Pedley (1992), using the approxima-
tion of lubrication theory, demonstrated the existence of a solution for all positive T. It
is thus still not certain whether our finding, that at higher Reynolds numbers there
seems to exist a value of the tension below which no steady solution can be obtained, is
of physical or numerical origin. To investigate this problem, we develop a simple but
ad hoc one dimensional model of the same flow in Section 5.

4, RESULTS

Before we present the results and discuss how they vary with the control parameters
Re, T and P,, we note that our nondimensional scaling means that 7 and P, depend on
the mean velocity, {j (see Section 2). In order to avoid confusion and permit easier
comparison with expetiments, in which flow rate is varied with £, and 7 held constant,
we shall use the parameters T* and P}, in discussing our results, where T = T*/Re,
Py=P}/Re (see Section 2). Accordingly, the caiculated pressure, p, will be
transformed into p*(p = p*/Re) in the results.

For P} = P¥,, and Re in the range of 1-500, we obtained a group of solutions for
different values of T*, where T* is decreased from T§ by a factor of B, (T* = T}/5,
B =1). The corresponding wall shape, the pressure drop distribution and the wall
vorticity distribution along the upper, elastic wall are shown in Figures 4-6(a,b,c} for
Re =1, 100, and 500.

Figures 4-6 show that the wall deflection at first increases as the tension is reduced.
For Re =1 (Figure 4), the reduction continues until a critical value of T* is reached
{T¥), below which no converged solution occurs.

However, for Re =100 and 500 (Figures 5 and 6), the maximum deflection of the
membrane reaches a limit at a certain value of T*; as T* is reduced further, the
membrane slope at the downstream end continues to increase, but the maximum
deflection does not. At a particular value of 7%, e.g. T¥, the membrane slope becomes
zero at the upstream end (B8, = T§/T# =101 for Re =100, B, =21 for Re = 500), and
for lower T* the upstream part of the membrane bulges out. Shortly thereafter, the
critical value, T¥, is reached and no further solution can be obtained.

As T* is reduced, the pressure drop and the maximum wall vorticity increase. No
flow separation is found for Re = 1, whatever the value of T*, or for high Re and large
T*. For larger Re, however, reducing the tension causes the flow to separate, as
evidenced by the negative wall vorticity (shear stress). Separation is a consequence of
the pressure rise downstream of the constriction. Note that the point of minimum area
{and pressure) moves downstream as 7* is reduced, while the separation point at first
moves upstream and then downstream again.

As Re rises,the shapes of the plotted curves change. Figure 7{a,b,c) shows the results
when we increase Re while fixing the tension at 7* = T3/20. The point of greatest
constriction tends to move downstream more, and the upstream half of the channel
opens up more than the downstream half as Re becomes larger. An upstream bulging
and downstream movement of the constriction as flowrate is increased was also found
by Jensen & Pedley (1989) using a one-dimensional model. We also find, as they did,
that the degree of constriction does not necessarily continue to increase as Re rises. In
fact, for a certain value of Re, the degree of constriction reaches a maximum, and then
starts to decrease even before the upstream membrane bulges out; see Figure 12(b)
later for details. As Re rises to 600, we failed to obtain a converged solution even after
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Figure 4. (a) The wall shape, (b} the pressure distribution, and (c) the wall vorticity distribution, obtained
from the numerical calculations at Re=1 and P} = P}, and T* = T¢/B (B = 1, 15, 30, 45, 64}, No solution
was found at 8 = 65 or below (the dotted curves show the last jteration for 8 = 65 before the calculation was
stopped).

200 iterations; in any case, the solution woiuld be inaccurate then because the effect of
the downstream boundary condition would be felt at the membrane.

On the other hand, not only does the shape vary, the magnitude of the pressure drop
and the peak vorticity also increase significantly with Re. From the vorticity
distribution in Figures 5-7, we can see how the flow separation region (indicated by the
two points at which wall vorticity changes sign) changes with T* for fixed Re, and with
Re for fixed tension. It seems that increasing Re or decreasing tension have similar
effects on this.

The region of reversed flow extends downstream for some distance along the rigid
wall. Figure 8 shows the streamlines of the whole flow field at T7* = T§/107, Re =100
and P; = P%, showing the flow separation more clearly.

Figure 9(a,b) shows how, when the tension is fixed (8 = 20, 30 and 40}, the overall
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Figure 5. (a) The wall shape, (b) the pressure distribution, and {c) the wall vorticity distribution, obtained
from the numerical calculations of Re =100 and P} = P}, and T* = T3/B (8 = 1, 25, 50, 75, 100, 129). The
iteration that diverged is marked by dotted curve for g = 130.

pressure drop along the channel and the minimum value of the channel cross-section
area, A, (= fty,) change with increasing Re. The points marked with stars on the
computed curves (dashed lines) represent the value of Re (Rey,) at which the upstream
bulge first appears. The curves come to an end at the somewhat larger Re (Re,)
beyond which no solution could be found. The other curves are the prediction of the
simple model of Section 5, and will be discussed later.

To find out how the downstream transmural pressure affects the solution, we also
calculated solutions for two different values of P} P} = P%/2, and P%=2P%, For
more positive PJ(=2PJ,), the results look similar to those with lower tension; i.e.,
more deflection and larger slope of the Ap* =p#¥ — p¥ versus Re curve. When the
pressure inside the channel becomes more negative, the degree of collapse of the
elastic membrane tends to be more severe, and the convergence of the solution fails at
a lower value of Re.
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Figure 6. (a) The wall shape, (b) the pressure drop distribution, and {(c) the wall vorticity distribution,
obtained from the numerical calculations of Re = 500 and P=PJ, and T*=T%/8, (B=1, §, 10, 15, 20,
30). The iteration that diverged is marked by dotted curve for 8 = 31.

However, when the downstream pressure is less positive, P% = P%,/2, we find that
when Re increases above about 340, the upstream transmural pressure, p, — p,,
becomes negative and a bulge begins; in this case, however, the whole elastic segment
is eventually dilated {see Figure 10(a,b,c)], which should be compared with Figure
7(a,b,c). For this case, the numerical solution fails to converge at about Re = 560. The
converged solution for Re = 540 is clearly inaccurate at the corners where the vorticity
should be infinite [Figure 10(c}].

In obtaining these results we found that there is always a value of tension for each
Reynolds number (except for Re=1), T, at which the upstream membrane starts to
bulge out. There is a corner at each end of the elastic membrane where it joins the rigid
wall; until the upstream bulge appears, both corners are stagnation points in the sense
that even an inviscid fluid would have zero velocity there. As a consequence, there is a
(small) local rise in pressure, and a sharp fall in the magnitude of the wall vorticity. It
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Figure 7. {2) The wall shape, (b) the pressure drop distriburion, and (c) the wall vorticity distribution,
obtained from the numerical calculations at T* = T§/20, P4 = P%, while Re =1, 100, 200, 300, 400, 500, 580.
The iteration limit was reached for Re = 600 (final iteration is marked by dotted curve) before convergence

was achieved.

cap be shown analytically that the vorticity at the corner point is zero (Moffatt 1964),
but the numerical method does not resolve the very small length-scale over which that
is achieved. When there is an upstream bulge, the upstream corner is convex to the
flow. It follows that there must be a singularity in both the vorticity and the pressure at
the corner (Moffatt 1964), and hence also in the membrane curvature. The singularity
in the vorticity at Re = 100 and 500 is responsible for the spike in Figures 5(c) and 6(c),

Figure 8. The streamline contours of the flow at Re =100, T* = T3§/107, P¥ = P}, A flow separation is
deveioped downstream. Contour interval is 0-075,
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Figure 9. (a) The change of the pressure drop, p* —p2}, with the increasing Re for P¥=P%,, and three
different values of tension T*= T3/8 {8 =20, 30, 40). Dashed curves are the numerical results, and the
point where bulge-out first appears is marked by a star. The predictions from the analytical model in Section
5 are plotted as solid curves, with the bulging region indicated by dotted curves, and the first bulging point is

marked by a circle. (b} The minimum wall deflection, A4, versus Re at the same parameter values.

and inevitably has an influence on the flow and pressure at some distance from the
corner {Ingham et al. 1990). The pressure singularity appears later than the vorticity,
due to the smoothing effect of the finite resolution at the corner. However, when the
bulge becomes more severe, a corresponding spike in the pressure occurs, as shown by
the dotted curves in Figures 5{b)-6(b), representing an iteration in a sequence which
fails to converge. To pursue a further numerical investigation for the bulged out case,
the flow will probably need to be matched carefully to the analytical solution at the
corner [see Bramley & Dennis (1984)].

5. AN ANALYTICAL MODEL

A steady one-dimensional model corresponding to our 2-D channel flow, incorporating
a description of flow separation, is described in this section. The model is essentially
the same as the earlier model of Jensen & Pediey (1989), the differences being the
absence of a tube law contribution to the pressure-displacement relation, and a
different nondimensionalization (we use the same scaling as employed in the
foregoing).
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Figure 10. (a) The wall shape, (b) the pressure drop distribution, and (c) the wall vorticity distribution
obtained from the numerical calculations at 7* = T$/20, P%=P%/2, and Re =1, 200, 320, 420, 540. The
wall shape bulges out when Re is larger than 320. Solution fails to converge for Re = 560 or higher [final

iteration is marked by dotted curve).

5.1. GoverNING EqQuATioNs

The unknown dimensionless variables are the channel width, A(x), the longitudinal
velocity, u(x), and the pressure, p(x). The governing equations are

Mass conservation
{uh), =0. (14)
Momentum
Reuu, = -p, 0=x=X,, (15)
yReuu,=~-p, XNy=x=A (16)
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Here 0<y <1 is a constant, accounting for the energy loss downstream of a
constriction when flow separation occurs, and X, is the (unknown) separatiorn point
[see also Cancelli & Pedley (1985)). Note that this mode! does not include any energy
loss upstream of the narrowest point, even in cases where the channel is dilated for part
or all of its length so the flow separation might be expected at the upstream end. We
consider only cases with constrictions for at least part of the length.

The membrane equation

Pe=p=hu 17)
note here that the radius of curvature is simplified to 1/R = k., because the 1-D model
requires small membrane slope.

All the other dimensionless variables are chosen to be the same as those in Section 2,
but instead of using diameter, the x coordinate is scaled according to the length scale

x=x/L, (18)

where the length scale, L, for longitudinal variation is chosen as

- 52_ 172 _
1L=(M70 = DVT. (19)

The reason for choosing this length scale is to keep the equations (14)-(17) in a
simple form: the longitudinal tension, 7, does not explicitly appear in them. The
influence of tension is seen only through the dimensionless length, A,

A=L{L=LINT. (20)
The boundary conditions to the foregoing equations are

h{(0)=h(A) =1, 1)

Pu=Pce—h(0),  pa=p.— hodA) (22, 23)

5.2. SoLuTiON AND RESULTS
Integration of equations (14)-(17) gives

P.+1iRe(h™2-1), 0=x=X,,

= 24
= {P4+%xRe(h'2——l), Xo=x =4, (24)
where P, and P, are defined as

Pu=pe'_pu: Pd:pe-_pd: (251 26)

respectively. F; can be specified independently in advance, whereas P, cannot. We
assume that at the separation point, Xy, the wall reaches its lowest point, h=A
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{following the notation of Jensen & Pedley (1989)], where 4 < 1. Then, from equation
(24), we have

P,=Pi—3(1 - x)Re(4A7* - 1), R7)
and the pressure drop along the elastic segment
Ap =pu —pa =31~ x)Re(A™* - 1). (28)

Equation (28) shows that the pressure drop, Ap, along the compliant channel is
affected by two factors: one is the geometric constriction represented by A here; if
A =1, i.e. the channel is straight, then Ap = 0. The other is the energy loss due to flow
separation which i$ indicated by (1 — y); when ¥ =1, there is no energy loss, and when
x =0, there is no pressure recovery downstream, that is to say, all the dynamic
pressure that is converted to kinetic energy in the parallel-sided jet downstream of the
constriction s ultimately dissipated, by turbulence. Note that the only dissipation
allowed for in the model is that due to flow separation; there is no direct viscous stress
on the channel wall. The present model is therefore relevant only to high Reynolds
number flow, and only to cases where the channel does experience a constriction.

Strictly speaking, y should depend on A, but here we choose y = constant for
simplicity; Jensen & Pedley (1989) showed that the qualitative behaviour is unaffected
by the value of ¥, and we arbitrarily choose y = 0-5. In order to calculate the pressure
drop, equation (28), then, all we need is to find A, the degree of constriction. To
determine A, we integrate equation (24) with respect 1o x:

—gi(h) + constant, O=x=X,,

i= g
i {—gz(h) +constant, X,=x =4, (29)
where

gi(h)y=2P,(1-h)+Re(h ™' +h-2), O=<r=JX,, (30)

g(h)y=2P,(1 —h)+ y Re(h '+ h - 2), Xosx=A
Ath=A h, =0, s0

b {g,(A)—g;(h) 0=xs=Xq an
o lg(A) —ga(h) Xe=x=A

Each of these equations can be integrated, giving relationships between 4 and the
length of the relevant segment. Adding the two integrals together, we have a
relationship between A and A

A= L {[1(A) ~ &)™+ [ga(Ad) = gali)] ) s @2)

Thus, for given g,, g2, and A, we can in principle determine A from the above integral.
Once A is decided, we can easily calculate P, and Ap from (27) and (28), respectively.

Equation (20) shows that (32) can be regarded as a relationship between the
dimensionless tension T and A. It should be remembered that T involves the flow rate,
through U, [see equation (19)]. The problem now is to find out if there exists a limit of
tension at given Re and F;, below which no solution to the steady problem can be
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found. To investigate this, we will examine the trajectories in the (h, 2, )-phase plane of
the solutions of equation (24), as did Jensen and Pedley (1989). Let

X=h  Y=h,

then, using (28), we have

X=Y
Y=i{ReX 2+ (P,—iyRe)-i1—-y)Red™? 0=x=X,, (33)
Y =4y Re X 2+ (P; — ix Re), Xo=x=Aa,

where a dot means d/dx. The equations for the phase plane trajectories obey different
equations for the upstream part of the channel {lower half phase plane) and for the
downstream part (upper half); examples are shown in Figure 11(a). The singular points

Downstream
Y4 @ -
Yt )
L
/N
C
X=1
A (@ i
1
1
I
i
I
i
Ay :
i
! N
Ay A, i1 A

Figure 11. (a) The trajectories in the (#, 4,) phase plane (X =4 and ¥ =4,). Since the channe! is held
open at both ends, the solution must cross X =1 twice, with 4, <0 and h, >0. (b) For A, =A <A_ there
are two vaiues of A, corresponding to a fully constricted solution {CDE), and a partially constricted one with

upstream part bulged out (ABCD). (c) A versus A,
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occur when Y =Y =0; thus for the downstream part, there is a centre point at X,

where
¥ Re
Xa= 75—, 34
17\ -@P,— y Re) (34)

and for the upstream part, the centre is at X,,, where

% =\/ Re
“ -(2P;—yRe)+(1 - x)Re A™%’

Now consider only the collapsed case when 2P; — y Re >0, so there is no real X,
which means the downstream trajectories intersect the X-axis only once, at A. The
upstream centre point, X, is a function of A, and it too has real values only when
A<A, where A2=(1— y)Re/(2P, — y Re). For A, <A =1 the upstream trajectories
intersect the X-axis only once, like the downstream trajectories. As A decreases from
A,, however, the trajectories bend closer and closer to the X-axis. Eventually, the
trajectories degenerate into a point at X =0 as A —0 and X, — 0; see Figure 11(a).

The solutions which satisfy boundary condition (21) are those trajectories which
intersect the line X =1 both vpstream and downstream (at x =0 and x = A). From
Figure 11(a), we can see that such a solution does not exist when A is too small because
then the upstream trajectory does not intersect the line X = 1. The minimum value of
A, e.g. A,, occurs just when the upstream trajectory intersects the X-axis at the two
points X = A, and X = 1. Therefore, the condition to determine A, becomes: there is a
trajectory with Y =0 at X =1 and X = A,.

From equation (31}, the required condition is equivalent to

g1{dp) ~£1(1) =0, (36

(35)

or

- 20-x)
1+V1+4(1- ) 2P,/Re—x)

A, (37

For y = 0-5, this has a simpler form, namely

1
=17 2VP,/Re’ (38)

Relation (37) is valid only when 2P, — ¥ Re >0, but that is in any case the condition
for the channel to be collapsed (X < 1) towards the downstream end.
The above discussion shows that a steady solution exists only when the condition

1
A=ARe, T, P = W (3%

is satisfied [recall that T comes in via A in (32)]. For a given A between A, and A,, the
phase plane analysis shows that there are two corresponding values of A; see Figure
11(b,c). The smaller of these values corresponds to a staie in which the channel is
constricted (X <1) along its whole length, as represented by the part of the trajectory
CDE in Figure 11(b). The larger value of A, on the other hand, corresponds to a state
in which the channel is at first dilated (X > 1, trajectory ABC) and then constricted
over the downstream portion alone. For this bulged-out case expression (32} for A
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must be modified by the addition of 2 J{~[g,(4) — g,(h))"** dh, where h,,, is the
maximum channel width. The absence of energy loss in the upstream dilated portion is
probably unrealistic, but Figure 11{c} indicates that, for given F, and Re, a solution to
the problem exists for all A and hence (given the tube length, L) for all T [cf. Jensen &
Pediey (1989))].

The bulging value A, of A, demarcating cases constricted everywhere from partially
dilated cases, occurs at A = A, [Figure 11(c)]. Its existence implies that, for given P,
and Re, there is a value of T, equal to 7, such that A=A, below which no
non-bulging solution exists. If T and P; were fixed, there would be a bulging value of
Re, Re, say, as shown in Figure 9(a,b). Moreover, we can tell that for given T and Re
there is also a bulging value of P, to keep condition (39) satisfied. Further, for a fixed
tension, P, and Re, there is a bulging value for membrane length (since A = LT7'7),

The curves of A versus A are shown in Figure 12(a) (for Re = 1, 100, 500), where the
corresponding numerical results are also plotted as dashed curves. The circles

0:20 —
015

< o10f

005}

Al

150

Figure 12. {a) A(A) versus A for Re =1, 100 and 500. The solid curves are analytical predictions, and the
dotted curves are those when the upstream membrane bulges out at A, <A <A, with first bulging points
marked by circles; the dashed curves are the numerical results, where the first bulging points are marked by
stars. For Re = 1, the numerical solution broke down before the bulging point was reached. (b) A versus B

for the same parameters.
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Figure 13. Relationship of the bulging A, with Re at P}= P}, where the solid curve is the analytical
model, and stars represent the bulging values obtained from our numerical results. A, is also plotted as a
dashed curve, which increases with Re.

mark the analytical bulging points, when A = A,, while the numerical bulging points
are marked by stars. The curves of A versus 8 for the same parameters are given in
Figure 12(b).

More information on the bulging point is given in Figure 13, where A, obtained from
the 1-D model at P} = P}, is plotted against Re in the range 1-600, and compared with
corresponding plots from the full numerical solution. The limiting area for A — «, A,
is plotted as a dashed curve, which is very close to A, when Re is small, and moves
away from A, as Re increases. The corresponding curve of T versus Re is shown in
Figure 14. It is of interest to note that there seems to be very good agreement, for Re
above about 100, between the values of T} (or equivalently A,) obtained from the 1-D
model and those from the full numerical solution, and qualitatively good agreement on
the values of A,. It is also noted that the numerical value of A, is normally higher than

1-2 x.108
1-0 x10°
80 x 105
% 60 x10°!
40 x10°

20 x 10°

. 1 " - 1 —_

400 600

ST
[
3

Re

Figure 14. Relationship of the bulging tension, 7F, with Re at P¥= P2, where the solid curve is the
analytical prediction, and stars are numerical results.
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the results of the 1-D model, whiie the numerical value of T} is slightly lower than the
analytical one. The results in Figure 13 show that the simple model gives a quite good
representation of several aspects of the real flow for Re=100 and for T*=T}.

6. DISCUSSION

The fact that the breakdown of the numerical solution occurs at a value of T* only a
little above TF suggests that the breakdown is associated with bulging of the membrane
at its upstream end and the singularities that develop there. The numerical solution
certainly becomes very sensitive to small changes as the bulge point is approached or
just passed. However, the non-bulged breakdown of Lowe & Pedley {1994, 1995), and
some even more recent computations by Rast (1994), indicate that it would be
premature to conclude that the numerical breakdown is definitely due to the presence
of a convex corner. There may be other factors which contribute to the numerical
breakdown. We have noticed in our computation that convergence becomes extremely
difficuit to achieve as tension is reduced, even before the wall bulges out: more than
100 itcrations become necessary as the tension falls. There are cases when the
maximum number of iterations of 200 was reached without convergence (see Figures 7
and 10), before the pressure singularity appeared. This suggests that the numerical
system has already become ill-conditioned for small tension. Incorporation of bending
stiffness in the elastic segment may assist convergence, and variation of tension due to
the shear stress should aiso be included, as in Lowe & Pedley (1994).

It would be of interest to compare our results with experimental data. The only
relevant experiments, however, have been performed with tubes, not 2-D channels.
There have been a number of tube experiments in which the downstream transmural
pressures and the tension were fixed, while the flow rate was varied [e.g. Bonis &
Ribrean (1978), Bertram (1986)]. One interesting commeon finding was that when the
pressure drop increases with flow rate at a given downstream pressure, there seemed to
be a point close to p, = p, where steady flow broke down and self-excited oscillations
arose.

We will use the 1-D model for the comparison, since it would be very difficult to
perform the 2-D simulation either because the Reynolds number was much higher in
the experiments (Bertram 1986), or because the tubes were much longer (Bonis &
Ribreau 1978). We use the parameters of Bonmis & Ribreau (1978): L =50 mm,
D=12mm, Q=0-30cm?/s, and P,=5-30cm H,0. The dimensionless parameters
become P¥,=7-2x 107 - 4-32 x 10®, and Re =0-3180. Tension was not mentioned in
their paper, but Jensen & Pedley (1989), assuming a longitudinal strain of 12%,
estimated the longitudinal tension to be 44-32 N/m’ for the tube. However, it is noted
that there is no straightforward way to link the longitudinal tension in a tube with the
membrane tension in our 2-D channel. In fact, we found that this estimated tension is
much lower than the bulging value when the other parameter values are used in our
model (note no upstream bulge was reported in the experiments there, so we assume
the bulging value is the limit for the tension); a much larger tension was therefore used
instead. This, however, does not affect the results qualitatively.

Figure 15(a) shows the measured results of Bonis & Ribreau (1978) and Figure 15(b)
gives the analytical curves of A5~ (Q, using their parameters. The tension was
estimated to be 7 =20 X 44-32 N/m* (= 886-4 N/m?), or T*=1-063 X 10"° (therefore,
A =4-05%107%). The theoretical curves are terminated where {Q (or Re) reaches its
critical value for upstream buiging (long dashed curve); this value decreases as p. — pg
increases. Larger (or smaller) tension only moves the curve further right (or left), but
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Figure 15. Curves of pressure drop versus flow rate at fixed values of g, - g, measured by Bonis &
Ribreau (1978} (reproduced with permission); umits of py —p,_are ¢mHz0. (b} The same quantities
calculated from our 1-D model using their parameter values L=0-5m, D=12x10""m, U,=834x
10~ m/s, P, — P.=~5, —10, —15, —20, —30cm H,0, and estimated T = 886:4 N/m. The dashed curve is

the bulging value of A5 when Q reaches ¢, (or Re reaches Rey).

will not change the fact that there is a critical curve, and this curve is roughly in the
same place at which the experimental steady flow gave way to self-excited oscillations.

What the above comparison demonstrates, then, is that the values of flow rate and
downstream transmural pressure at which oscillations are observed in the experiments
coincide reasonably well with the values at which the one-dimensional model predicts
an upstream bulge, and hence also with values at which the numerical solution breaks
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down. This is suggestive, but can be no more than that, for several reasons. First, it is
always dangerous to infer any sort of physical breakdown from failure of a numerical
scheme to converge; the numerical methods may merely be inadequate. Second, the
existence of a steady solution to the governing equations does not mean that it is stable
and would be observed in practice; instability analysis or time-dependent computations
are essential. Third, there is a considerable discrepancy between our membrane model
and the usual description of collapsible-tube elastic properties using a tube law. There
is widespread agreement that breakdown of steady flow in many collapsible iube
experiments is related to the occurrence of choking, in which the fluid speed
somewhere becomes equal to the speed of propagation of long, small-amplitude elastic
waves along the tube. In a one-dimensional model in which the elastic wall is an infinite
membrane, however, the wave speed tends to the mean fluid speed as the wavelength
tends to infinity, so some form of choking seems inevitable [but see Jensen (1990) for a
more careful analysis of small oscillations in the finite-length one-dimensional model
with longitudinal tension]. Before the mechanism for self-excited oscillations can be
properly understood, it is clearly necessary for the present, steady, two-dimensional
computation to give way to unsteady computations (which are currently being
performed) and, thereafter, to a fully three-dimensional case.
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