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Abstract 

Combining biomechanical modelling of left ventricular (LV) function and dysfunction with 

cardiac magnetic resonance (CMR) imaging has the potential to improve the prognosis of 

patient-specific cardiovascular disease risks. Biomechanical studies of LV function in three 

dimensions usually rely on a computerized representation of the LV geometry based on finite 

element discretization, which is essential for numerically simulating in vivo cardiac dynamics. 

Detailed knowledge of the LV geometry is also relevant for various other clinical applications, 

such as assessing the LV cavity volume and wall thickness. Accurately and automatically 

reconstructing personalized LV geometries from conventional CMR images with minimal manual 

intervention is still a challenging task, which is a pre-requisite for any subsequent automated 

biomechanical analysis. We propose a deep learning-based automatic pipeline for predicting the 

three-dimensional LV geometry directly from routinely-available CMR cine images, without the 

need to manually annotate the ventricular wall. Our framework takes advantage of a 

low-dimensional representation of the high-dimensional LV geometry based on principal 

component analysis. We analyze how the inference of myocardial passive stiffness is affected by 

using our automatically generated LV geometries instead of manually generated ones. These 

insights will inform the development of statistical emulators of LV dynamics to avoid 

computationally expensive biomechanical simulations. Our proposed framework enables accurate 

LV geometry reconstruction, outperforming previous approaches by delivering a reconstruction 

error 50% lower than reported in the literature. We further demonstrate that for a nonlinear cardiac 

mechanics model, using our reconstructed LV geometries instead of manually extracted ones only 
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moderately affects the inference of passive myocardial stiffness described by an anisotropic 

hyperelastic constitutive law. The developed methodological framework has the potential to make 

an important step towards personalized medicine by eliminating the need for time consuming and 

costly manual operations. In addition, our method automatically maps the CMR scan into a 

low-dimensional representation of the LV geometry, which constitutes an important stepping 

stone towards the development of an LV geometry-heterogeneous emulator. 

Keywords: 3D reconstruction, MRI, myocardium, convolutional neural network, deep learning 

Abbreviations 

BO: Bayesian optimization; CMR: cardiac magnetic resonance; CNN: convolutional neural 

network; GP: Gaussian process; GPR: generalized Procrustes registration; GT: ground-truth; HO: 

Holzapfel-Ogden; HV: healthy volunteer; LA: long axis; LV: left ventricle; MI: myocardial 

infarction; MRI: magnetic resonance imaging; MSE: mean squared error; OPR: ordinary 

Procrustes registration; PCA: principal component analysis; RMSE: root mean squared error; SA: 

short axis; SBP: systolic blood pressure; SSC: stress-strain curve. 

1. Background 

Computational studies of left ventricular (LV) mechanics, when integrated with cardiac 

magnetic resonance (CMR) imaging, can lead to a better understanding of LV dysfunction [1, 2, 

3]. For instance, biomechanical parameters that describe LV function provide new insights into the 

heart’s pump function, related e.g. to myocardial stiffness or contractility [4, 5]. Biomechanical 

studies of LV mechanics typically rely on a discrete representation of the LV geometry [6, 3, 7]. 

This discretized LV geometry is necessary as the cardiac mechanic equations admit no closed form 

solution and have to be solved numerically, i.e. using the finite element method [8]. Moreover, 

such a geometry itself has direct clinical applications as it can be used to derive various 

cardio-physiological quantities of interest (e.g. the LV cavity volume and local wall thickness), 

and provide a realistic 3D shape visualization to clinicians. Hence, obtaining an accurate 

ventricular geometry is an important diagnostic task, especially for personalized health care [9]. 

Despite the significance of LV geometry reconstruction in clinical applications, so far the 

literature on how to make this process fast, reliable or automatic has been limited. In general, a 

typical procedure of LV geometry reconstruction from in vivo CMR data involves the following 

four steps: 1) segmentation (either manual or automatic) of the LV wall in selected CMR images of 

a given subject; 2) stacking segmented LV wall boundaries in a selected 3D coordinate system 
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with necessary motion correction [10]; 3) 3D LV geometry reconstruction either through surface 

fitting or direct 3D shape generation; 4) generation of a discrete representation of the LV 

geometry, such as a finite element mesh. As well as requiring specialist knowledge, this procedure 

is time consuming and prone to human error, which prohibits its wide adoption in the clinic. More 

recent methods for cardiac geometry reconstruction include manual iterative interventions for 

reconstruction [11], and warping an idealized ventricular geometry, e.g. an ellipsoid, into patient 

data [12]. These methods, however, require a separate (manual) segmentation step. In addition, 

there have been few studies examining the impact on simulations of LV biomechanics when using 

geometries reconstructed with such techniques in place of manually reconstructed geometries. In 

particular, reconstructions based on parametric LV geometry representations, like ellipsoids, are 

likely to result in a systematic bias, which could have potentially severe consequences for 

subsequent biomechanical analysis. 

These difficulties can potentially be addressed with modern machine learning, which has 

been successfully applied to challenging problems across numerous domains, and its application in 

medical contexts has the potential to lead to long-lasting advances in healthcare [13]. Image 

segmentation tasks have attracted particular attention in the medical domain [13, 14, 15, 16, 17]. 

More generally, convolutional neural networks (CNNs) have proven valuable in various tasks 

related to cardiac image analysis, such as automated segmentation of CMR scans [14], survival 

prediction based on sequences of CMR scans [9], or 3D bi-ventricular segmentation from CMR 

images [18]. Still, comparatively few studies have aimed to learn the ventricular geometry from 

cardiac images. In the study of Bello et al. [9], for example, the ventricular geometries were not 

learned directly from CMR images but obtained via a non-rigid registration approach by mapping 

each patient’s data onto a template geometry. 

The current paper differs from previous approaches as we go directly from CMR images to 

the LV geometry by learning its low-dimensional representation. The same idea was initially 

proposed in [19] where the authors developed a one-stage approach with a single CNN predicting 

the LV geometry from CMR images. In this study we build on this approach by substantially 

extending the underlying CNN methodological framework. In particular, we propose a two-stage 

method, designating CMR image segmentation and geometry reconstruction to two specialist 

networks, separately. 

The main obstacle for the translation and impact of state-of-the-art cardiac mechanic 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



models in the clinical setting is the need for patient-specific model calibration and parameter 

estimation [4]. Traditionally, this is performed using an iterative optimization procedure where a 

separate numerical solution of the underlying cardiac mechanics equations, obtained using the 

finite element method, is required at each step of the procedure. The computational costs 

associated with such an approach make them ill suited to the task of real time decision support [3]. 

There is currently substantial interest in reducing these computational costs by building a 

statistical surrogate model or emulator, which would dispense with the need for any finite element 

simulations. However, an emulator requires a low-dimensional representation of a patient’s LV 

geometry as a functional input, and its manual reconstruction is itself a slow process. For this 

reason, a method that enables the automatic extraction of such a low-dimensional representation in 

a fully automated way, directly from CMR images, could pave the way for paradigm-shifting 

real-time cardiac clinical decision support. 

Our main contribution in the present paper is the development of a methodological 

framework for a fully automated pipeline that provides an automatic extraction of the LV 

geometry directly from CMR scans. Specifically, we train a convolutional neural network (CNN) 

to predict the LV geometry by learning its principal component representation directly from CMR 

scans via automatic pixel labelling. This approach delivers two outputs simultaneously: an LV 

wall segmentation and a low-dimensional representation of the LV geometry. The motivation for 

this automatic LV geometry generation is a fully automated procedure for estimation of passive 

myocardial stiffness. To this end, we investigate the consequences that the automatic generation of 

LV geometries has on the estimation of passive myocardial stiffness and compare the results with 

those obtained when using manually generated geometries, as in [20]. Figure 1 presents an 

overview of the proposed framework. 

 

Figure 1: An overview of the proposed framework: learning 3D LV geometries automatically from 

CMR images based on a convolutional neural network (CNN). Important applications of the 

outputted LV meshes are statistical emulators (thanks to the CNN-predicted low dimensional 

representation of the LV geometry) and parameter inference in cardiac mechanics models. 

 

2. Materials and methods 

2.1. Data 
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In this section we first describe the protocols used to collect the data, including in vivo 

CMR imaging protocols for both healthy volunteers and patients with acute myocardial infarction. 

Next, we discuss how the original CMR scans were used to prepare the data for our analysis, 

consisting of annotated images, LV geometries and corresponding computational finite element 

meshes. Finally, we summarize the ground truth data used in this study. 

2.1.1. Study population and in vivo imaging 

The study population consists of 182 subjects; 64 healthy volunteers (HVs) and 118 

myocardial infarction (MI) patients. The study was approved by the National Research Ethics 

Service, and all participants provided written informed consent. All methods, including CMR 

imaging, were performed in accordance with the relevant guidelines and regulations. 

Healthy volunteers with no prior history of cardiovascular disease were enrolled for CMR 

imaging. A 12-lead electrocardiogram was obtained in all subjects and a normal ECG was an 

eligibility requirement. Other exclusion criteria included standard contraindication to magnetic 

resonance such as metallic implants or metallic foreign body. The demographics of all the healthy 

volunteers can be found in [21]. The MI patients were selected from a larger population of patients 

with acute ST-elevation MI (STEMI), obtained within a prospective, observational cohort MR-MI 

study carried out between 14 July 2011 and 22 November 2012, funded by the British Heart 

Foundation (ClinicalTrials.gov identifier: NCT02072850). Three hundred and forty three patients 

with acute STEMI were eligible for enrolment in this MR-MI study if they showed signs that they 

required percutaneous coronary intervention (PCI) due to a history of symptoms consistent with 

acute MI. Exclusion criteria represented standard contraindication to MR, such as a pacemaker and 

estimated glomerular filtration rate less than 30 ml/min/1.73m
2
. The CMR study of MI patients 

involved CMR scans at 2.2 1.9  days (the acute state) and 6 months post-MI. Acute STEMI 

management followed contemporary guidelines. In this study, only the CMR scans at acute state 

were chosen. 

The CMR imaging protocol involved steady-state free precession cine imaging, which was 

used for LV structure and functional assessment, the short-axis cine stack of the left ventricle from 

the base to the apex was acquired with 7 mm thick slices and a 3 mm inter slice gap. Typical 

imaging parameters were: matrix = 180×256, flip angle = 80 o , TR = 3.3 ms, TE = 1.2 ms, 

bandwidth = 930Hz/pixel, and voxel size = 1.3×1.3×7 mm
3
. Standard cine images were also 

acquired in the LV inflow and outflow tract (LVOT), the horizontal long-axis (HLA), and the 
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vertical long-axis (VLA) planes. In the STEMI group, typical imaging parameters were: matrix = 

192 256 , flip angle = 25 o , TE = 3.36 ms, bandwidth = 130 Hz/pixel, echo spacing = 8.7ms and 

trigger pulse = 2. The voxel size was 1.8 1.3 8   mm
3
. The CMR methods and analyses have 

been previously described in detail in [22]. 

2.1.2. Non-automated (state-of-the-art) ventricular geometry reconstruction 

Below, we describe a non-automated method for ventricular geometry reconstruction, 

which represents the current state-of-the-art and serves as a benchmark for the automated 

procedures proposed in the present study. As in the previous study in [4], six short-axis (SA) and 

three long-axis (LA) cine images were chosen for each subject in order to construct the 3D LV 

model at early-diastole (when the LV pressure is at its lowest), which is used for further 

biomechanical analysis. The LV wall boundaries were manually segmented at each imaging plane 

using in-house Matlab code and the short-axis LV wall boundaries were further aligned to the 

boundaries in the corresponding HLA, LVOT, VLA images.Details of this manual procedure can 

be found in [4]. Using these manual segmentations, we obtained the ground truth SA and LA 

segmentation data by labelling the pixels in the CMR image according to their locations relative to 

the manually segmented boundaries: 2 for the LV cavity, 1 for the myocardium and 0 for the 

background. 

A prolate spherical coordinate system is used to reconstruct the LV geometry after the 

manual segmentation and alignment, as in [23, 20]. In detail, for a point with Cartesian coordinates 

( , , )x y z , the corresponding spheroidal coordinates ( , , )u v w  are: 

= sinh( )cos( )cos( ),

= sinh( )cos( )sin( ),

= cosh( )sin( ),

x w u v

y w u v

z w u













 (1) 

in which   is a scaling factor, [ / 2, / 2)u    , [0,2 )v  , and (0, )w  . After aligning 

the most-basal plane to the = 0z  plane, we have = 0u  at the basal plane and = / 2u   at the 

apex. By assuming w  to be a cubic B-spline interpolation of u  and v , we can fit the endocardial 

and epicardial surfaces separately using the segmented boundaries from the 6 SA and 3 LA cine 

images. For details of this surface fitting procedure, the reader is directed to [23]. The LV 

geometry is the region enclosed by the fitted endocardial and epicardial surfaces, each of which is 

represented by 2865 quadrilateral patches. In total, 5792 vertices are used for representing one LV 

geometry. In the Cartesian coordinate system, each vertex has three components, thus the LV 
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geometry lies in a 17376 dimensional space (denoted “17k”). 

2.1.3. Data for inference in biomechanical models 

Biomechanical meshes. A 3D biomechanical cardiac model requires a volumetric finite element 

discretization of the LV geometry [3]. To generate it, we first divide the wall thickness between the 

endocardial and epicardial surfaces into 10 equal divisions, which means for the thi  division 

across the wall, we have: 

epi endo

endo= , ( = 0,...,10).
10

i

w w
w w i i


   

In the same way, equal divisions along the circumferential and longitudinal directions are 

generated. Finally, a layered hexahedral mesh that is suitable for finite element simulations of LV 

dynamics is generated. The left panel in Figure 2 presents segmented LV boundaries from an 

example in vivo CMR cine image and the right panel shows the corresponding computational 

finite element mesh. 

 

Figure 2: LV geometry reconstruction from a CMR scan of a healthy volunteer. Left: segmented 

ventricular boundaries (blue: endocardium, red: epicardium) superimposed on a long-axis CMR; 

right: an example of the reconstructed LV geometry discretized with hexahedron elements. 

 

CMR-derived volumes and strains. In order to infer myocardial passive stiffness from in vivo 

CMR scans, we measured end-diastolic LV cavity volume and 24 segmental circumferential 

strains directly from CMR cine images, using procedures similar to [24, 4]. The segments are 

defined in four short-axial images as specified by the American Heart Association [25]. 

2.2. Methodology overview 

Our primary aim is to develop an automatic method based on convolutional neural 

networks (CNNs) that reads in CMR cine images and predicts the 3D LV geometry, represented by 

a cloud of points. This cloud of points can then be used to generate the LV mesh for subsequent 

cardiac biomechanical modelling. Our approach is based on two cornerstones: using PCA for 

dimensionality reduction of high-dimensional LV geometries and separating the geometry 

reconstruction task from CMR image segmentation in a two-stage framework. 

Learning a high-dimensional, high-resolution, representation of the LV geometry directly 

from CMR cine images is a challenging problem, owing to the high-dimensional nature of both the 
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input and the output domains, which increases the risk of serious overfitting during CNN training. 

Cutting-edge (deep) machine learning methods are “data hungry" and require dataset sizes much 

larger than typically available in cardiac studies (see e.g. [16] and the discussion in [26]). For 

datasets of realistic size, rigorous regularization is needed to prevent overfitting. As we have 

shown in [27], this loses the non-linear model flexibility that makes (deep) neural networks so 

powerful in the first place and reduces their predictive performance to that of simple linear 

predictors. 

To address these difficulties, our first cornerstone is to carry out PCA on a large population 

of LV geometries for dimension reduction, and to map all LV geometries into a low-dimensional 

space spanned by a few leading principal components. This substantially reduces the output 

dimension from the order of 17,000 to no more than 10 (the number of leading principal 

components). This pre-processing procedure, which is hard-coded into our CNN, means that 

weights on the connections feeding into the output layer of the CNN have been pre-trained and are 

kept fixed, substantially reducing the network complexity. These fixed, non-adaptable, weights on 

the edges between the inner bottleneck layer and the output layer of the CNN constitute the PCA 

basis, where the weights represent the projection into the PCA domain and the number of nodes in 

the bottleneck layer corresponds to the number of principal components. The effect of this 

procedure is a novel trade-off between reducing excessive model flexibility that could otherwise 

cause serious overfitting (by constraining the output weights based on PCA) while keeping enough 

adaptable degrees of freedom to maintain non-linear model flexibility (all the other weights of the 

network). 

The second cornerstone of our procedure is separating the segmentation and geometry 

reconstruction tasks. To this end we train two CNNs: a segmentation network (Section 2.4) and a 

geometry prediction network (Section 2.3). The segmentation network is based on the CNN 

developed in [14] for segmenting CMR cine images, i.e. assigning distinct labels to pixels (LV 

wall, LV cavity, and background). Next, the predictions from the segmentation network are used 

by the geometry prediction network to predict the 3D LV geometry. Below we first describe the 

latter network as it directly relates to our final object of interest, i.e. the predicted LV geometry. 

Next, we describe the former network, which provides inputs to the geometry prediction network. 

Each network is trained independently in a supervised manner on population-wide data and both 

networks contribute valuable complementary information. The advantage of our two-stage 
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approach is that we do not need to reconstruct the high-dimensional LV geometries (i.e. 17k 

components in this study) directly from noisy images because this task is divided between 

specialist networks. In the Results section (Section 3.3) we show that the proposed two-stage 

approach achieves a considerable reduction of the LV geometry reconstruction error compared 

with an approach based on a single-task CNN predicting LV geometries from CMR scans, such as 

the one in [19]. Figure 3 presents the overview of the proposed approach. 

 

Figure 3: Two-stage framework overview. Given the CMR images, pixel segmentation is 

predicted using the segmentation network. Next, the geometry prediction network predicts the 3D 

LV meshes, given the segmentations. 

 

As mentioned previously, our framework delivers two extra outputs on top of the LV 

geometry. Firstly, we obtain a low-dimensional representation of the high-dimensional LV 

geometry, which is important in the context of developing statistical emulators. Secondly, for the 

given dataset, we deliver an automatic segmentation of the LV wall in cine images, in particular in 

LA cine images, which has not been considered in [14]. 

2.3. LV geometry prediction network 

2.3.1. Preparation: PCA and baselines 

Our dataset of LV geometries consists of 182 observations with each 3D LV geometry 

represented by a 17k-dimensional vector. As discussed above, learning to predict such a 

high-dimensional vector as a direct function of the CMR image from a relatively small training set 

size is an ill-posed problem, leading to serious identifiability and overfitting problems. To address 

this difficulty, we follow [19] and learn a low dimensional representation of the LV geometries 

using PCA, which substantially reduces the complexity of the LV geometry reconstruction 

problem. This approach also provides us with a low-dimensional LV geometry encoding, which is 

paramount for the development of statistical emulators. For evaluation of the reconstruction 

accuracy we consider two baselines: the results reported in [19] and the predictions obtained using 

the mean LV geometry. This mean geometry is the LV geometry obtained by taking the mean of 

coordinates along each of the three dimensions over our LV geometry dataset. More formally, 

denote the j th GT LV geometry from our dataset, *( ) *

=1= { }j M

i ix , = 1, ,j JK , with =182J , 

where M  is the total number of vertices describing the LV geometry, in our case = 5792M , and 
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* * * *

,1 ,2 ,3= ( , , )i i i ix x xx  is a vector of 3D Cartesian coordinates of the i th vertex. Then the mean 

geometry is given as 

*( )

=1

1
= .

J
j

jJ
  (2) 

2.3.2. Network architecture 

The previous work dealing with predicting LV geometries directly from CMR scans [19] 

considered a CNN consisting of seven layers (five convolutional and two fully connected), taking 

CMR images (SA and LA views together) as inputs and outputting a four principal component 

encoding of the LV geometry. Our proposed network architecture (see Figure 4) differs from that 

of [19] in a number of aspects. The most important and fundamental difference is the splitting of 

the network into two branches, one each for the aligned SA and LA images, separately. The reason 

for this split is the inherent difference between LA and SA views. Dividing their processing into 

two separate CNN branches is therefore a natural “divide-and-conquer" strategy that allows each 

branch of the CNN to focus on the particular features of their respective views. 

To combine the predictions from both branches we further allow each sub-network to 

output eight PCA coefficients, which we then add via element-wise addition. We have chosen 

eight PCA components using cross-validation, discussed later in Section 2.3.5. The added PCA 

coefficient layer is then followed by an eight-unit linear output layer. Our prior experimentation 

revealed that this approach performs better (in terms of the reconstruction error defined below and 

convergence speed) than an alternative network with an extra layer
2
. In the convolutional layers 

we use leaky ReLU ( = max(0.2 , )x x x ) activations. 

2.3.3. Inputs and aligning LA images 

A significant difference between our geometry prediction network and that in [19] is that 

we do not use the original CMR images as inputs but the corresponding segmented labelled 

images. The labelled image is encoded using 3 values: 2 for the LV cavity, 1 for the myocardium, 

0 for the background; see the inputs in Figure 4. We then scale the input to the [0,1] range. In 

addition, we align the LA images so that the long-axis is horizontal. The long-axis is defined as the 

axis perpendicular to the most basal plane and passing the gravity centre of the LV cavity at that 

                                                 
2
 This additional layer was used for merging the representations from the two branches, each outputting 10 values, 

followed by a layer of 100 ReLU units and the final linear layer of eight PCA coefficients. 
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plane (see the lower branch of the CNN in Figure 4). We find that this LA alignment enables a 

better convergence and more accurate LV geometry reconstruction. 

 

Figure 4: Geometry prediction network: CNN consisting of two identical branches, one for six 

short axis (SA) images and one for three long axis (LA) images. Each branch consists of five 

convolutional layers (Conv. 1–5) and a fully connected layer with leaky ReLU activations 

outputting eight PCA coefficients, which are then added together using the element-wise addition 

operator. Inputs: LV segmentations encoded 2 for the cavity, 1 for the myocardium and 0 for the 

background. Output: a left ventricular geometry represented by approx. 17 thousand values (17k). 

 

2.3.4. LV geometry alignment – alternative GT targets 

The LV geometries in our original dataset discussed in Section 2.3.3 are aligned such that 

the gravity centres of the LV cavity in the most-basal SA plane coincide. We will now introduce 

two additional datasets, derived from the original basal-aligned dataset that will serve as 

alternative GT targets for the geometry prediction network (see also Figure 7). The basic idea is to 

align the LV geometries in a way that will make it easier for the geometry prediction network (see 

Figure 4) to learn the target LV geometries. In particular, we consider its two variants: ordinary 

Procrustes registration (OPR) and generalized Procrustes registration (GPR). 

OPR uses the operations of rotation, scaling and translation to best match a discretized 

shape X to another shape Y. This is expressed as 

2

, ,

1 ,min
T

J


 Y X





  (3) 

where   and   are the scaling and translation parameters respectively, and   is the rotation 

matrix. X and Y are matrices of equal dimension, where each row gives the position vectors of 

each point in the discretized geometry. In addition, both matrices are assumed to have centroid 

zero. 

GPR expands on OPR to align a set of shapes 1,..., NX X  to a reference geometry X  as 

closely as possible. This is done by iteratively minimizing 

2

=1

1 ,
N

T

i i i J i

i

  X X    (4) 

with respect to the transformation parameters =1{( , , ) }N

i i i i  , where at each iteration the 
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reference shape X  is the mean of the transformed shapes from the previous iteration. Again, the 

shapes are assumed to have centroid zero. This procedure is then iterated until convergence. 

Our first alternative dataset alignment – the result of which we call “centered-GT” – is 

based on GPR where only translations of the LV geometries are considered. Under the standard 

Euclidean metric, the optimal translation corresponds to simply aligning each LV geometry to 

have a common centroid, which we set to the origin. The second alternative alignment is 

constructed using GPR where only translation and rotation operations are used, which we refer to 

as “rotated-GT”. We do not unify the scaling of the LV geometries because we want to predict the 

size of each LV geometry explicitly. Note that the rotations applied to the LV geometries by GPR 

were small as all the LV geometries in the original dataset share a common orientation. Any 

further rotation is to account for intrinsic shape variation in each specific LV geometry. 

2.3.5. Training 

First, we train the geometry prediction network using the ground-truth (GT) segmentations 

as inputs, which we have described in Subsection 2.1.2. Later on, in Section 3.3, we will discuss 

the results of the two-stage framework in which the geometry prediction network is trained using 

the segmentations predicted by the segmentation network discussed in Section 2.4. 

In the training we minimize the LV geometry reconstruction error taken as the mean 

squared error (MSE) between the GT LV geometry and its reconstructions. See Section 6.1 in [28] 

for a justification of the MSE as an objective function. Formally, using the notation introduced in 

Section 2.3.1, let *( )j  denote the j th GT LV geometry from our dataset, = 1, ,j JK . 

Furthermore, denote the corresponding predicted geometry ( )= ( )

=1{ }j j M

i ix . We then calculate the 

MSE between *( )j  and ( )j  as: 

3
( ) *( ) ( ) *( ) ( ) 2

, ,

=1 =1

1
MSE :=MSE( , ) = ( ) .

3

M
j j j j j

i k i k

i k

x x
M

  (5) 

Finally, we consider the average MSE over the whole dateset of J  LV geometries calculated as: 

( )

=1

1
MSE= MSE .

J
j

jJ
  (6) 

We use the average MSE (6) to train the geometry prediction network and to assess the 

reconstruction accuracy for the different datasets (see Figure 7 for more details). 

To prevent overfitting we use 14 fold cross-validation, i.e. we divide our dataset of 182 
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subjects into 14 folds, with 13 subjects each, with all 182 subjects (HV and MI) randomly shuffled. 

We then train the network on 12 folds and use one of the remaining two folds for cross-validation 

(to be discussed below) and the other one for testing. Importantly, PCA is performed only on the 

training data, without the test or validation data. We then set the number of PCA components to the 

number that minimizes the cross-validation error (leading to an optimal number of 8  

components). 

As the CMR images usually have different pixel spacing, we first unify them by applying a 

common pixel spacing so that all CMR images and corresponding labelled images are expressed in 

the same resolution. We then crop 64 64  pixel patches from the unified labelled images so that 

the LV cavity centre is in the centre of the crop. We then take 60 60  random crops from the 

64 64  image patches for training, and the central crop of the same size for validation and testing. 

Taking random crops for training corresponds to a crop noise of [ 2 2]   pixels. Random 

cropping is a standard data augmentation technique in computer vision, aimed at preventing 

overfitting, see [29] for details. 

The CNN training makes use of two regularization parameters (often referred to as 

“hyperparameters” in the deep learning literature): the learning rate and the L2 regularization 

strength. In addition to controlling the convergence rate, the learning rate also provides 

regularization given a fixed number of training epochs via early stopping. The L2 regularization 

strength prevents overfitting by keeping the weights of the CNN low. This is done by adding the 

squared L2 norm of the total weight vector, multiplied by the L2 regularization strength, to the 

standard MSE loss function. In some layers (see Figure 4 for details) we also apply another 

regularization technique called dropout [30]. Dropout involves randomly switching a subset of the 

networks weights to zero at a given rate. 

The values of the CNN regularization parameters and the dropout rate are the same for each 

cross-validation fold, with the L2 regularization parameter set equal to 0.001, the learning rate to 

0.0004 and the dropout rate to 0.01. We select these values manually, based on the cross-validated 

CNN performance after 300 epochs (following [19]). We implement the geometry prediction 

network using Python and TensorFlow. Training of a single network takes about two minutes on a 

NVIDIA Quadro P4000 GPU for each cross-validation partition. 

2.4. Segmentation network 

To implement our segmentation network, we use the freely-available network architecture 
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from [14], which we display in Figure 5. This architecture is similar to the U-net architecture from 

[31] but without intermediate up-convolutional layers. 

 

Figure 5: Segmentation Network (adapted from [14]): the network learns image features from fine 

to coarse scales through a series of convolutions (Conv. 1–16), then upsamples (with transposed 

convolutions, transp., and concatenates (concat.) multi-scale features, to finally predict the 

pixel-wise image segmentation (one of the three label classes: background, myocardium, cavity). 

The illustrated example image is of the LA view of the LV (not considered in [14]), but the SA 

view is processed in the same manner. 

 

Training. We need to train the network from [14] on our own dataset, individually for SA and LA 

images, since the network originally trained in [14] does not segment the LV wall in LA images. 

Moreover, we also found it did not work properly for the SA images from our dataset
3
. The general 

approach to training our segmentation network is similar to the one outlined for our geometry 

prediction network in Section 2.3.5. There are, however, some changes to the training procedure 

that we will now outline in more detail. Firstly, we resize the CMR images as the inputs to the 

network with a size of 160 160  pixels. As in [14] we use the mean cross entropy as the loss 

function for training; see Section 6.9 of [28] for a discussion of why this is the optimal loss 

function for discrete response variables. The cross entropy is computed between the GT 

annotations and the probabilistic label predicted by the network, training the network for 2000 

iterations, using a batch size of four. The latter is due to the memory limit available on our GPU as 

the network uses approximately 1GB of GPU memory per image. Similar to the geometry 

prediction network, we perform 14-fold cross-validation. This means that each training split uses 

12 folds with 13 subjects each, with each subject consisting of 6 SA and 3 LA images, resulting in 

936 SA images (12×13×6) and 468 LA images (12×13×3) for training. We explore various data 

augmentation techniques when training the segmentation network, such as the addition of noise to 

the image scale, as well as image rotations and shifts, but none yields performance improvements. 

Evaluation. For the segmentation task we use the Dice score, separately for the LV wall and the 

LV cavity, as the evaluation measure. The Dice score is defined as 2 | | /(| | | |)P G P G  , where 

                                                 
3
 It often worked reasonably well for the basal and mid-ventricle SA images of healthy volunteers, but not for SA 

images close to the apex, and it performed poorly for MI patients. 
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P  and G  are the predicted and ground-truth pixel sets, respectively. The Dice metric is also used 

in [14]. It is similar to another popular criterion called intersection over union (IoU), defined as 

| | / | |P G P G  . However, Dice focuses more on the average prediction rather than on the 

worst-case prediction, as IoU does. 

2.5. Passive myocardial stiffness inference using biomechanical models 

Having outlined the automatic LV geometry generation, we will now discuss how this can 

be combined with a biomechanical model of the left ventricle to approximate the behaviour of the 

left ventricle in diastole and how we plan to asses the accuracy of the LV geometry representation 

in this context. 

The biomechanical model, which is visualized in Figure 6, can simulate the diastolic filling 

process from early to end of diastole. Important for such a model is the strain energy function, 

describing the build up of energy in the tissue as it is deformed. In our forward model this is 

provided by the Holzapfel-Ogden (HO) law [32], a detailed discussion of which can be found in 

the literature [32]. For the work presented here, it is only important to know that this function 

contains eight constitutive parameters f f s s fs fs, , , , , , ,a b a b a b a b  that, when accurately inferred, 

allow us to describe the passive properties of the cardiac tissue. 

The parameters of the HO law cannot be measured in vivo and must be inferred 

non-invasively from indirect measurements, which typically involves some expensive iterative 

optimization procedure. This idea was used in a specific multi-step procedure for inferring 

myocardial properties using the HO law in [24]. Since that study inferring HO law parameters has 

been considered in a series of subsequent studies [4, 33, 34]. 

This method involves matching the model-predicted LV volume ( V ) and 24 

circumferential strains i , = 1, ,24i K , to the measured ones, extracted from in vivo CMR scans 

(see Section 2.1.3). Denoting the volume and strains by *V  and *

i , = 1, ,24i K , considered the 

following loss function [24]: 

* 2
* 2

*
=1, ,24

( )
= ( ) ,i i

i

V V
loss

V
 


 

K

 (7) 

which can be optimized to find a set of best fitting parameters. Details on the forward 

biomechanical LV model and CMR derived strains and volumes can be found in [24]. The LV 

model is simulated for diastolic filling with a population-based end-diastolic pressure, taken to be 
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8 mmHg. This will allow us to infer myocardial passive properties as in [24]. 

 

Figure 6: Schematic illustration of simulating LV dynamics in diastole. Left: inputs to the model, 

right: outputs from the model. Given a representation of the left ventricle (LV) in the form of a 

finite element mesh at a given reference time point 1t  of the pump cycle, blood pressure as a 

boundary condition and the constitutive parameters of the cardiac mechanic model, the shape of 

the left ventricle at a later time point 2t  can be predicted. In our study, 1t  is early diastole, and 2t  

is end-diastole. The LV at early diastole, 1t , has to be extracted from CMR scans (indicated by the 

arrow on the very left), and automating this process is the main purpose of our work. We assess the 

performance of our method not only in terms of the LV geometry reconstruction itself, but also in 

terms of the impact that a perturbation of the LV geometry has on cardio-mechanic processes. To 

infer the cardio-mechanic parameters, we compare the LV geometry at 2t , as predicted by the 

cadio-mechanic model, with the LV extracted from a CMR scan at the same time point (late 

diastole), quantify the mismatch, and use Bayesian optimization to find the cardio-mechanic 

parameters that minimize the corresponding objective function. To allow for multi-modality of the 

objective function and potential weak identifiability of some of the parameters, we use the 

cardio-mechanic parameters thus inferred to compute stretch-stress curves along different 

directions in the myocardium, and then assess the accuracy of our method in stretch-stress curve 

space. 

 

The eight parameters of the HO law are challenging to infer because they are highly 

correlated and weakly identifiable, see [24]. Therefore, we follow the approach proposed in [33] 

and reparametrize the original eight-dimensional inference problem [5] using a four-dimensional 

vector   as follows 

1 0 1 0 f 2 f0 s 2 s0

f 3 f0 s 3 s0 fs 4 fs0 fs 4 fs0

= , = , = , = ,

= , = , = , = ,

a a b b a a a a

b b b b a a b b

   

   
 (8) 

where the nought subscripts indicate the reference values, which can be taken from published 

studies [8, 5]. Details on the reparameterization can be found in [33, 5]. 

2.5.1. Bayesian optimization 

A disadvantage of the approach in [24] is its high computational complexity and the fact 
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that it is not guaranteed to converge to the global minimum of the objective function (7). To 

circumvent these problems we use Bayesian optimization (BO), which is a global optimization 

method based on sequential training of a statistical approximation to the unknown target function. 

BO is particularly suited for problems in which a single evaluation of the objective function is time 

consuming. We refer to [35] for a review of the BO methodology. 

As in [36], we consider two versions of BO, based on “target surrogates” and “partial error 

surrogates”. In the former approach the objective function (7) is approximated as a whole using a 

single Gaussian process (GP) regression, while in the latter approach each error term in (7) is 

approximated separately, using a separate GP regression. We refer to [37] for a detailed treatment 

of GP methods. Note that in this paper, our interest is not in comparing different variants of BO, 

but to verify how robust parameter inference is by considering two independent runs of BO for 

basic uncertainty quantification. 

We initialize BO using an initial design based on the Latin hypercube, following the 

standard recommendation [38] to use 10 D  points, where D  is the dimensionality of the 

problem (in our case the number of parameters to be inferred). 

2.5.2. Evaluation methods 

We are interested in comparing the parameter inference performance when using the LV 

geometries obtained automatically from our proposed CNN-approach with the results obtained 

using the manually segmented geometries (see Sections 2.1.2) and the baseline of the mean 

geometry (defined in Eq. (2)). To make this comparison, we make use of three separate evaluation 

methods, which we outline below. 

BO is designed to optimize a given objective function, thus the best objective function 

value obtained by the BO optimisation routine will serve as our first evaluation method. Here we 

are interested in the minimum of the mismatch function (7) so we prefer approaches leading to 

lower loss  values. A low value of the objective function indicates that the underlying parameters 

have led to outputs (LV volume and circumferential strains) closely agreeing with the 

CMR-derived measurements described in Section 2.1.3 (real or synthetic). 

For synthetic data, generated with known GT parameters, we can assess the inference 

accuracy in the parameter space by calculating the weighted L2 distance between the GT and 

inferred values. In particular, we are interested in the relative root mean squared error (RMSE), 

calculated as 
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1/2
2

*

*
=1

ˆ
rRMSE= ,

D
i i

i i

 



  
      

  (9) 

where *

i  denotes the GT value of i , ˆ
i  is the estimate of i  and D  is the dimensionality of 

the problem, in our case = 4D . Scaling each error term by the corresponding GT value introduces 

some robustness against inflation by large parameter values. 

The problem with evaluating in the parameter space is that the parameters of the HO model 

are not guaranteed to be uniquely identifiable from the available experimental data, as discussed 

e.g. in [24]. Furthermore, the passive behaviour of the myocardium is highly nonlinear with 

respect to its stretch. For that reason, differences in the biomechanical parameter space may not be 

informative about the difference in myocardial stiffness and can even be misleading. On the 

contrary, the stretch-stress space derived from the HO model under a prescribed stretching mode 

(i.e. uniaxial) is directly related to myocardial stiffness at different stretch levels, and is often 

employed in ex vivo stretching experiments [39] or material parameter inference studies [24, 20]. 

To derive the stretch-stress space for a specified direction, we virtually stretch a myocardial strip 

uniaxially at one end while keeping the other end fixed. The corresponding stress in that strip is 

then calculated using the constitutive law by assuming homogeneous stretch occurring in the entire 

strip [39, 24, 32]. Note that stretching a myocardial strip is similar to stretching a nonlinear rubber 

band. In this way, two virtual myocardial strips are considered here. One strip is along the 

myofibre direction with stretch f = /l L , where l  and L  are the current and reference lengths 

of the same myocardial strip, respectively. The other one is along the sheet direction with 

s = /l L . The interested reader may refer to [40] for some examples of uniaxial stretch-stress 

derivation using a similar HO model. These stretch-stress curves allow us to gain insight into the 

underlying myocardial stiffness values, because in general, higher stress values for a given stretch 

level indicate higher stiffness. Therefore, as an additional evaluation metric we use stretch-stress 

curves along those two principal directions (myofibre and sheet directions) according to a layered 

myofibre structure approximation. 

3. Results 

In this section, we firstly present the individual results of the segmentation and geometry 

prediction networks, where each network is applied separately. Then, we present the results of the 

two-stage approach for LV mesh reconstruction, where both networks are applied together in 
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sequence. Finally, we quantify the utility of these reconstructed meshes for parameter inference in 

a bio-mechanical model of the LV. Figure 7 illustrates the evaluation methods that will be used 

and the datasets of interest in each case. 

 

Figure 7: An overview of the evaluation methods and datasets used for CMR image segmentation, 

geometry reconstruction and parameter inference respectively. For parameter inference “ 2 ” 

refers to repetitions of Bayesian optimization with two algorithms for basic uncertainty 

quantification. Dashed arrows indicate how the datasets are related. For assessing the accuracy of 

parameter inference, we used synthetic data. These were generated from simulations using the 

material parameters estimated from the real data. We represent this graphically in the figure with a 

dashed horizontal arrow, which indicates that the generation of the synthetic data has been 

informed by the real data. 

 

3.1. Geometry prediction network 

The geometry prediction network, which is visualized in Figure 4, requires segmented CMR scans 

as inputs. When the segmented scans are obtained automatically using the segmentation network, 

they will inevitably be subject to a degree of error, which in turn will affect the accuracy of the 

predicted geometry. For this reason, we first present the results of the geometry prediction network 

where the manually obtained, GT segmentations are provided as input. These results provide a 

lower bound on the error that can be achieved using our fully automated, two-stage approach. In 

addition, this step allows us to determine the optimal number of PCA coefficients to use in the 

output layer of the segmentation network. Using more coefficients increases the flexibility of the 

model, allowing for more complex LV geometry features to be accounted for. However, using 

more coefficients also increases the risk of the network overfitting to the training data. We find that 

eight PCA cofficients optimially balances the trade-off between these considerations. (Note that 

this differs from the four coefficients used in [19]). With eight coefficients, the geometry 

prediction network achieves a MSE of 0.03 when the GT segmentations are provided as inputs, 

which is 40% less than the MSE of 0.049 reported in [19]. 

3.2. Segmentation network 

As discussed in Section 2.4, we retrain the network from [14] to segment SA and LA 

images separately. The segmentation results for the two image types respectively are discussed in 
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turn below. The results are evaluated using the DICE score metric on both the wall and cavity of 

the LV, as is illustrated in the top panel of Figure 7. 

3.2.1. Short axis images 

Table 1 summarizes the SA segmentation results for the entire dataset. When training from 

scratch with randomly initialized weights, we obtain average Dice scores of 80.5% for the LV 

wall, and 90.9% for the cavity. When training with weights initialized using the pre-trained values 

from the network published in [14], improved Dice scores of 85.0% and 92.5% respectively are 

obtained. These improved scores are comparable with the scores of 88% for wall and 94% for 

cavity found in [14], which were based on a much larger dataset of approximately 5000 subjects. 

Note that for each of the approaches displayed in Table 1, the Dice score of the cavity 

segmentation is higher than the wall segmentation score. This is unsurprising, since the higher 

contrast of the cavity makes this easier to segment than the LV wall, which is sometimes 

indistinguishable from surrounding tissues. 

Figure 8 displays a comparison of the GT segmentations of a HV with the predictions from 

the segmentation network. We see that the predictions of the network get less accurate near the 

apex of the LV. However, it is worth noting that due to the lack of a clear boundary in the CMR 

scan, the manual segmentation also becomes more erroneous in this region. 

 

Table 1: SA segmentation network results: Dice scores for different network initializations and 

those from [14] for comparison. 

Case Wall Cavity 

Random weights 80.5% 90.9% 

Weights from [14] 85.0% 92.5% 

Results from [14] 88.0% 94.0% 

 

 

Figure 8: SA segmentation network results. Clockwise from top left: typical segmentation results 

as we move from basal plane to apex for one healthy volunteer. The red line shows the manual 

segmentation results while the shaded regions show the segmentation network prediction. As we 

move towards the apex, segmentation becomes more difficult both for manual and automatic 

methods. 
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3.2.2. Long axis images 

We train the LA Segmentation Network using all three LA views together, again 

initializing with the pre-trained weights from [14]. Table 2 displays the mean Dice scores attained 

by the network, broken down for each of the LA views. We can see that in particular, wall 

segmentation scores were lower for the LA images when compared to the SA images. Figure 9 

displays a comparison between the GT and automatically predicted LA segmentation for one of 

the subjects. The obtained mean Dice score is 86.60%, which is slightly lower than that for SA 

(88.75%). However, despite this slight deterioration, we can see that our segmentation network 

still delivers a reasonably accurate segmentation of LV wall in the long-axis view. 

 

Table 2: LA Segmentation network results: Dice scores for 3 different long-axis views. 

View Wall Cavity 

2 chamber 82.6% 93.4% 

4 chamber 81.7% 93.3% 

1 chamber 76.3% 92.3% 

Mean 80.2% 93.0 % 

 

 

Figure 9: LA segmentation network results. Predictions for all three LA views for a single subject. 

Top left provides the four chamber view, top right shows one chamber view and bottom is a two 

chamber view. 

 

3.3. The two-stage framework 

We now report the results obtained by our two-stage reconstruction framework, whereby 

the CMR images are first segmented using the segmentaion network, before these segmentations 

are passed to the geometry recontruction network, which predicts the LV geometry. The middle 

panel in Figure 7 outlines how the reconstruction results are evaluated using MSE between the GT 

and predicted geometries respectively. Note that we found the MSE scores to be very stable - 

running the CNN several times with different random number generator seeds varied the results 

usually only in the fourth digit. For this reason, we report the MSE scores up to the third digit. 
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When trained on the automatically segmented SA and LA images from the segmentation 

network, the geometry prediction network results in an MSE of 0.033 relative to the GT 

geometries. This is only 10% higher than the lower bound of 0.03 described in Section 3.1, when 

the network was trained on the GT, manually segmented SA and LA images. As expected, the 

predictions of the network deteriorated when either only the SA or only the LA images were 

provided as input: for the SA-only network, the MSE loss was 0.038, while for the LA-only 

network, the MSE was 0.044. These results are summarized in the top half of Table 3. 

The bottom half of Table 3 summarizes the results of the two-stage approach where the LV 

geometries are aligned using the two Procrustes techniques described in Section 2.3.4. The results 

show that carrying out these alignments results in further reconstruction improvements: for the 

centred dataset, the MSE decreases to 0.026, and there is a further slight gain for the rotated 

dataset, where the MSE was 0.025. Note however that by pre-aligning the LV geometries, the 

performance of the baseline mean-geometry prediction also improves: the MSE declines from 

0.074 for the original data set to 0.058 and 0.057 for the centered and rotated datasets respectively. 

The cause of this improvement is the fact that by aligning the datasets in this manner we reduce the 

variance between the individual geometries, and hence reduce the MSE of the mean-geometry 

prediction. 

 

Table 3: The two-stage approach results: MSE (in mm
2
). The top part of the table reports the 

results for the original dataset of LV geometries, and the bottom part presents the results for the 

two alternative alignments of the dataset of LV geometries described in Section 2.3.4. 

Model MSE (mm
2
) 

Dataset of original LV geometries 

Mean geometry 0.074 

CNN baseline from [19] 0.049 

GT-segmentation CNN lower bound 0.030 

Segmentation-based CNN (SA-only) 0.038 

Segmentation-based CNN (LA-only) 0.044 

Segmentation-based CNN 0.033 

Dataset of aligned LV geometries 

Mean geometry – centered-GT 0.058 
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Mean geometry – rotated-GT 0.057 

Segmentation-based CNN (centered-GT) 0.026 

Segmentation-based CNN (rotated-GT) 0.025 

 

Table 4 shows the results of the two-stage reconstruction approach on the test set for 

different number of PCA components. The results show that reconstruction performance is robust, 

even as we vary the number of components over a substantial range from 4 to 10. Note that in our 

main simulations, we used eight components consistently, based on preliminary explorations 

described in Section 3.1. That is, we did not select the number of PCA components based on the 

test set results from Table 4, as doing so would introduce selection bias. 

 

Table 4: MSEs (in mm
2
) for the two-stage approach for different numbers of PCA components. 

The first four components are the most important and were used in [19]. For the segmentation 

input we used eight components. The minimum is obtained for eight and seven components for the 

original and centered/rotated data, respectively. 

Number PCA components Original dataset Centered dataset Rotated dataset 

4 0.035 0.026 0.025 

5 0.035 0.027 0.025 

6 0.034 0.026 0.025 

7 0.034 0.025 0.024 

8 0.033 0.026 0.025 

9 0.033 0.026 0.025 

10 0.033 0.025 0.024 

 

Figure 10 presents examples of automatically generated LV geometry reconstructions from 

our two-stage approach, against the corresponding GT geometries. The examples presented are 

typical cases, for which the reconstruction errors are approximately equal to the median 

reconstruction error. The reconstructions are accurate, particularly with respect to the general size 

and height of the LV, but some small misalignments occur near the edges. 

 

Figure 10: The two-stage approach example reconstructions. Depicted are typical cases – 
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reconstructions that obtained approximately the median reconstruction error. Blue shape: 

reconstruction, grey wireframe: GT. The reconstructions are accurate, LV sizes and heights are 

similar, there are small misalignments at the edges. 

 

As an additional experiment, we calculate the cavity volumes of the LV geometries 

automatically generated by our two-stage method, and compare with the volumes of the GT 

geometries. As shown in Figure 7, we perform this experiment only for the data set of rotated LV 

geometries, on which our automated method incurred the lowest reconstruction MSE. On this 

dataset, our method achieves an average RMSE of 12 ml in volume. This is lower than the RMSE 

of 26 ml obtained using the mean LV mesh baseline, and is comparable with values from the 

literature. For instance, the network developed in [41], which was trained using a volume-based 

objective on a larger dataset, achieved an RMSE of 10 ml. 

3.4. Parameter inference 

Having evaluated the LV geometry reconstruction in geometry space, we now investigate 

the effect this on the inferred mechanical properties as discussed in Section 2.5. We make use of 

four LV geometries corresponding to randomly selected HVs, which we label HV A, HV B, HV C 

and HV D. We consider three ways to represent each LV geometry: the manually obtained original 

geometry (ground truth), the geometry reconstructed using the proposed CNN-based approach and 

the mean geometry specified in Eq. 2 (serving as the baseline). For each of the four subjects we 

have measured the end of diastole volume *V  and 24 circumferential strains, *

i , = 1, ,24i K , 

from CMR scans, using procedures discussed in Section 2.1.3. 

We carry out two studies: a real data study and a synthetic data study, each evaluated using 

the corresponding methods discussed in Section 2.5.2 (see also the bottom panel in Figure 7). In 

the real data study we use the measurements *V  and *

i , = 1, ,24i K , available for each HV. 

However, we donot know the underlying true parameters with which we could compare the 

estimated values, therefore we treat the estimates from the original LV geometries as gold 

standards. These gold standard parameter values are also used to generate synthetic data: for each 

LV geometry we run the forward simulator with the corresponding optimized parameter values 

and treat the outputted measurements as synthetic data on the LV volume and 24 circumferential 

strains. The knowledge of the GT parameters allows us to assess the effect that the geometry 

approximations (the proposed CNN-based reconstruction and the mean geometry) have on the 
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optimization directly in parameter space. 

3.4.1. Real data 

Objective function. Table 5 presents the final values of the loss  objective function from Eq. (7) 

for the four LV geometries under consideration. In all cases except HV B the reconstructed meshes 

lead to lower errors than the mean mesh. Moreover, the results seem stable, with independent runs 

of BO, even with the two different surrogates described in Section 2.5.1, leading to almost 

identical values. 

 

Table 5: Bayesian optimization, real data study: the lowest values of the objective function for four 

healthy volunteers (HVs) obtained with the reconstructed geometry (geo.), the original geometry 

and the mean geometry. BO repeated with two algorithms (target surrogates, targ. and partial error 

surrogates, part.) for basic uncertainty quantification. 

Subject 

Reconstructed geo. Original geo. Mean geo. 

BO targ. BO part. BO targ. BO part. BO targ. BO part. 

HV A 0.0448 0.0453 0.0396 0.0396 0.0938 0.0950 

HV B 0.0580 0.0600 0.0443 0.0442 0.0385 0.0382 

HV C 0.0797 0.0799 0.0655 0.0658 0.1118 0.1120 

HV D 0.0470 0.0470 0.0556 0.0548 0.0476 0.0476 

 

Stretch-stress curves and parameter estimates. Figures 11 and 12 present the stretch-stress curves 

corresponding to the final   values from the three geometries (reconstructed, original, mean) for 

each HV under consideration. To reiterate, the stretch-stress curve is an alternative way of 

depicting the nonlinear myocardial stiffness along a specific direction within a range of stretch 

levels. A larger stress under the same stretch level suggests a higher stiffness. Thus by comparing 

the relative positions of the stretch-stress curves, we can assess nonlinear myocardial stiffness 

within a range of stretch levels. For example, the closer the two curves, the closer the material 

stiffness, and vice versa. For all the HVs except HV C the curves obtained for the CNN 

reconstructed geometries are closer to those for the original geometries than the curves obtained 

using the mean geometry. For HV C (Figure 12), the parameters obtained with BO with partial 

error surrogates for the reconstructed and for the mean geometry lead to much stiffer effects for 

higher stretches than those found with other methods. Specifically, much higher stress values can 
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be found when f > 1.15  or s > 1.25  when using the BO with partial error surrogate method for 

HV C, in other words, much higher myocardial stiffness inferred by that method. 

 

Figure 11: Bayesian optimization, real data study: stretch-stress curves for HV A and HV B (in 

rows). Blue: BO with target surrogates (targ.), red: BO with partial error surrogates (part.), solid 

lines: reconstructed geometries (recon. mesh), dashed lines: original geometries (org. mesh), 

dotted lines: mean geometries (mean mesh). f = /l L  is the uniaxial stretch along the myocyte 

direction, and s = /l L  is the uniaxial stretch along the sheet direction, in which l  and L  are 

the current and reference lengths of the myocardial strip. f  and s  are corresponding stress 

values. 

Figure 12: Bayesian optimization, real data study: stretch-stress curves for HV C and HV D. Blue: 

BO with target surrogates (targ.), red: BO with partial error surrogates (part.), solid lines: 

reconstructed geometries (recon. mesh), dashed lines: original geometries (org. mesh), dotted 

lines: mean geometries (mean mesh). f = /l L  is the uniaxial stretch along the myocyte 

direction, and s = /l L  is the uniaxial stretch along the sheet direction, in which l  and L  are 

the current and reference lengths of the myocardial strip. f  and s  are corresponding stress 

values. 

 

We report the final parameter estimates used to generate the stretch-stress curves in Table 

6. These results are visualized by means of Bland-Altman plots comparing the differences between 

the original and reconstructed geometries with the differences between the original and mean 

geometries in Appendix A. Overall, taking the estimates obtained for the original geometries as 

benchmarks, we can conclude that the CNN reconstructed geometries lead to better estimates than 

those recorded for the mean mesh. 

Finally, we observe that 4  is often hard to identify, even when using the original 

geometry. For instance for HV A and HV D the estimates of 4  for the original geometry 

obtained with the two variants of BO vary noticeably. A similar behaviour can be noted for HV C, 

for both the CNN-reconstructed and mean geometry, or HV B for the mean geometry. Therefore, 

in our next study based on synthetic data we decide to fix the value of 4 =1  (i.e. no scaling of the 
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reference values). 

 

Table 6: Bayesian optimization, real data study: final parameter estimates (parameters leading to 

the minimum value of the objective function) for four healthy volunteers (HVs) obtained with the 

reconstructed geometry (geo.), the original geometry and the mean geometry. BO repeated with 

two algorithms (target surrogates, targ. and partial error surrogates, part.) for basic uncertainty 

quantification. 

Subject 

Reconstructed geo. Original geo. Mean geo. 

BO targ. BO part. BO targ. BO part. BO targ. BO part. 

HV A 

1  0.932 0.800 1.429 1.434 0.163 0.304 

2  2.663 2.449 2.585 2.569 1.980 1.952 

3  0.113 0.104 0.150 0.132 0.120 0.136 

4  1.112 3.163 0.144 0.240 4.858 3.579 

HV B 

1  0.100 0.200 0.100 0.100 0.958 0.750 

2  1.909 1.845 0.950 1.301 0.907 1.234 

3  0.113 0.218 2.879 1.751 4.993 4.971 

4  5.000 4.360 4.657 4.702 0.598 0.121 

HV C 

1  1.125 1.173 1.150 1.358 0.957 1.138 

2  0.896 0.839 1.667 1.342 1.957 0.669 

3  5.000 4.631 0.108 0.790 0.100 4.985 

4  0.719 1.541 4.986 5.000 4.999 1.079 

HV D 

1  2.338 2.189 0.901 0.969 4.998 4.999 

2  0.948 1.151 1.447 1.492 0.271 0.260 
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3  2.044 1.449 0.107 0.322 0.100 0.519 

4  0.142 0.112 2.180 0.545 0.129 0.114 

 

3.4.2. Synthetic data 

Objective function. Table 7 presents the final values of the loss  objective function from Eq. (7) 

for the four HVs under consideration. Notice that, due to the absence of measurement errors in the 

synthetic data, the mismatch values are much lower than those found in Table 5. These values are 

particularly close to zero for the original geometries due to the absence of any geometry 

approximation. 

Similar to the real data study, the reconstructed geometries lead to lower losses than the 

mean geometry for all cases except HV B. In addition, the choice of surrogate has little effect on 

the parameter estimates, which is also found in the real data case. 

 

Table 7: Bayesian optimization, synthetic data study: the lowest values of the objective function (

100 ) for four healthy volunteers (HVs) obtained with the reconstructed geometry (geo.), the 

original geometry and the mean geometry. BO repeated with two algorithms (target surrogates, 

targ. and partial error surrogates, part.) for basic uncertainty quantification. 

Subject 

Reconstructed geo. Original geo, Mean geo. 

BO targ. BO part. BO targ. BO part. BO targ. BO part. 

HV A 0.449 0.449 0.000 0.000 5.195 5.197 

HV B 0.446 0.430 0.015 0.001 0.247 0.247 

HV C 0.809 0.800 0.003 0.001 1.685 1.666 

HV D 1.253 1.253 0.000 0.001 5.643 5.642 

 

Parameter estimates. Table 8 and Figure 13 present the results in the parameter space using 

rRMSEs, as defined in (9). As expected, optimization based on the original geometry performs the 

best with very low rRMSEs. Moreover, parameter estimates obtained with the CNN reconstructed 

geometries are typically much more accurate than those obtained with the mean geometry, leading 

to lower rRMSE. For all HVs but HV C, the CNN reconstructed geometries clearly outperform the 

mean geometry for both BO variants and for HV B the reconstructed geometry, and lead to results 
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very close to those based on the original geometry. For HV C, comparing the objective function 

values from Table 7 with the rRMSEs in Table 8 reveals that the optimization problem is difficult 

due to local optima and ridges in the objective function. We can see that even though independent 

BO runs converge to very close values of the objective function (e.g. 20.809 10  and 

20.800 10  for the reconstructed mesh) the corresponding parameters may result in very different 

rRMSEs (e.g. 0.6377 and 0.1362 for the reconstructed mesh). This illustrates the point made in 

Section 2.5.2 that evaluation in the parameter space alone might not be sufficiently informative 

and needs to be complemented with the analysis of stretch-stress curves. 

 

Table 8: Bayesian optimization, synthetic data study: relative RMSEs from Eq. (9) between the 

parameters leading to the minimum value of the objective function and the GT parameter values 

for four healthy volunteers (HVs) obtained with the reconstructed geometry (geo.), the original 

geometry and the mean geometry. BO repeated with two algorithm (target surrogates, targ. and 

partial error surrogates, part.) for basic uncertainty quantification. Bold font: subjects for which 

the reconstructed mesh outperforms the mean mesh. 

Subject Reconstructed geo. Original geo. Mean geo. 

BO targ. BO part. BO targ. BO part. BO targ. BO part. 

HV A 0.1999 0.1964 0.0138 0.0116 0.4763 0.4862 

HV B 0.1325 0.0421 0.1706 0.0087 0.9992 1.0264 

HV C 0.6377 0.1362 0.1352 0.0312 0.6567 0.1057 

HV D 0.1490 0.1770 0.0270 0.0297 0.5789 0.5626 

 

 

Figure 13: Bayesian optimization, synthetic data study: relative RMSEs from Eq. (9) between the 

parameters leading to the minimum value of the objective function and the GT parameter values 

for four healthy volunteers (HVs) obtained with the reconstructed geometry (Recon. mesh.), the 

original geometry (Org. mesh) and the mean geometry (Mean mesh). BO repeated with two 

algorithms (target surrogates, targ. and partial error surrogates, part.) for basic uncertainty 

quantification. 

 

Stretch-stress curves. Figures 14 and 15 present the stretch-stress curves for the four HVs under 
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consideration to assess the agreement between the inferred myocardial stiffness and the GT 

stiffness along the myocyte and sheet directions by virtually stretching a myocardial strip again. In 

all cases the curves based on the original geometries almost perfectly match the GT ones, 

suggesting the inferred myocardial stiffness agrees well with the GT stiffness at different stretch 

levels. Specifically, for HV A, the curves based on the reconstructed mesh and the curves based on 

the mean mesh are in close agreement with the GT curve for small stretches (up to approx. 

= 1.1f  and = 1.15s ). For higher stretches, however, the curves based on the reconstructed 

mesh are noticeably closer to the GT curve than those based on the mean mesh. For HV B we 

record an almost perfect agreement between the GT curves and those based on the reconstructed 

mesh, both for the stretches along the myocyte direction and along the sheet direction. As in the 

HV A case, the curves based on the mean mesh deviate considerably from the GT curve for high 

stretches, indicating a much softer myocardium inferred due to the very low stress for high 

stretches compared to the GT curves. Finally, there is a very close agreement between the curves 

obtained for the CNN reconstructed geometries and those for the original geometries and the GT 

curves. On the other hand, the curves predicted for the mean geometry deviate noticeably from the 

remaining curves, especially for higher stretches, which means very different material properties 

inferred by using the mean geometry. 

 

Figure 14: Bayesian optimization, synthetic data study: stretch-stress curves for HV A and HV B 

(in rows). Left: stretches along the myocyte direction, right: stretches along the sheet direction. 

Blue: BO with target surrogates (targ.), red: BO with partial error surrogates (part.), solid lines: 

reconstructed geometries (recon. mesh), dashed lines: original geometries (org. mesh), dotted 

lines: mean geometries (mean mesh), solid black lines: ground truth values. Solid black line: 

ground-truth curves. 

Figure 15: Bayesian optimization, synthetic data study: stretch-stress curves for HV C and HV D 

(in rows). Left: stretches along the myocyte direction, right: stretches along the sheet direction. 

Blue: BO with target surrogates (targ.), red: BO with partial error surrogates (part.), solid lines: 

reconstructed geometries (recon. mesh), dashed lines: original geometries (org. mesh), dotted 

lines: mean geometries (mean mesh), solid black lines: ground truth values. Solid black line: 

ground-truth curves. 
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4. Discussion 

4.1. Summary 

We have developed a two-stage Deep Learning framework for automatic prediction of the 

LV geometry directly from CMR cine images. The first stage of the framework, the segmentation 

network, provides accurate annotations of LV wall for both SA and LA images. The second stage 

of the framework, the geometry prediction network, uses the predicted segemenations from the 

first stage to reconstruct a 17k-dimensional LV geometry. We have shown that this two-stage 

approach leads to considerably more accurate LV geometry reconstructions than the previous 

approach from [19]. In addition, we have introduced further enhancements, such as aligning the 

LA images and GT LV geometry reconstructions, which allow for a substantial reduction in 

reconstruction error. 

In the context of cardiac-mechanic parameter inference, we have demonstrated that the LV 

geometry reconstructions from our two-stage framework can attain results that are much closer to 

those obtained with the GT, manually segmented geometries, than the results attained by using the 

mean mesh, in the sense of leading to more comparable stress-stain curves or lower values of the 

loss  objective function in Eq. (7) 

4.2. Principal component analysis 

There has recently been substantial interest in LV geometry representation for 

cardio-mechanical modelling by means of statistical dimension reduction techniques. In particular, 

methods based on principal component analysis (PCA) [42] have been especially popular. The 

study in [43] implemented PCA for the purpose of load free geometry estimation in the context of 

inferring the passive stiffness of the myocardium. The work in [44] considered a PCA-reduced 

geometry representing the LV in a deep neural network model. The neural network approximated 

the diastolic filling process with the aim to infer the mechanical behaviour of myocardium. Our 

work relates to this strand of literature as we apply PCA within our geometry reconstruction 

network. In our case, PCA provides an essential dimension reduction and regularization step to 

enable the application of convolutional neural networks to learning the LV geometry from CMR 

images when the training data are comparatively small (in the order of several hundred exemplars). 

The optimal number of principal components has been decided by cross-validation. Using more 

components allows extra flexibility but at increased risk of overfitting, while using fewer 

components fails to sufficiently explain the variation in the data. However, the optimal number of 
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principal components depends on the data set size and can be expected to increase as larger data 

sets may become available in the future. See also the related discussion in Section 4.4. 

4.3. Applications and potential impact in the clinic 

Statistical emulators. As argued in Section 2.5, solving the cardiac mechanic equations must be 

done numerically. However a single run of the associated forward simulator (see Figure 6) 

typically takes 8-15 minutes. During inference, forward simulations have to be carried out 

repeatedly as part of an iterative optimization procedure, leading to computational execution times 

of several days, which is not viable for a practical clinical decision support system. Consequently, 

there is currently much interest in surrogate models and statistical emulators, in which a substantial 

part of computations is performed in advance, prior to recording any subject specific 

measurements. 

Recent proof of concept studies in the context of cardiac mechanical modelling have 

demonstrated that the computational complexity can be reduced by several orders of magnitude at 

negligible loss in accuracy [33, 34, 45]. However, those studies assumed that the LV shape, 

extracted from a CMR scan of a healthy volunteer, was fixed. For real clinical applications based 

on personalized medicine, variations of the LV shape have to be included in the emulator. 

Unfortunately, the exploration of the full geometry representation space, discussed in Section 

2.1.2, would require the impossible task of building an emulator in 17k dimensional space. A 

solution to this problem is to consider a low dimensional representation of the LV geometry, in a 

space that can be more carefully explored during emulator training. For clinical purposes we also 

require an efficient method for obtaining a projection of a new geometry into this space, ideally 

requiring minimal manual intervention by a practitioner. Our two-stage method does exactly this, 

by allowing prediction of a low dimensional representation directly from CMR images. 

Other applications. Accelerating and automating the process of LV geometry reconstruction is a 

critical step towards personalized medicine that will obviate inefficient manual CMR image 

processing for LV geometry extraction. Once reconstructed, the predicted LV geometries can 

serve multiple purposes, of which the most important from our perspective is numerically solving 

cardiac mechanics equations with the finite element method. Moreover, the predicted LV 

geometries are valuable for the analysis of a number of clinically relevant quantities, such as LV 

volume, wall thickness and cavity volume. Finally, they will provide clinicians with a promising 

3D visualization tool. 
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In addition, our proposed approach delivers automatically obtained LV wall segmentation, 

both in SA and LA images. As we have demonstrated, the segmentation accuracy on the test set is 

high, over 80% for the wall and over 90% for the cavity. In case higher accuracy is required, the 

predicted segmentation can be used as initializations which can be further manually corrected. 

4.4. Limitations 

Performance against GT meshes. While the improvement over the mean geometry performance as 

a reference benchmark is encouraging, there is still a significant performance gap between the 

reconstructed and the GT geometries, both in terms of direct geometric features, and derived 

features related to cardio-mechanics (cardio-mechanic parameters and stretch-stress curves). This 

suggests that further work is required to achieve the ultimate objective of reliable and automated 

clinical decision support. 

Limited data. The main challenge for future work is enlarging the training set size. The set of LV 

geometries available in our study is limited to about 200 exemplars. This does not bring out the full 

potential of CNNs (due to the need for restrictive regularization), which have been conceived for 

“big data” problems. Obtaining a dataset orders of magnitude larger than the current one is 

fundamentally difficult due to the excessive computational cost of reconstructing a single LV 

geometry. 

Motion correction. Motion artefacts, resulting from both cardiac and respiratory cycles and 

involuntary patient movement, still remain a great challenge in CMR imaging [46, 47], in 

particular for acute-MI patients with shortness of breath. Accurate reconstruction of the LV 

geometry is critical for biomechanical studies [3, 1], thus motion correction is generally needed 

when constructing patient-specific geometries from CMR cine images. In this study, a rigid-body 

translation has been applied to realign the endocardial and epicardial boundaries from SA images 

to the three LA images, as in [4], so that the ventricular boundaries from the SA images overlap 

with wall boundaries in LA images. Other approaches, such as tracking the imaging plane 

throughout the cardiac cycle, and deformable image registration schemes would further reduce 

motion artefacts [46]. However, it would be challenging to apply those methods to our CMR 

images retrospectively, thus a simple rigid-body translation has been used. Currently, there may be 

confounding effects from incompletely corrected motion artefacts, which are likely to lead to 

spurious deformations of excessively skewed or bulged LV geometries [10]. Since machine 

learning has been successfully applied to CMR image analysis and interpretation [13], we expect 
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that incorporating machine-learning based motion correction algorithms into the developed 

segmentation network will help alleviate motion artefacts. 

Stiffness estimation in diseased hearts. LV geometries for both healthy volunteers and MI patients 

can be predicted by the automatic CNN-based framework, while we have only applied the 

Bayesian inference scheme to four healthy volunteers for estimating myocardial stiffness. To 

estimate myocardial stiffness in MI patients, a generalised cardiac MI model would be needed to 

account for material heterogeneity in the remote functional region and infarction region [4], 

leading to increased model complexity. Usually, late-gadolinium enhanced images need to be 

integrated into the 3D LV model for modelling the MI region. This process is further complicated 

by the fact that direct measurements of ventricle pressure values are not possible due to the 

invasive nature of such procedures. Nevertheless, the Bayesian inference procedure presented in 

this study can be directly applied to other heart diseases which are associated with a global change 

in material property, for example cardiac hypertrophy [48, 20]. 

Bi-ventricular geometry prediction. In the present study, only the LV geometry has been directly 

learned from CMR images. By including both LV and RV (right-ventricular) geometries, there 

will be more geometrical features in the data that could potentially enhance the accuracy and 

reliability of CNN-based geometry prediction. For example, Duan et al. [18] combined a 

multi-task deep learning approach along with atlas propagation to segment short-axis CMR 

volumetric images by learning the segmentation and landmark localization simultaneously, and 

ventricular shape prior knowledge was applied to overcome image artefacts. In future work, we 

will explore the prediction of the bi-ventricular geometry directly from conventional CMR images 

by incorporating into our CNN prior knowledge on features such as ventricular shapes, 

geometrical landmarks and measured wall motions. 

5. Conclusions 

We have developed an automatic CNN-based framework for predicting LV geometries directly 

from CMR images, without the need to perform manual annotations. We have recorded a 

noticeably lower LV mesh reconstruction error than previous methods. We have also 

demonstrated that our predicted LV geometries perform closer to the original, ground-truth 

geometries than the LV mean mesh in the context of cardiac mechanic parameter inference. A 

low-dimensional representation of the LV geometry delivered as a by-product of our proposed 

framework has the potential to be a stepping stone towards patient-specific statistical emulation, as 
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necessary for applications in personalized medicine. 

Availability of data and materials 

The original CMR cine images are not available due to privacy considerations. However, 
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https://github.com/aborowska/LVgeometry-prediction. 
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Appendix A. Additional results 

Appendix A.1. Bayesian optimization: real data 

Figures A.16 and A.17 visualize the results from Table 6 by means of Bland-Altman plots. 

They are based on taking the estimates obtained with the original meshes as benchmarks and 

calculating the differences between this benchmark and the estimates obtained with other mesh 

types, i.e. CNN-reconstructed meshes (blue markers) and the mean mesh (red markers). For each 

mesh type we take the “representative” estimates, i.e. average estimates between two BO runs 

(with different emulation schemes). Since the differences can be both positive and negative we can 
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see in Figure A.16 that on average there is hardly any difference between the performance of 

reconstructed meshes and the mean mesh (solid horizontal lines). The former, however, produce 

differences much more concentrated around 0 as can be seen by considerably narrower confidence 

bounds (dashed lines). This can be easily seen in Figure A.17, in which the absolute values of the 

differences against the benchmark are depicted. Here we can see that the mean absolute difference 

with respect to the benchmark is much narrower for the estimates obtained with reconstructed 

meshes compared with those obtained with the mean mesh. 

 

Figure A.16: Bayesian optimization, real data study: Bland-Altman plot comparing the differences 

between the final “representative” estimates based on the original and the reconstructed meshes 

(blue), and the differences between the final estimates based on the original meshes and the mean 

mesh (red). Each symbol represents a different parameter (circle – 1 , square – 2 , triangle – 3

, star – 4 ) so it occurs eight times, twice (blue, red) for each HV (A, B, C, D). The horizontal lines 

are the mean (solid) and 1.96  standard deviation (dashed). For each mesh type (original, 

reconstructed, mean) we take the average between two BO runs (with target and partial error 

emulation) as the “representative” estimate for the corresponding HV and mesh type. 

 

Figure A.17: Bayesian optimization, real data study: Bland-Altman plot comparing the absolute 

values of the differences between the final “representative” estimates based on the original and the 

reconstructed meshes (blue), and the differences between the absolute values of the final estimates 

based on the original meshes and the mean mesh (red). Each symbol represents a different 

parameter (circle – 1 , square – 2 , triangle – 3 , star – 4 ) so it occurs eight times, twice (blue, 

red) for each HV (A, B, C, D). The horizontal lines are the mean (solid) and Lq  and Uq , where 

Lq  and Uq  are empirical 2.5 and 97.5 percentiles, respectively, of the absolute differences. For 

each mesh type (original, reconstructed, mean) we take the average between two BO runs (with 

target and partial error emulation) as the “representative” estimate for the corresponding HV and 

mesh type. 

 

 

References 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



[1] R. Chabiniok, V. Y. Wang, M. Hadjicharalambous, L. Asner, J. Lee, M. Sermesant, E. 

Kuhl, A. A. Young, P. Moireau, M. P. Nash, D. Chapelle, D. A. Nordsletten, Multiphysics 

and multiscale modelling, data–model fusion and integration of organ physiology in the 

clinic: ventricular cardiac mechanics, Interface Focus 6 (2016) 20150083–25. 

[2] P. Lamata, A. Cookson, N. Smith, Clinical Diagnostic Biomarkers from the 

Personalization of Computational Models of Cardiac Physiology, Annals of Biomedical 

Engineering 44 (2016) 46–57. 

[3] K. Mangion, H. Gao, D. Husmeier, X. Luo, C. Berry, Advances in computational 

modelling for personalised medicine after myocardial infarction, Heart 104 (2018) 550–

557. 

[4] H. Gao, K. Mangion, D. Carrick, D. Husmeier, X. Luo, C. Berry, Estimating prognosis in 

patients with acute myocardial infarction using personalized computational heart models, 

Scientific Reports 7 (2017 a) 1. 

[5] H. Gao, A. Aderhold, K. Mangion, X. Luo, D. Husmeier, C. Berry, Changes and 

classification in myocardial contractile function in the left ventricle following acute 

myocardial infarction, Journal of The Royal Society Interface 14 (2017 b) 20170203. 

[6] H. Gao, H. Wang, C. Berry, X. Luo, B. E. Griffith, Quasi-static image-based immersed 

boundary-finite element model of left ventricle under diastolic loading, International 

journal for numerical methods in biomedical engineering 30 (2014) 1199–1222. 

[7] Z. J. Wang, V. Y. Wang, C. P. Bradley, M. P. Nash, A. A. Young, J. J. Cao, Left ventricular 

diastolic myocardial stiffness and end-diastolic myofibre stress in human heart failure 

using personalised biomechanical analysis, Journal of Cardiovascular Translational 

Research 11 (2018) 346–356. 

[8] H. M. Wang, H. Gao, X. Y. Luo, C. Berry, B. E. Griffith, R. W. Ogden, T. J. Wang, 

Structure based finite strain modelling of the human left ventricle in diastole, International 

Journal for Numerical Methods in Biomedical Engineering 29 (2013) 83–103. 

[9] G. A. Bello, T. J. Dawes, J. Duan, C. Biffi, A. de Marvao, L. S. Howard, J. S. R. Gibbs, M. 

R. Wilkins, et al., Deep-learning cardiac motion analysis for human survival prediction, 

Nature machine intelligence 1 (2019) 95. 

[10] P. Medrano-Gracia, B. R. Cowan, D. A. Bluemke, J. P. Finn, J. A. Lima, A. Suinesiaputra, 

A. A. Young, Large scale left ventricular shape atlas using automated model fitting to 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



contours, in: International Conference on Functional Imaging and Modeling of the Heart, 

Springer, 2013, pp. 433–441. 

[11] V. Wang, P. Nielsen, M. Nash, Image-based predictive modeling of heart mechanics, 

Annual review of biomedical engineering 17 (2015) 351–383. 

[12] P. Lamata, M. Sinclair, E. Kerfoot, A. Lee, A. Crozier, B. Blazevic, S. Land, A. J. 

Lewandowski, D. Barber, S. Niederer, et al., An automatic service for the personalization 

of ventricular cardiac meshes, Journal of The Royal Society Interface 11 (2014) 20131023. 

[13] T. Leiner, D. Rueckert, A. Suinesiaputra, B. Baeßler, R. Nezafat, I. Išgum, A. A. Young, 

Machine learning in cardiovascular magnetic resonance: basic concepts and applications, 

Journal of Cardiovascular Magnetic Resonance 21 (2019) 1–14. 

[14] W. Bai, M. Sinclair, G. Tarroni, O. Oktay, M. Rajchl, G. Vaillant, A. M. Lee, N. Aung, E. 

Lukaschuk, M. M. Sanghvi, et al., Automated cardiovascular magnetic resonance image 

analysis with fully convolutional networks, Journal of Cardiovascular Magnetic 

Resonance 20 (2018) 65. 

[15] X. Chen, B. M. Williams, S. R. Vallabhaneni, G. Czanner, R. Williams, Y. Zheng, 

Learning active contour models for medical image segmentation, in: 2019 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 11624–

11632. doi: 10.1109/CVPR.2019.01190. 

[16] F. Guo, M. Ng, M. Goubran, S. E. Petersen, S. K. Piechnik, S. Neubauer, G. Wright, 

Improving cardiac mri convolutional neural network segmentation on small training 

datasets and dataset shift: A continuous kernel cut approach, Medical Image Analysis 61 

(2020) 101636. 

[17] O. Bernard, A. Lalande, C. Zotti, F. Cervenansky, X. Yang, P. A. Heng, I. Cetin, K. 

Lekadir, O. Camara, M. A. Gonzalez Ballester, G. Sanroma, S. Napel, S. Petersen, G. 

Tziritas, E. Grinias, M. Khened, V. A. Kollerathu, G. Krishnamurthi, M. M. Rohé, X. 

Pennec, M. Sermesant, F. Isensee, P. Jäger, K. H. Maier-Hein, P. M. Full, I. Wolf, S. 

Engelhardt, C. F. Baumgartner, L. M. Koch, J. M. Wolterink, I. Išgum, Y. Jang, Y. Hong, 

J. Patravali, S. Jain, O. Humbert, P. M. Jodoin, Deep learning techniques for automatic mri 

cardiac multi-structures segmentation and diagnosis: Is the problem solved?, IEEE 

Transactions on Medical Imaging 37 (2018) 2514–2525. 

[18] J. Duan, G. Bello, J. Schlemper, W. Bai, T. J. Dawes, C. Biffi, A. de Marvao, G. Doumoud, 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



D. P. O’Regan, D. Rueckert, Automatic 3d bi-ventricular segmentation of cardiac images 

by a shape-refined multi-task deep learning approach, IEEE transactions on medical 

imaging 38 (2019) 2151–2164. 

[19] L. Romaszko, A. Borowska, A. Lazarus, H. Gao, X. Luo, D. Husmeier, Direct learning left 

ventricular meshes from CMR images, International Conference on Statistics: Theory and 

Applications 2019 (2019). 

[20] W. Li, A. Lazarus, H. Gao, A. Martinez-Naharro, M. Fontana, P. Hawkins, S. Biswas, R. 

Janiczek, J. Cox, C. Berry, et al., Analysis of cardiac amyloidosis progression using 

model-based markers, Frontiers in Physiology 11 (2020) 324. 

[21] K. Mangion, H. Gao, C. McComb, D. Carrick, G. Clerfond, X. Zhong, X. Luo, C. E. Haig, 

C. Berry, A Novel Method for Estimating Myocardial Strain: Assessment of Deformation 

Tracking Against Reference Magnetic Resonance Methods in Healthy Volunteers, 

Scientific Reports 6 (2016) 38774. 

[22] D. Carrick, K. Oldroyd, M. McEntegart, C. Haig, M. Petrie, H. Eteiba, S. Hood, C. Owens, 

S. Watkins, J. Layland, et al., A randomized trial of deferred stenting versus immediate 

stenting to prevent no-or slow-reflow in acute ST-segment elevation myocardial infarction 

(DEFER-STEMI), Journal of the American College of Cardiology 63 (2014) 2088–2098. 

[23] Y. Liu, H. Wen, R. C. Gorman, J. J. Pilla, J. H. Gorman III, G. Buckberg, S. D. Teague, G. 

S. Kassab, Reconstruction of myocardial tissue motion and strain fields from 

displacement-encoded MR imaging, American Journal of Physiology-Heart and 

Circulatory Physiology 297 (2009) H1151–H1162. 

[24] H. Gao, W. G. Li, L. Cai, C. Berry, X. Y. Luo, Parameter estimation in a Holzapfel–Ogden 

law for healthy myocardium, Journal of Engineering Mathematics 95 (2015) 231–248. 

[25] M. D. Cerqueira, N. J. Weissman, V. Dilsizian, A. K. Jacobs, S. Kaul, W. K. Laskey, D. J. 

Pennell, J. A. Rumberger, T. Ryan, M. S. Verani, Standardized myocardial segmentation 

and nomenclature for tomographic imaging of the heart: a statement for healthcare 

professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology 

of the American Heart Association, Circulation 105 (2002) 539–542. 

[26] F. Tonolini, J. Radford, A. Turpin, D. Faccio, R. Murray-Smith, Variational inference for 

computational imaging problems, arxiv:1904.0624v2 (2020). 

[27] L. Romaszko, A. Lazarus, H. Gao, A. Borowska, X. Luo, D. Husmeier, Massive 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



dimensionality reduction for the left ventricular mesh, International Conference on 

Statistics: Theory and Applications 2019 (2019). 

[28] C. M. Bishop, Neural Networks for Pattern Recognition, Clarendon Press, Oxford, 1995. 

[29] L. Perez, J. Wang, The effectiveness of data augmentation in image classification using 

deep learning, arXiv preprint arXiv:1712.04621 (2017). 

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a 

simple way to prevent neural networks from overfitting, The Journal of Machine Learning 

Research 15 (2014) 1929–1958. 

[31] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image 

segmentation, in: International Conference on Medical image computing and 

computer-assisted intervention, Springer, 2015, pp. 234–241. 

[32] G. A. Holzapfel, R. W. Ogden, Constitutive modelling of passive myocardium: a 

structurally based framework for material characterization, Philosophical Transactions of 

the Royal Society of London A: Mathematical, Physical and Engineering Sciences 367 

(2009) 3445–3475. 

[33] V. Davies, U. Noè, A. Lazarus, H. Gao, B. Macdonald, C. Berry, X. Luo, D. Husmeier, 

Fast parameter inference in a biomechanical model of the left ventricle by using statistical 

emulation, Journal of the Royal Statistical Society: Series C (Applied Statistics) 68 (2019) 

1555–1576. 

[34] U. Noè, A. Lazarus, H. Gao, V. Davies, B. Macdonald, K. Manglion, C. Berry, X. Luo, D. 

Husmeier, Gaussian process emulation to accelerate parameter estimation in a mechanical 

model of the left ventricle: a critical step towards clinical end-user relevance, Journal of the 

Royal Society: Interface 16 (2019) 20190114. 

[35] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, N. de Freitas, Taking the human out of 

the loop: A review of Bayesian optimization, Proceedings IEEE 104 (2016) 148–175. 

[36] A. Borowska, H. Gao, A. Lazarus, D. Husmeier, Bayesian optimisation for efficient 

parameter inference in a cardiac mechanics model of the left ventricle, submitted (2020). 

[37] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning, MIT Press, 

Cambridge, MA, 2006. 

[38] D. R. Jones, M. Schonlau, W. J. Welch, Efficient global optimization of expensive 

black-box functions, Journal of Global optimization 13 (1998) 455–492. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



[39] G. Sommer, A. J. Schriefl, M. Andrä, M. Sacherer, C. Viertler, H. Wolinski, G. A. 

Holzapfel, Biomechanical properties and microstructure of human ventricular 

myocardium, Acta biomaterialia 24 (2015) 172–192. 

[40] D. Guan, F. Ahmad, P. Theobald, S. Soe, X. Luo, H. Gao, On the AIC-based model 

reduction for the general Holzapfel–Ogden myocardial constitutive law, Biomechanics and 

Modeling in Mechanobiology 18 (2019) 1213–1232. 

[41] F. Liao, X. Chen, X. Hu, S. Song, Estimation of the volume of the left ventricle from MRI 

images using deep neural networks, IEEE Transactions on Cybernetics 49 (2019) 495–504. 

[42] J. Shlens, A tutorial on principal component analysis, 2014. arXiv:1404.1100. 

[43] Z. J. Wang, V. Y. Wang, T. P. Babarenda Gamage, V. Rajagopal, J. J. Cao, P. M. F. 

Nielsen, C. P. Bradley, A. A. Young, M. P. Nash, Efficient estimation of load-free left 

ventricular geometry and passive myocardial properties using principal component 

analysis, International journal for numerical methods in biomedical engineering 36 (2020) 

e3313. 

[44] G. D. Maso Talou, T. P. Babarenda Gamage, M. Sagar, M. P. Nash, Deep learning over 

reduced intrinsic domains for efficient mechanics of the left ventricle, Frontiers in Physics 

8 (2020) 30. 

[45] D. Dalton, D. Husmeier, Improved statistical emulation for a soft-tissue cardiac 

mechanical model, in: I. Irigoien, D.-J. Lee, J. Martínez-Minaya, M. X. Rodríguez-Álvarez 

(Eds.), Proceedings of the 35th International Workshop on Statistical Modelling, volume 1, 

Servicio Editorial de la Universidad del País Vasco, Bilbao, Spain, 2020, pp. 55–60. 

[46] A. D. Scott, J. Keegan, D. N. Firmin, Motion in cardiovascular mr imaging, Radiology 250 

(2009) 331–351. 

[47] M. Salerno, B. Sharif, H. Arheden, A. Kumar, L. Axel, D. Li, S. Neubauer, Recent 

advances in cardiovascular magnetic resonance: techniques and applications, Circulation: 

Cardiovascular Imaging 10 (2017) e003951. 

[48] K. Yamamoto, T. Masuyama, Y. Sakata, N. Nishikawa, T. Mano, J. Yoshida, T. Miwa, M. 

Sugawara, Y. Yamaguchi, T. Ookawara, et al., Myocardial stiffness is determined by 

ventricular fibrosis, but not by compensatory or excessive hypertrophy in hypertensive 

heart, Cardiovascular research 55 (2002) 76–82. 

  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Declaration of competing interests  

 

☒ The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper.  

 

 

  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Highlights 

Automatic CNN-based framework for predicting LV geometries directly from CMR images 

Two-stage approach combines a segmentation network and geometry prediction network 

Geometry prediction based on principal component analysis for dimensionality reduction 

CNN-predicted LV geometries useful in biomechanical studies of LV stiffness estimation 

Stepping stone towards the development of LV geometry-heterogeneous emulators 
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