Lectures

Constitutive Modelling of Arteries

Ray Ogden

University of Aberdeen

Xi'an Jiaotong University April 2011

Overview of the Ingredients of Continuum Mechanics needed in Soft Tissue Biomechanics

and the phenomenological description of material properties

Lecture Contents

Outline of the basics tools from continuum mechanics – kinematics, invariants, stress, elasticity, strain energy, stress-deformation relations

Characterization of material properties – isotropy and anisotropy, fibrous materials

Application to arteries (and the myocardium – if time allows)

Kinematics

Deformation
$$\mathbf{x} = oldsymbol{\chi}(\mathbf{X})$$

Properties of χ

Continuous

One-to-one and onto – invertible
Differentiable, inverse differentiable
(not necessarily continuously differentiable)

Example of a deformation that is **not** continuously differentiable – a kink band –

Deformation gradient
$$\mathbf{F} = \operatorname{Grad} oldsymbol{\chi}$$

Associated (Cauchy-Green) tensors

left
$$\mathbf{B} = \mathbf{F}\mathbf{F}^{\mathrm{T}}$$
 $\mathbf{C} = \mathbf{F}^{\mathrm{T}}\mathbf{F}$ right

Polar decomposition

$$\mathbf{F} = \mathbf{R} \mathbf{U} = \mathbf{V} \mathbf{R}$$

positive definite symmetric tensors

rotation tensor

Eigenvalues of $\, {f U} \,$ and $\, {f V} \,$

are the **principal stretches**
$$\lambda_i > 0$$
 $i = 1, 2, 3$

Eigenvalues of ${f B}^-$ and ${f C}^-$ are λ_i^2

Stretch can be defined for any reference direction $M\,\,$ – unit vector

Square of length of a line element

$$|\mathrm{d}\mathbf{x}|^2 = (\mathbf{F}\mathrm{d}\mathbf{X}) \cdot (\mathbf{F}\mathrm{d}\mathbf{X}) = (\mathbf{F}\mathbf{M}) \cdot (\mathbf{F}\mathbf{M}) |\mathrm{d}\mathbf{X}|^2 = (\mathbf{F}^T\mathbf{F}\mathbf{M}) \cdot \mathbf{M} |\mathrm{d}\mathbf{X}|^2$$
 unit vector in reference configuration
$$\mathbf{C} = \mathbf{F}^T\mathbf{F} = \mathbf{U}^2$$

$$\frac{|\mathrm{d}\mathbf{x}|}{|\mathrm{d}\mathbf{X}|} = |\mathbf{F}\mathbf{M}| = [(\mathbf{F}^T\mathbf{F}\mathbf{M})\cdot\mathbf{M}]^{1/2} \equiv \lambda(\mathbf{M}) \quad -\text{stretch in direction }\mathbf{M}$$

Inextensibility constraint

$$(\mathbf{F}^{\mathrm{T}}\mathbf{F}\mathbf{M})\cdot\mathbf{M}=1$$

Green strain tensor

$$\mathbf{E} = \frac{1}{2}(\mathbf{F}^{\mathrm{T}}\mathbf{F} - \mathbf{I}) = \frac{1}{2}(\mathbf{U}^{2} - \mathbf{I})$$

Deformation of

- 1. line elements $d\mathbf{x} = \mathbf{F}d\mathbf{X}$
- 2. area elements $\mathbf{n} da = J \mathbf{F}^{-T} \mathbf{N} dA$ Nanson's formula
- 3. volume elements $\,\mathrm{d}v=J\mathrm{d}V$

$$J = \det \mathbf{F} > 0$$

Incompressibility constraint

$$J \equiv \det \mathbf{F} = 1$$

Deformation invariants

Principal invariants
$$I_1=\mathrm{tr}\mathbf{C}$$
 Principal invariants of \mathbf{C}
$$I_2=\frac{1}{2}[(\mathrm{tr}\mathbf{C})^2-\mathrm{tr}(\mathbf{C}^2)]$$

$$I_3=\det\mathbf{C}=J^2$$
 RSITY

Invariants associated with a distinguished direction ${f M}$ in the reference configuration

$$I_4 = \mathbf{M} \cdot (\mathbf{C}\mathbf{M}) = \lambda(\mathbf{M})^2$$
 – square of stretch in direction \mathbf{M} $I_5 = \mathbf{M} \cdot (\mathbf{C}^2\mathbf{M})$ – no simple physical interpretation

An alternative to $I_{\mathbf{5}}$ based on Nanson's formula

$$\mathbf{n} da = J \mathbf{F}^{-T} \mathbf{N} dA$$

$$I_5^* = (\mathbf{C}^*\mathbf{M}) \cdot \mathbf{M}$$
 — square of ratio of deformed to undeformed area element initially $\mathbf{C}^* = I_3\mathbf{C}^{-1}$ normal to \mathbf{M}

Invariants associated with two distinguished directions ${f M}$ ${f M}'$ in the reference configuration

Additional invariants

$$I_6 = \mathbf{M}' \cdot (\mathbf{C}\mathbf{M}')$$
 $I_7 = \mathbf{M}' \cdot (\mathbf{C}^2\mathbf{M}')$
$$I_8 = \mathbf{M} \cdot (\mathbf{C}\mathbf{M}')(\mathbf{M} \cdot \mathbf{M}')$$

Note: another way to write I_4 and similarly for the other invariants is

$$I_4 = \operatorname{tr}(\mathbf{CM} \otimes \mathbf{M})$$
structure tensor

Stress tensors

$$\mathbf{t} da = \boldsymbol{\sigma} \mathbf{n} da = J \boldsymbol{\sigma} \mathbf{F}^{-T} \mathbf{N} dA \equiv \mathbf{S}^{T} \mathbf{N} dA$$

Cauchy stress tensor (symmetric)

traction vector

 $\mathbf{S} = J\mathbf{F}^{-1}\boldsymbol{\sigma}$ nominal stress tensor

first Piola-Kirchhoff stress tensor

Equilibrium (no body forces) $\int_{\partial \mathcal{B}} \mathbf{S}^T \mathbf{N} dA = \mathbf{0} \longrightarrow \mathrm{Div} \mathbf{S} = \mathbf{0}$

Introduction of the (elastic) strain energy

consider the virtual work of the surface tractions

$$\int_{\partial \mathcal{B}_r} (\mathbf{S}^T \mathbf{N}) \cdot \delta \mathbf{x} dA = \int_{\mathcal{B}_r} \text{Div}(\mathbf{S} \delta \mathbf{x}) dV = \int_{\mathcal{B}_r} \text{tr}(\mathbf{S} \text{Grad} \delta \mathbf{x}) dV$$

This is converted into stored (elastic) energy if there exists a scalar function $W=W(\mathbf{F})$

such that

$$\delta W = \operatorname{tr}(\mathbf{S}\delta\mathbf{F})$$

from which we obtain the stress-deformation relation

$$\mathbf{S} = \frac{\partial W}{\partial \mathbf{F}} \qquad \boldsymbol{\sigma} = J^{-1} \mathbf{F} \mathbf{S}$$

Some properties of $W(\mathbf{F})$

$$W(\mathbf{F}) \xrightarrow{\text{objectivity}} W(\mathbf{U}) \text{ or } W(\mathbf{C}) \text{ or } W(\mathbf{E})$$

$$\mathbf{C} = \mathbf{U}^2 \quad \mathbf{E} = \frac{1}{2}(\mathbf{C} - \mathbf{I})$$

$$W(\mathbf{C}) \xrightarrow{\text{material}} W(I_1, I_2, \dots)$$

For an incompressible material
$$\det \mathbf{F} = 1$$
 Lagrange
$$\mathbf{S} = \frac{\partial W}{\partial \mathbf{F}} - p\mathbf{F}^{-1} \quad \boldsymbol{\sigma} = \mathbf{F} \frac{\partial W}{\partial \mathbf{F}} - p\mathbf{I}$$

Material symmetry

$$W \longrightarrow W(I_1, I_2, \dots, I_N)$$

$$\mathbf{S} = \sum_{i=1}^N W_i \frac{\partial I_i}{\partial \mathbf{F}} - p \mathbf{F}^{-1} \qquad W_i = \frac{\partial W}{\partial I_i}$$
 incompressible $I_3 \equiv 1$

Incompressible isotropic elastic materials

Principal invariants
$$I_1 = \operatorname{tr} \mathbf{C}$$
 $I_2 = \frac{1}{2}[I_1^2 - \operatorname{tr}(\mathbf{C}^2)]$

Strain energy $W = W(I_1, I_2)$ $\mathbf{C} = \mathbf{F}^T \mathbf{F}$ right C-G tensor

$$\boldsymbol{\sigma} = -p\mathbf{I} + 2W_1\mathbf{B} + 2W_2\left(I_1\mathbf{B} - \mathbf{B}^2\right)$$
 left C-G tensor
$$\mathbf{B} = \mathbf{F}\mathbf{F}^T$$

Principal stresses

$$\sigma_{1} = -p + 2W_{1}\lambda_{1}^{2} + 2W_{2}(I_{1}\lambda_{1}^{2} - \lambda_{1}^{4})$$

$$\sigma_{2} = -p + 2W_{1}\lambda_{2}^{2} + 2W_{2}(I_{1}\lambda_{2}^{2} - \lambda_{2}^{4})$$

$$\sigma_{3} = -p + 2W_{1}\lambda_{3}^{2} + 2W_{2}(I_{1}\lambda_{3}^{2} - \lambda_{3}^{4}) = 0$$

$$\lambda_{1}\lambda_{2}\lambda_{3} = 1$$

To characterize W it suffices to perform planar biaxial tests on a thin sheet

Eliminate *p*

$$\sigma_1 = 2(\lambda_1^2 - \lambda_1^{-2}\lambda_2^{-2}) \left(\frac{\partial W}{\partial I_1} + \lambda_2^2 \frac{\partial W}{\partial I_2} \right)$$

$$\sigma_2 = 2(\lambda_2^2 - \lambda_1^{-2}\lambda_2^{-2}) \left(\frac{\partial W}{\partial I_1} + \lambda_1^2 \frac{\partial W}{\partial I_2} \right)$$

Data with $\lambda_1 \lambda_2 \lambda_3 = 1$ enable

$$\frac{\partial W}{\partial I_1} = \frac{1}{2} \frac{\lambda_1^2 \sigma_1}{(\lambda_1^2 - \lambda_2^2)(\lambda_1^2 - \lambda_3^2)} - \frac{1}{2} \frac{\lambda_2^2 \sigma_2}{(\lambda_1^2 - \lambda_2^2)(\lambda_2^2 - \lambda_3^2)}$$

$$\frac{\partial W}{\partial I_2} = \frac{1}{2} \frac{\sigma_2}{(\lambda_1^2 - \lambda_2^2)(\lambda_2^2 - \lambda_3^2)} - \frac{1}{2} \frac{\sigma_1}{(\lambda_1^2 - \lambda_2^2)(\lambda_1^2 - \lambda_3^2)}$$

to be determined

Alternatively (and equivalently) – in terms of the principal stretches

$$W = \hat{W}(\lambda_1, \lambda_2)$$

$$\sigma_1 = \lambda_1 \frac{\partial \hat{W}}{\partial \lambda_1}$$
 $\sigma_2 = \lambda_2 \frac{\partial \hat{W}}{\partial \lambda_2}$

In either case there are two independent deformation quantities and two stress components –

thus, planar biaxial tests (or extension-inflation tests) are sufficient to fully determine the three-dimensional material properties for an incompressible isotropic material

This is not the case for anisotropic materials

contrary to various claims in the literature

Modelling fibre reinforcement

reference configuration

Fibres characterized in terms of the unit vector field M

One family of fibres – transverse isotropy (locally) – rotational symmetry about direction

 $W({f F})$ is an isotropic function of

$$C$$
 and $\underbrace{M\otimes M}_{\text{structure tensor}}$

Cauchy stress

$$\boldsymbol{\sigma} = -p\mathbf{I} + 2W_1\mathbf{B} + 2W_2(I_1\mathbf{B} - \mathbf{B}^2)$$

$$+ 2W_4\mathbf{m} \otimes \mathbf{m} + 2W_5(\mathbf{m} \otimes \mathbf{Bm} + \mathbf{Bm} \otimes \mathbf{m})$$

$$\mathbf{m} = \mathbf{FM}$$

4 constitutive functions – require 4 independent tests to determine $W_1 \quad W_2 \quad W_4 \quad W_5$

Arterial tissue and characterization of the elastic properties of fibrous materials

Typical arterial segments

Schematic of arterial wall layered structure

Collagen fibres in an iliac artery (adventitia)

ESEM – adventitia of human aorta

Rubber and soft tissue elasticity – similarities and differences

Rubber Soft tissue

Elastic Elastic

Large deformations Large deformations

Incompressible Incompressible

Isotropic Anisotropic

Comparison of responses of rubber and soft tissue

Simple tension (tension vs stretch)

Rubber

Soft tissue

Extension-inflation of a (thin-walled) tube

Pressure vs circumferential stretch

Rubber

Soft tissue

circumferential stretch

axial pre-stretch 1.2

Typical data for a short arterial length

Circumferential stretch (radius)

increasing axial load

Pressure vs axial stretch (length)

For arteries – two families of fibres – unit vector fields ${
m M}$ ${
m M}'$

Invariants
$$I_1 = \operatorname{tr} \mathbf{C}$$
 $I_2 = \operatorname{tr} (\mathbf{C}^{-1})$

$$I_4 = \mathbf{M} \cdot (\mathbf{C}\mathbf{M}) \quad I_5 = \mathbf{M} \cdot (\mathbf{C}^2\mathbf{M})$$

$$I_6 = \mathbf{M}' \cdot (\mathbf{C}\mathbf{M}') \quad I_7 = \mathbf{M}' \cdot (\mathbf{C}^2\mathbf{M}') \quad I_8 = \mathbf{M} \cdot (\mathbf{C}\mathbf{M}')(\mathbf{M} \cdot \mathbf{M}')$$

Cauchy stress

$$\sigma = -p\mathbf{I} + 2W_{1}\mathbf{B} + 2W_{2}(I_{1}\mathbf{B} - \mathbf{B}^{2})$$

$$+ 2W_{4}\mathbf{m} \otimes \mathbf{m} + 2W_{5}(\mathbf{m} \otimes \mathbf{Bm} + \mathbf{Bm} \otimes \mathbf{m})$$

$$+ 2W_{6}\mathbf{m}' \otimes \mathbf{m}' + 2W_{7}(\mathbf{m}' \otimes \mathbf{Bm}' + \mathbf{Bm}' \otimes \mathbf{m}')$$

$$+ W_{8}(\mathbf{m} \otimes \mathbf{m}' + \mathbf{m}' \otimes \mathbf{m})$$

$$\mathbf{m} - \mathbf{EM} \quad \mathbf{m}' - \mathbf{EM}'$$

Stress components

$$\sigma_{11} = -p + 2W_1\lambda_1^2 + 2W_2(I_1\lambda_1^2 - \lambda_1^4) + 2(W_4 + W_6 + W_8)\lambda_1^2\cos^2\varphi + 4(W_5 + W_7)\lambda_1^4\cos^2\varphi$$

$$\sigma_{22} = -p + 2W_1\lambda_2^2 + 2W_2(I_1\lambda_2^2 - \lambda_2^4) + 2(W_4 + W_6 - W_8)\lambda_2^2 \sin^2 \varphi + 4(W_5 + W_7)\lambda_2^4 \sin^2 \varphi$$

$$\sigma_{12} = 2[W_4 - W_6 + (W_5 - W_7)(\lambda_1^2 + \lambda_2^2)]\lambda_1\lambda_2\sin\varphi\cos\varphi$$

$$\sigma_{33} = -p + 2W_1\lambda_3^2 + 2W_2(I_1\lambda_3^2 - \lambda_3^4) \qquad \sigma_{13} = \sigma_{23} = 0$$

Fibre families mechanically equivalent

$$W_4 = W_6 \qquad W_5 = W_7$$

$$\sigma_{12} = 0$$
 no shear stress

$$\sigma_{11}=\sigma_1$$
 $\sigma_{22}=\sigma_2$ $\sigma_{33}=\sigma_3$ – principal stresses

$$W \longrightarrow \hat{W}(\lambda_1, \lambda_2, \varphi)$$

not symmetric in general

$$\sigma_{11}-\sigma_{33}=\lambda_1\frac{\partial\hat{W}}{\partial\lambda_1} \qquad \sigma_{22}-\sigma_{33}=\lambda_2\frac{\partial\hat{W}}{\partial\lambda_2} \qquad \text{as in isotropy}$$

These equations are applicable to the extension and inflation of a tube (artery)

$$1 \, o \, \theta \quad 2 \, o \, z \quad 3 \, o \, r \quad {
m cylindrical polars}$$

Extension-inflation of a tube

Reference geometry

$$A \le R \le B$$
 $0 \le \Theta \le 2\pi$ $0 \le Z \le L$

$$(R,\Theta,Z) \quad \rightarrow \quad (r,\theta,z) \qquad ext{ cylindrical polars}$$

Deformation

$$r^{2} - a^{2} = \lambda_{z}^{-1}(R^{2} - A^{2}) \quad \theta = \Theta \quad z = \lambda_{z}Z$$

Principal stretches

$$\lambda_1 = \frac{r}{R} = \lambda \quad \lambda_2 = \lambda_z \quad \lambda_3 = \lambda^{-1} \lambda_z^{-1}$$
 azimuthal axial radial

Strain energy $\hat{W}(\lambda,\lambda_z,arphi)$

Forms of \hat{W} and φ may be different for different layers

$$\sigma_{\theta\theta} - \sigma_{rr} = \lambda \frac{\partial \hat{W}}{\partial \lambda}$$
 $\sigma_{zz} - \sigma_{rr} = \lambda_z \frac{\partial \hat{W}}{\partial \lambda_z}$

Equilibrium

$$\frac{\mathrm{d}\sigma_{rr}}{\mathrm{d}r} + \frac{1}{r}(\sigma_{rr} - \sigma_{\theta\theta}) = 0$$

Pressure

$$P = \int_{a}^{b} \lambda \hat{W}_{\lambda} \frac{\mathrm{d}r}{r}$$

Axial load

$$N = 2\pi \int_{a}^{b} \sigma_{zz} r \mathrm{d}r$$

Illustrative strain energy (Holzapfel, Gasser, Ogden, J. Elasticity, 2000)

$$\sigma = -p \mathbf{I} + 2W_1 \mathbf{B} + 2W_2 (I_1 \mathbf{B} - \mathbf{B}^2)$$

$$+ 2W_4 \mathbf{m} \otimes \mathbf{m} + 2W_5 (\mathbf{m} \otimes \mathbf{Bm} + \mathbf{Bm} \otimes \mathbf{m})$$

$$+ 2W_6 \mathbf{m}' \otimes \mathbf{m}' + 2W_7 (\mathbf{m}' \otimes \mathbf{Bm}' + \mathbf{Bm}' \otimes \mathbf{m}')$$

$$+ W_8 (\mathbf{m} \otimes \mathbf{m}' + \mathbf{m}' \otimes \mathbf{m})$$

Pressure

$$P = \int_{a}^{b} \lambda \hat{W}_{\lambda} \frac{\mathrm{d}r}{r}$$

Axial load

$$N = 2\pi \int_{a}^{b} \sigma_{zz} r \mathrm{d}r$$

Illustrative strain energy (Holzapfel, Gasser, Ogden, J. Elasticity, 2000)

$$\boldsymbol{\sigma} = -p\mathbf{I} + 2W_1\mathbf{B}$$
$$+ 2W_4\mathbf{m} \otimes \mathbf{m}$$
$$+ 2W_6\mathbf{m}' \otimes \mathbf{m}'$$

Specifically

$$W = W_{
m iso} + W_{
m aniso} \ {
m matrix} \ {
m fibres}$$

with

$$W_{\rm iso} = \frac{1}{2} \mu_1 (I_1 - 3) \qquad \text{neo-Hookean}$$

$$W_{\text{aniso}} = \frac{\mu_2}{2\mu_3} \left\{ \exp\left[\mu_3 (I_4 - 1)^2\right] + \exp\left[\mu_3 (I_6 - 1)^2\right] - 2 \right\}$$

$$I_4 = \mathbf{M} \cdot (\mathbf{CM})$$
 $I_6 = \mathbf{M}' \cdot (\mathbf{CM}')$

Material constants (positive) μ_1, μ_2, μ_3

$$W_{
m aniso}$$
 only active if $I_4>1~{
m or}~I_6>1$

Fits the data well for the overall response of an intact arterial segment

Typical data for a short arterial length

Circumferential stretch (radius)

However!

The behaviours of the separate layers are very different

Stiffness of Media and Adventitia Compared

From Holzapfel, Sommer, Regitnig 2004 – mean data for aged coronary artery layers

Collagen fibres in an iliac artery (adventitia)

Description of distributed fibre orientations

 $\mathbf{M} = \sin\Theta\cos\Phi\,\mathbf{e}_1 + \sin\Theta\sin\Phi\,\mathbf{e}_2 + \cos\Theta\,\mathbf{e}_3$

Orientation density distribution $~
ho(\mathbf{M})~~
ho(-\mathbf{M})=
ho(\mathbf{M})$

Normalized $\frac{1}{4\pi} \int_{\omega} \rho(\mathbf{M}) d\omega = 1$

Generalized structure tensor

$$\mathbf{H} = \frac{1}{4\pi} \int_{\omega} \rho(\mathbf{M}) \mathbf{M} \otimes \mathbf{M} d\omega \longrightarrow \alpha_{ij} \mathbf{e}_i \otimes \mathbf{e}_j$$

Transversely isotropic distribution

$$\rho(\mathbf{M}) \longrightarrow \rho(\Theta)$$

$$\mathbf{H} = \kappa \mathbf{I} + (1 - 3\kappa)\mathbf{e}_3 \otimes \mathbf{e}_3$$

$$\kappa = \frac{1}{4} \int_0^{\pi} \rho(\Theta) \sin^3 \Theta d\Theta$$

mean fibre direction

Parameter calculated from given $\
ho(\Theta)$

or treated as a phenomenological parameter

$$\kappa = 1/3 \longrightarrow \text{isotropy}$$

$$\kappa = 0$$
 transverse isotropy no fibre dispersion

Fibre orientation distribution – illustration

Plot of $ho(\mathbf{M})\mathbf{M}$

Deformation invariant based on

now the mean direction

$$\mathbf{H} = \kappa \mathbf{I} + (1 - 3\kappa) \mathbf{M} \otimes \mathbf{M}$$

$$K \equiv \operatorname{tr}(\mathbf{HC}) = \kappa \underbrace{\operatorname{tr}\mathbf{C}}_{I_1} + (1 - 3\kappa) \underbrace{\mathbf{M} \cdot (\mathbf{CM})}_{I_4}$$

$$K' = \kappa \operatorname{tr} \mathbf{C} + (1 - 3\kappa) \mathbf{M}' \cdot (\mathbf{C}\mathbf{M}')$$

$$I_4 \longrightarrow K$$
 $I_6 \longrightarrow K'$

$$W = \frac{1}{2}\mu_1(I_1 - 3) + \frac{\mu_2}{2\mu_3} \left\{ \exp[\mu_3(K - 1)^2] + \exp[\mu_3(K' - 1)^2] - 2 \right\}$$

material constants

Application to a thin-walled tube

$$W \longrightarrow \hat{W}(\lambda, \lambda_z)$$

$$P^* \equiv \frac{PR}{H} = \lambda^{-1} \lambda_z^{-1} \frac{\partial \hat{W}}{\partial \lambda}$$

reduced axial load

$$F^* \equiv \frac{F}{2\pi RH} = \frac{\partial \hat{W}}{\partial \lambda_z} - \frac{1}{2}\lambda^2 P^*$$

Pressure vs circumferential stretch for a tube with $\lambda_z=1$

Pressure vs circumferential stretch for a tube with F=0 (P in kPa)

Application to uniaxial tension of axial and circumferential strips

FE simulation – uniaxial tension No fibre Fibre dispersion dispersion $\kappa = 0.226$ Cauchy Cauchy stress [kPa] stress [kPa] 5.00E+02 6.00E+02 5.00E+02 7.00E+02 6.00E+02 8.00E+02 7.00E+02 9.00E+02 8.00E+02 1.00E+03 9.00E+02 1.10E+03 1.00E+03 1.20E+03 1.10E+03 1.30E+03 1.20E+03 1.30E+03 1.40E+03 1.40E+03 1.50E+03 1.50E+03

Circ. specimen

Circ. specimen

Axial specimen

Axial specimen

Conclusion

In modelling the mechanics of soft tissue it is essential to account for the dispersion of collagen fibre directions

it has a substantial effect

Reference

Gasser, Ogden, Holzapfel J. R. Soc. Interface (2006)

Structure and Modelling of the Myocardium

Anatomy of the Heart

Lectures, Xi'an, April 2011

Anatomy of the Heart

Change of the 3D layered organization of myocytes through the wall thickness

Endocardium (internal)

Epicardium (external)

Structure of the Left Ventricle Wall

Change of the 3D layered organization of myocytes through the wall thickness

Endocardium (internal)

Sands et. al. (2005)

Epicardium (external)

Locally: three mutually orthogonal directions can be identified forming planes with distinct material responses

Lectures, Xi'an, April 2011

Structure of the Left Ventricle Wall

Change of the 3D layered organization of myocytes through the wall thickness

An alternative view from Pope et al. (2008)

collagen fibres exposed

Simple Shear of a Cube

6 modes of simple shear

Mechanics of the Myocardium

Simple shear tests on a cube of a typical myocardial specimen in the fs, fn and sn planes

Consequence

Within the context of (incompressible, nonlinear) elasticity theory, myocardium should be modelled as a non-homogenous, thick-walled, orthotropic, material

Mechanics of the Myocardium

Biaxial loading in the fs plane of canine left ventricle

The only biaxial data available! Limitations: e.g. no data in the low-strain region (0 - 0.05)

Structurally Based Model

Define

$$I_{4\,\mathrm{f}} = \mathbf{f}_0 \cdot (\mathbf{C}\mathbf{f}_0)$$

$$I_{4\,\mathrm{s}} = \mathbf{s}_0 \cdot (\mathbf{C}\mathbf{s}_0)$$

$$I_{4\,\mathrm{n}} = \mathbf{n}_0 \cdot (\mathbf{C}\mathbf{n}_0)$$

$$\sum_{i=\mathrm{f,s,n}} I_{4\,i} = I_1$$

$$I_{8\,\mathrm{fs}} = I_{8\,\mathrm{sf}} = \mathbf{f}_0 \cdot (\mathbf{C}\mathbf{s}_0)$$

$$I_{8\,\mathrm{fn}} = I_{8\,\mathrm{nf}} = \mathbf{f}_0 \cdot (\mathbf{C}\mathbf{n}_0)$$

$$I_{8\,\mathrm{sn}} = I_{8\,\mathrm{ns}} = \mathbf{s}_0 \cdot (\mathbf{C}\mathbf{n}_0)$$
direction coupling invariants

$$I_{5 \, \mathrm{f}}, I_{5 \, \mathrm{s}}, I_{5 \, \mathrm{n}}$$

expressible in terms of the other invariants

Structurally Based Model

General framework

compressible material: 7 independent invariants

$$I_1 \ I_2 \ I_{4\,\mathrm{f}} \ I_{4\,\mathrm{s}} \ I_{8\,\mathrm{fs}} \ I_{8\,\mathrm{fn}} \ I_{8\,\mathrm{ns}}$$

incompressible material: 6 independent invariants

$$I_1 / I_2 I_{4 \, \mathrm{f}} I_{4 \, \mathrm{s}} I_{8 \, \mathrm{fs}} I_{8 \, \mathrm{fn}}$$

Cauchy stress tensor

isotropic contribution

anisotropic contribution

$$\boldsymbol{\sigma} = 2\psi_1 \mathbf{B} - p\mathbf{I} + 2\psi_{4\,\mathbf{f}} \mathbf{f} \otimes \mathbf{f} + 2\psi_{4\,\mathbf{s}} \mathbf{s} \otimes \mathbf{s} + \psi_{8\,\mathbf{f}\mathbf{s}} (\mathbf{f} \otimes \mathbf{s} + \mathbf{s} \otimes \mathbf{f})$$

$$\mathbf{B} = \mathbf{F}\mathbf{F}^{\mathrm{T}}$$

$$\mathbf{f} = \mathbf{F}\mathbf{f}_0$$

$$\mathbf{f} = \mathbf{F}\mathbf{f}_0 + \psi_{8 \, \text{fn}} (\mathbf{f} \otimes \mathbf{n} + \mathbf{n} \otimes \mathbf{f})$$

left Cauchy-Green tensor

$$\mathbf{s} = \mathbf{F}\mathbf{s}_0$$

$$\psi_{4\,\mathrm{i}} = \partial\Psi/\partial I_{4\,\mathrm{i}},\, i=\mathrm{f,s}$$

Lectures, Xi'an, April 2011

$$\Psi \equiv W$$

Simple Shear of a Cube

6 modes of simple shear

Simple Shear of a Cube

Shear stress versus amount of shear γ for the 6 modes:

(fs):
$$\sigma_{\rm fs} = 2(\psi_1 + \psi_2 + \psi_{4\,\rm f})\gamma + \psi_{8\,\rm fs}$$

(fn):
$$\sigma_{\text{fn}} = 2(\psi_1 + \psi_2 + \psi_{4 \text{ f}})\gamma + \psi_{8 \text{ fn}}$$

(sf):
$$\sigma_{\rm fs} = 2(\psi_1 + \psi_2 + \psi_{4s})\gamma + \psi_{8fs}$$

(sn):
$$\sigma_{\rm sn} = 2(\psi_1 + \psi_2 + \psi_{4\,\rm s})\gamma$$

(nf):
$$\sigma_{\text{fn}} = 2(\psi_1 + \psi_2)\gamma + \psi_{8 \text{ fn}}$$

(ns):
$$\sigma_{\rm sn} = 2(\psi_1 + \psi_2)\gamma$$

The modes in which the fibres are stretched are (fs) and (fn)

Dokos et al. (2002) data

Simple shear tests on a cube of a typical myocardial specimen in the fs, fn and sn planes

Stiffest when the fibre direction is extended

Least stiff for normal direction

Intermediate stiffness for sheet direction

Simple Shear of a Cube

Shear stress versus amount of shear for the 6 modes:

(fs):
$$\sigma_{\text{fs}} = 2(\psi_1 + \psi_2 + \psi_{4f})\gamma + \psi_{8fs}$$

(fn):
$$\sigma_{\text{fn}} = 2(\psi_1 + \psi_2 + \psi_{4f})\gamma + \psi_{8fn}$$

(sf):
$$\sigma_{\rm fs} = 2(\psi_1 + \psi_2 + \psi_{4s})\gamma + \psi_{8fs}$$

(sn):
$$\sigma_{\rm sn} = 2(\psi_1 + \psi_2 + \psi_{4\,\rm s})\gamma$$

(nf):
$$\sigma_{\text{fn}} = 2(\psi_1 + \psi_2)\gamma + \psi_{8 \text{fn}}$$

(ns):
$$\sigma_{\rm sn} = 2(\psi_1 + \psi_2)\gamma$$

The modes in which the fibres are stretched are (fs) and (fn)

A Specific Strain-energy Function

$$\Psi(I_1, I_{4\,\mathrm{f}}, I_{4\,\mathrm{s}}, I_{8\,\mathrm{fs}})$$
 \longrightarrow

$$\Psi = \frac{a}{2b} \exp[b(I_1 - 3)]$$

+
$$\sum_{i=f,s} \frac{a_i}{2b_i} \left\{ \exp[b_i(I_{4i} - 1)^2] - 1 \right\}$$

$$+\frac{a_{\rm fs}}{2b_{\rm fs}}\left[\exp(b_{\rm fs}I_{8\,{\rm fs}}^2)-1\right]$$

isotropic term

transversely isotropic terms

$$I_{4 \, \text{f}} > 1$$
 $I_{4 \, \text{s}} > 1$

orthotropic term
discriminates shear behaviour

8 constants a b a_{f} a_{s} b_{f} b_{s} a_{fs} b_{fs}

Simple Shear of a Cube

Fit without $I_{8\,\mathrm{fs}}$ term

amount of shear

Lectures, Xi'an, April 2011

Simple Shear of a Cube

Fit with $I_{8\,\mathrm{fs}}$ term

Lectures, Xi'an, April 2011

Reference

Holzapfel, Ogden Phil. Trans. R. Soc. Lond. A (2009) myocardium

Health warning

Much more data needed

