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Abstract

Modern approaches to modelling cardiac perfusion now commonly describe

the myocardium using the framework of poroelasticity. Cardiac tissue can be

described as a saturated porous medium composed of the pore fluid (blood)

and the skeleton (myocytes and collagen scaffold). In previous studies fluid–
structure interaction in the heart has been treated in a variety of ways, but in

most cases, the myocardium is assumed to be a hyperelastic fibre-reinforced

material. Conversely, models that treat the myocardium as a poroelastic mate-

rial typically neglect interactions between the myocardium and intracardiac

blood flow. This work presents a poroelastic immersed finite element frame-

work to model left ventricular dynamics in a three-phase poroelastic system

composed of the pore blood fluid, the skeleton, and the chamber fluid. We

benchmark our approach by examining a pair of prototypical poroelastic for-

mations using a simple cubic geometry considered in the prior work by

Chapelle et al (2010). This cubic model also enables us to compare the differ-

ences between system behaviour when using isotropic and anisotropic material

models for the skeleton. With this framework, we also simulate the poroelastic

dynamics of a three-dimensional left ventricle, in which the myocardium is

described by the Holzapfel–Ogden law. Results obtained using the poroelastic

model are compared to those of a corresponding hyperelastic model studied

previously. We find that the poroelastic LV behaves differently from the hyper-

elastic LV model. For example, accounting for perfusion results in a smaller

diastolic chamber volume, agreeing well with the well-known wall-stiffening

effect under perfusion reported previously. Meanwhile differences in systolic

function, such as fibre strain in the basal and middle ventricle, are found to be

comparatively minor.
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1 | INTRODUCTION

Maintaining cardiac pump function requires continuous perfusion of the cardiac muscle. Oxygenated blood is distrib-
uted via the coronary arteries and a complex network of capillaries to the working myocardium. Conditions that result
in insufficient perfusion, such as stenosis in the large arteries, microvascular dysfunction or increased compression of
the extracellular space, increase the likelihood of ischemic injury, infarction, and ultimately, death. Computational
models of perfusion can help to understand both the damage caused by such occlusions and the impact of potential
treatments. However, before analysing disruption within this system, it is important first to benchmark any model by
examining an uninterrupted cardiac cycle. This involves, among other intricacies, the flow of blood across various
scales and compartments as well as interactions with the myocardium.1

In our model, left ventricular dynamics involve interactions of three phrases, the solid, the pore fluid, and the ven-
tricular blood flow within the chamber (the pericardium is neglected). We note that throughout this paper, the solid
may be referred to as either the skeleton or the myocardium, the pore fluid is the coronary flow while the chamber flow
is the cavity blood fluid. Techniques for explicitly modelling the coronary vascular network have been refined over sev-
eral decades,2-6 but models accounting for interactions within the micro vascular network,1 where clinical perfusion is
typically assessed,7 remain scarce. Further, despite continued improvement in the spatial resolution of clinical imaging,
a fully detailed representation of the coronary vessels within the ventricular wall remains unachievable. However,
obtaining this remains desirable due to the inherent link between myocardial perfusion and heart wall dynamics. Thus,
to overcome this limitation, homogenised perfusion models, which do not account for the detailed network structure of
the coronary vasculature, are often employed to study pressure and flow in the working myocardium. In such models
Darcy's law is sufficiently accurate so as to be used as a representation for blood flow.8 An example of such a model was
developed by Hyde and Michler,9,10 who developed their multiscale myocardial perfusion model by parameterising
compartments based on a discrete vascular network while simultaneously solving a static Darcy problem within each of
these. This was subsequently coupled with a scalar transport model to quantify the behaviour of contrast agents during
perfusion imaging.11

The myocardium contracts and relaxes within each heart beat and a static myocardial perfusion model will not cap-
ture the dynamics of the heart wall that will inevitably affect the perfusing blood within the myocardium. Several stud-
ies have incorporated the myocardial dynamics with the Darcy flow in the heart in a poroelastic framework.8,12-14 One
of the earliest studies is from Huyghe et al,12 in which the myocardium was modelled as a spongy anistropic viscoelastic
material in an axis-symmetric beating left ventricle. Later, Chapelle et al8 proposed a general poroelastic myocardial
model that incorporated both the unsteady blood flow and a description of the myocardium as a nonlinear hyperelastic
material. This study introduced several benchmark tests and ultimately simulated perfusion in the left ventricle. This
model was shown to be capable of reproducing several key phenomena, including myocardial volume change resulted
from perfusion. Subsequently, Cookson et al13 combined the multi-compartmental, static approach from Hyde et al9

and the poroelastic mechanical framework in Chapelle et al,8 as well as integrating clinical imaging into this modelling
framework, and demonstrated that their final model proved capable of predicting the expected wall stiffening which
occurs due to an increase of fluid mass. Most recently Lee et al14 coupled a poroelastic myocardial perfusion model to a
one-dimensional representation of the coronary network and preformed detailed wave intensity analysis. Their results
showed a strong consistency between their simulations and experimental observations.

A common aspect of previous modelling works on cardiac perfusion is the utilisation of the Lagrangian approach
on both the porous media and the fluid constituents.8,14 However, despite its advantages in structure only simulations,
the total Lagrangian approach poses difficulties when coupled to ventricular cavity blood flow due to the large deforma-
tion of the heart walls and valves.15 The immersed finite element (IFE) method, combines the strength of the immersed
boundary (IB) methods16 with an immersed finite element methods for the elastic structure, enables effective modelling
of fluid–structure interaction (FSI) with large structural deformation. IFE further avoids the use of body-conforming
discretizations between the fluid and structure,17 and hence overcomes mesh distortion issues in body-fitted
approaches.18,19 One such an example is shown in simulations of FSI in the vicinity of the cardiac valves.20,21

The extension of IFE formulations to treat poroelastic structures is relatively recent.22,23 Strychalski et al22 devel-
oped a poroelastic IB method for cellular mechanics, using a Lagrangian reference frame while the fluid moving both
in and outside of the cell is described in Eulerian form although this approach only considers the dilute limit. However,
this approach resulted in simulations which successfully reproduced cellular blebbing and crawling. Rauch et al23

investigated how cells migrate in a three dimensional porous extracellular matrix by developing a finite element based
immersed method. In that approach, the cellular matrix is modelled as two distinct constituents, with one represented
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as a nearly incompressible fluid and the other an incompressible Darcy-Brinkman flow. This model also accounts for
the effects of contacts that occur due to cell migration. These studies demonstrate how various mechanical interactions
can be readily incorporated into a poroelastic IB framework. More recently, a consistent approach for fluid–structure-
contact interaction based on a porous flow model for rough surface contact and an approach for vascular tumour
growth based on a hybrid embedded/homogenised treatment of the vasculature within a multiphase porous medium
model was developed by Wall and coworkers.24,25 However, these models are complex and have not been used to model
the myocardium.

This study extends our immersed finite element framework,19,26 which was introduced to describe incompressible
elastic structures immersed in a viscous incompressible fluid, to treat poroelastic immersed structures, and it applies
this poroelastic immersed formulation to simulate cardiac perfusion and FSI. We specifically incorporate a three phase
poroelastic cardiac modelling approach, an important consideration when investigating, for example, effective perfu-
sion of the heart during heart diseases such as myocardial infarction.1,3

2 | POROELASTIC MODEL FORMULATION

This section introduces the poroelastic model for the myocardium and the corresponding hyperelastic constitutive law.
In the immersed formulation, the porous myocardium is immersed in a fixed fluid domain using an immersed finite
element framework as detailed in Section 3. This formulation uses both Eulerian and Lagrangian frames. Fixed
Eulerian are x = (x1, x2, x3), and Lagrangian (material) coordinates attached to the structure are X = (X1, X2, X3).

2.1 | Porous medium

We model myocardial tissue as a saturated porous medium composed of two constituents: the perfusate, that is, the
blood, and the solid (skeleton), that is, myocytes and collagen scaffold. We assume that the pores are distributed in a
representative element volume of the porous medium, a rough illustration of which is shown in Figure 1 (although we
note this is not a particular distribution). The homogenised porous medium then consists of two overlapping averaged
phases of fluid and solid.27 For clarity, the quantities that are used to describe the two macroscopic phases can be
expressed as the fluid, ϕϑf, and the solid (or the skeleton), (1 − ϕ)ϑs, in which ϑ can indicate density, velocity, stress,
pressure, or strain, and superscripts f or s denote fluid or skeleton, respectively. Hence, the corresponding quantities of
the porous medium (also known as the mixture) are then expressed as ϕϑf + (1 − ϕ)ϑs, so that ϕ = 1 corresponds to an
entirely fluid material region, and ϕ = 0 corresponds to one that is only solid.

2.2 | Skeleton

Let χ (X, t) denote the physical position of material point X at time t. The physical region occupied by the skeleton at
time t is χ Ωs

0, t
� �

(where Ωs
0 indicates the material co-ordinate domain) and the deformation gradient associated with

the skeleton is = ∂χ
∂X. The material derivative associated with the solid phase of J X, tð Þ=det is

+ =

fluid particle skeleton particle infinitesimal volume
of porous medium Ω

skeleton

fluid

FIGURE 1 The representative elementary volume of the elastic porous medium dΩe, which contains both fluid and solid phases
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D
Dt

J X, tð Þ= J X, tð Þrx �vs x, tð Þ, ð1Þ

where vs x, tð Þ= ∂χ X, tð Þ
∂ t is the velocity of the skeleton. Additionally, conservation of mass in the skeleton takes the form,

J X, tð Þρs 1−ϕ χ X, tð Þ, tð Þð Þ= ρs0 1−ϕ0ð Þ, ð2Þ

where ρs is density of the solid and ρ0, ϕ0 are respectively the initial density and fluid volume per unit tissue volume.

2.3 | Pore fluid

The transport of fluid through porous medium can be modelled by Darcy's law. In Eulerian form, this is

w x, tð Þ= −Krp x, tð Þ, ð3Þ

where K is the permeability tensor and p is the pore pressure. The perfusion (or Darcy) velocity w(x, t) is

w x, tð Þ=ϕ vf x, tð Þ−vs x, tð Þ� �
, ð4Þ

where vf(x, t) is velocity of the pore fluid. The mass conservation of the fluid phase is then

∂

∂t
ϕ x, tð Þρf� �

+r� ρfϕ x, tð Þvf x, tð Þ� �
= ρf s x, tð Þ, ð5Þ

where s(x, t) is a sink/source per unit volume. After substituting (4) into (5), we can write

D
Dt

ρfϕ x, tð Þ� �
+ ρfϕ x, tð Þr �vs x, tð Þ= ρf s x, tð Þ−r� ρfw x, tð Þ� �

, ð6Þ

Let M(X, t) be the added fluid mass,

M X, tð Þ= ρf J X, tð Þϕð χ X, tð Þ, tð Þ−ρf0ϕ0, ð7Þ

so that

D
Dt

M X, tð Þ= J X, tð Þ D
Dt

ðρfϕ χ X, tð Þ, tð Þð Þ+ ρfϕð χ X, tð Þ, tð Þ D
Dt

J X, tð Þ: ð8Þ

Using (1), Equation (8) can be rewritten as

J X, tð Þ D
Dt

ðρfϕ χ X, tð Þ, tð Þð Þ+ J X, tð Þρfϕð χ X, tð Þ, tð Þrx �vs x, tð Þ= D
Dt

M X, tð Þ: ð9Þ

Comparing Equations (9) and (6) give

1
J X, tð Þ

D
Dt

M X, tð Þ+rx � ρfw x, tð Þ� �
= ρf sð χ X,tð Þ, tð Þ, ð10Þ

which agrees with the expression used by Chapelle et al.8
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2.4 | Momentum equation for the porous medium

The momentum equation for the porous medium is given by

ρs 1−ϕ x, tð Þð Þas x, tð Þ+ ρfϕ x, tð Þaf x, tð Þ=r� σe x, tð Þ, ð11Þ

where af(x, t), as(x, t) are the acceleration vectors of the fluid and solid, respectively, and σe(x, t) denotes the Cauchy
stress tensor of the mixture. If we neglect the discrepancy between the fluid and solid accelerations, as in Chapelle
et al,8 then (11) simplifies to

m x, tð Þ+ ρ0
J X, tð Þ

D
Dt

vs x, tð Þ=r� σe x, tð Þ, ð12Þ

where ρ0 =ϕ0ρ
f
0 + 1−ϕ0ð Þρs0 , m x, tð Þ= ρf Jϕ−ρf0ϕ0 and we have made use of (7), (11) while also assuming that

as = Dvs/Dt.

2.5 | Constitutive laws for porous medium

For an isothermal poroelastic material, the free energy Ψ per unit volume in the reference configuration depends only
on  and m,

27 meaning that Ψ=Ψ ,mð Þ, so that

_Ψ= tr
∂Ψ
∂

_
� �

+
∂Ψ
∂m

_m: ð13Þ

Using (13), as well as the formula _=, where  is the spatial velocity gradient of the skeleton, the entropy produc-
tion inequality is28,29

tr J
∂Ψ
∂

−σ

� �


� �
+

∂Ψ
∂m

−gm

� �
_m>0: ð14Þ

The inequality (14) must hold for arbitrary  and _m, and cannot do so unless

σ=

J
∂Ψ
∂

and gm =
∂Ψ
∂m

, ð15Þ

where gm(p) is the free enthalpy (or Gibb's free energy). This characterises the pore fluid constitutive behaviour
through

1

ρf0
=
∂gm
∂p

,or p−p0 = ρf0
∂Ψ
∂m

, ð16Þ

where p0 defines pore pressure in the reference state. Equations (13)–(16) set the requirements of the constitutive rela-
tions for the poroelastic medium.

Herein, we employ a free energy function in a form that is similar to that used by Chapelle et al28

Ψ=Ψs ,mð Þ+mΨm 1

ρf0

 !
, ð17Þ
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where Ψs is the free energy of the skeleton (per unit volume of the reference configuration) and Ψm = gm−p=ρf0 is the
Helmholtz free energy per unit mass. Following Coussy and Uhm,28 we use the splitting

Ψs ,m x, tð Þð Þ=Whyp ð Þ+Wbulk J X, tð Þ,m X, tð Þð Þ, ð18Þ

where Whyp is the deviatoric potential representing the constitutive behaviour of the skeleton as a structure, and Wbulk

describes how the energy depends on the solid phase volume changes (since m(x, t) is proportional to J(X, t)ϕ(x, t)). In
addition, we choose m(x, t)Ψm via,8

m x, tð ÞΨm 1
ρf 0

 !
=Mbb

m x, tð Þ
ρf0

J X, tð Þ−1ð Þf J X, tð Þð Þ+ 1
2
Mb

m x, tð Þ
ρf0

 !2

f J X, tð Þð Þ−κ0ln
m x, tð Þ
ρf0

+ϕ0

 !
, ð19Þ

where Mb, b, and κ0 are constants respectively defining the Biot modulus, a parameter characteristic of the skeleton,
and a penalty term to ensure that 0 < ϕ < 1. In addition we use28

f J X, tð Þð Þ= 2 J X, tð Þ−1− ln J X, tð Þð Þð Þ
J X, tð Þ−1ð Þ2 : ð20Þ

Differentiating Equation (19) with respect to m and substituting into (16) yields the interstitial pore pressure,

p x, tð Þ−p0 = ρf0
∂Ψm

∂m
=Mb b 1−J X, tð Þð Þ+ m x, tð Þ

ρf0

 !
f J X, tð Þð Þ−κ0

ρf0
m x, tð Þ+ ρf0ϕ0

: ð21Þ

Note that on the left hand side of Equation (21), p0 = κ0ϕ0, which ensures that m = 0, p = 0, and J = 1 form a trivial
solution.

3 | IMMERSED FORMULATION OF THREE-PHASE FLUID-POROELASTIC
STRUCTURE INTERACTION

3.1 | Immersed poroelastic structures

We model fluid-poroelastic structure interaction in the particular case that the poroelastic medium is bathed in a vis-
cous incompressible fluid. We assume that the exterior fluid in which the structure is immersed is distinct from the
interior pore fluid within the poroelastic medium. We define this surrounding fluid as the bathing fluid while noting
that the exterior fluid occupies the region Ωf

t at time t, and the poroelastic structure occupies the region Ωe
t . We assume

that these regions are non-overlapping and, further, that they form a fixed computational domain Ω=Ωf
t [Ωe

t

(Figure 2).
We assume that density is constant across all constituents, that is, ρ= ρ0 = ρs = ρf = ρs0 = ρf0 = ρexterior fluid0 : This allows

Equations (2) and (7) to be combined so that

J X, tð Þ=1+
M X, tð Þ

ρ
, ð22Þ

and

D
Dt

M X, tð Þ= ρ
D
Dt

J X, tð Þ: ð23Þ
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Since (1) and (10) are alternative formulations for Dm/Dt and DJ/Dt, after minimal algebra the following expression
can be derived by substituting these into (23)

r�vs x, tð Þ= s x, tð Þ−r�w x, tð Þ: ð24Þ

3.2 | Continuous formulation

In typical immersed formulations of fluid–structure interaction, a common material velocity field v(x, t) is used for both
the structure and the (exterior) fluid. To develop such a formulation for a poroelastic immersed structure, we track the
velocity field of the skeleton, so that the deformation and velocity fields of the skeleton can be readily available for the
Darcy flow model. The velocity of the IFE system, defined as

v x, tð Þ= vs x, tð Þ, χ x, tð Þ�Ωe
t ,

vfib x, tð Þ, otherwise,

�

where vf
ib defines the Eulerian velocity field in Ωf

ib which is the bathing fluid. The momentum equation for the three-
phase system is

ρ
Dv x, tð Þ

Dt
=r� σ, ð25Þ

and the region specific Cauchy stress tensor is

σ x, tð Þ=
pib x, tð ÞI+ μ rv x, tð Þ+ rv x, tð Þð ÞT

� 	
+ σe x, tð Þ, x�Ωe

t ,

pib x, tð ÞI+ μ rv x, tð Þ+ rv x, tð Þð ÞT
� 	

, otherwise,

0
B@ ð26Þ

where σe(x, t) is the elastic Cauchy stress tensor of the mixture, pib(x, t) + μ(rv(x, t) + (rv(x, t))T) is the fluid-like
stress tensor, μ is the viscosity of the bathing fluid, and pib is the Lagrange multiplier to ensure the continuity equation
is satisfied. The continuity equation for the poroelastic IB/FE system is given by

Skeleton

Pore fluid

IB external fluid

Ω

FIGURE 2 The three-phase fluid–structure interaction domain,

wherein the poroelastic structure is bathed in a viscous

incompressible fluid that is distinct from the pore fluid. Different

phases are shown in pink (exterior fluid), grey (solid), and pore

fluid (blue)
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r�vs x, tð Þ= s� x, tð Þ= s x, tð Þ−r�w x, tð Þ, ð27Þ

which is the same as (24).
Along with the momentum Equation (25), we use the Lagrangian form of the Darcy system to determine the

dynamics of the pore fluid:

∂M X, tð Þ
∂t

+rX � ρW X, tð Þð Þ= ρS X, tð Þ, ð28Þ

W X, tð Þ= −J X, tð ÞK−TrXp x, tð Þ, ð29Þ

p x, tð Þ−p0 = ρ
∂Ψm

∂m
: ð30Þ

The remaining dynamic equations are19

ρ�
Dv x, tð Þ

Dt
=r�piI+ μr2u+ f e, ð31Þ

r �v x, tð Þ= s� x, tð Þ, ð32Þ

f e =
ð
Ωe

0

Fe X, tð Þδ x−χ X, tð Þð ÞdX, ð33Þ

ð
Ωs

0

Fe X, tð Þ �V Xð ÞdX= −
ð
Ωs

0

Pe X, tð Þ :rxV Xð ÞdX, ð34Þ

∂χ X, tð Þ
∂t

=
ð
Ω
v x, tð Þδ χ X, tð Þ−xð Þdx, ð35Þ

where δ(x) is the Dirac delta function and Pe(X, t) is the first Piola-Kirchhoff stress tensor for the elastic constituents,
which can be computed via Pe X, tð Þ= ∂W

∂ = J x, tð Þσ−T and (15). Finally the fluid and structural constituents are con-
nected via

S� X, tð Þ= S X, tð Þ−rX �W X, tð Þ,
s� x, tð Þ=

ð
Ωs

0

S� X, tð Þδ x−χ X, tð Þð ÞdX: ð36Þ

3.3 | Discrete formulation

Numerically the two systems summarised above are updated in sequence. Equations (31)–(35) are first used to find
vn + 1, pn+1

ib , χn+1, n+1 and Jn+1 (note that the superscript n defines the value at the current time step and n+1 the
following time step) with the updated  and J then used in Equations (28)–(30) to find mn+1, Wn+1 and pn+1. The
new Darcy velocity, Wn+1, is then passed, along with S, back to the IB/FE system via Equation (36).

To update Equations (28)–(30) a split step temporal scheme is employed where the primary variable p is updated
implicitly. This allows appropriate boundary conditions to be enforced on the pore pressure while W and m can there-
after be recovered through simple explicit schemes, found by reformulating Equations (28)–(30).

To achieve an appropriate form for updating p, Equation (29) is substituted into (28) while (30) is first differentiated
with respect to time, and thereafter, used to obtain a relationship between ∂m/∂t and ∂p/∂t. Differentiating Equa-
tion (30) gives
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∂p
∂t

= ρ
∂

∂t
∂Ψm

∂m

� �
=A Jð Þ∂m

∂t
+B Jð Þ∂J

∂t
+C m,Jð Þ−D mð Þ, ð37Þ

where

A Jð Þ= Mbf Jð Þ
ρ

, B Jð Þ= −Mbf Jð Þb,

C m,Jð Þ=Mbf
0
Jð Þ b 1−Jð Þ+ m

ρ

� �
, D mð Þ= ∂

∂t
κ0ρ

m+ ρϕ0

� �
:

As indicated, Equation (37) is re-written in terms of ∂m/∂t before being substituted into (28) so that, after also using
Equation (29), we obtain

1
ρ

∂p
∂t

−ρJArX � −1K−TrXp
� �

= ρSA+B
∂J
∂t

+C=E m,Jð Þ: ð38Þ

As indicated above when updating the Darcy system, the primary variables (pn, Wn, mn) are first advanced to a half
way temporal time step (pn+

1
2,Wn+ 1

2mn+ 1
2 ) before solving for (pn+1, Wn+1, mn+1). To preform the first step of finding

pn+1/2, Equation (38) is discretised so that

1
ρ

pn+1=2−pn

Δt=2
−ρJnArX � −1K−TrXp

n+1=2
� 	

=E mn,Jnð Þ, ð39Þ

with all pn + 1/2 terms gathered on the left before solving for this implicitly. This is carried out using a standard Galerkin
finite element discretization in space with first-order Lagrangian basis functions. Next, Wn + 1/2 is obtained through a
simple reformulation of Equation (29)

Wn+1=2 = −Jn−1K−TrXp
n+1=2, ð40Þ

and finally by substituting Ψm into Equation (30), mi + 1/2 is obtained via we have

mn+1=2 = ρf0
1
M

pn+1=2−p0 +Cðmn,Jn
� 	

+B Jnð Þ Jn−1ð ÞÞ
� �

: ð41Þ

Equations (39)–(41) conclude the update to the intermediate variables (pn + 1/2, Wn + 1/2, mn + 1/2). The second updates
to pn + 1 and Wn + 1 are identical to those in (39) and (40), while mn + 1 is now found by Equation (28), leading to

mn+1−mn+1=2

Δt=2
= ρSn+1−rX � ρWnð Þ: ð42Þ

A schematic illustration of the overall algorithm is provided in the Appendix.

4 | RESULTS

In this section, we first present a pair of verification tests on a cube, comparing against published results from Chapelle
et al,8 before extending this example by retaining the geometry but using an orthotropic constitutive law that has been

RICHARDSON ET AL. 9 of 22



widely used in the cardiac modelling literature. Finally, we apply this poroelastic IB/FE framework to a subject-specific
human left ventricle (LV).

In these simulations, all three primary variables in the Darcy system are initialised to 0, and boundary conditions
are enforced during the implicit update of the pore pressure, p. The solver for the Darcy system and IBAMR software
run independently from each other although they are coupled with several variables being passed between these at each
time step.

All simulations are performed at the School of Mathematics and Statistics at the University of Glasgow.

4.1 | Verification tests

To verify our poroelastic IB/FE framework with the results from Chapelle et al8 the free energy is formulated similarly,
that is

Ψs =Whyp +Wbulk, ð43Þ

but make necessary adjustments in the Wbulk term to ensure that incompressibility of the skeleton is enforced, that is,
J =1+ m

ρf0
. Thus the individual components of (43) are defined as

Whyp = κ1 I1−3ð Þ+ κ2 I2−3ð Þ, Wbulk =Ks ln
2 J−

m

ρf0

 !
, ð44Þ

where κ1, κ2, and Ks are material parameters, I1 = trace(C), and I2 = 1
2 tr Cð Þð Þ2− tr C2

� �� �
where C=T. When compar-

ing to the results of Chapelle et al,8 we note that the penalty term in (44) approximately imposes mass conservation on
the skeleton, while the comparable term used previously8 approximately imposes J = 1. In fact, we do not wish to
impose J = 1 because the porous medium is compressible as a result of the added mass from the Darcy flow, although
both the skeleton and blood are individually incompressible. Thus in (44), we ensure that the mass of the skeleton shall
be conserved, that is J =1+ m

ρf0
. In the limiting case of the porosity being zero then J = 1 will be enforced, which repre-

sents a purely hyperelastic material. It is worth mentioning that after solving the continuity equation in the IB/FE sys-
tem, pib also acts as a Lagrange multiplier to enforce r � v = s, and it is an exact Lagrange multiplier for that constraint.
The study of Vadala et al26 demonstrates the importance of including such volumetric energies in immersed formula-
tions; see also our prior work on immersed models of ventricular mechanics.30

As in Chapelle et al,8 we assume isotropic permeability, that is, K = kI, and we do not change the value for any
parameters or boundary conditions except for βv, which was corrected for the drainage case (following private commu-
nication with the authors). Table 1 lists all the parameters used in our simulations. The cube is immersed into a compu-
tational domain of size 1 × 1 × 1 cm3 and discretised using a 96 × 96 × 96 Cartesian grid.

4.1.1 | Swelling for a cube

In the swelling test, zero pressure is applied to the outer boundary of the computational domain. To keep the immersed
porous medium in place, normal displacements are set to be zero for the planes x = 0, y = 0, and z = 0. There is no sink
or source of pore fluid, that is, S = 0. A time-dependent pressure, pbc = 103(1 − exp(−t2/0.25)), is applied to the face
x = 0, increasing from 0 to 1 kPa, while p is kept zero at the face x = 1. Zero-flux boundary conditions are applied to
the other four faces. These boundary conditions are summarised in Figure 3.

To determine an appropriate grid size for all forthcoming simulations, a grid convergence test is carried for this
swelling cube. Five different grid sizes are chosen, including 643, 803, 963, 1123, and 1283. The pore pressure at the cube
centre and the maximum displacements of the skeleton are compared with the values from the mesh with 1283, as
shown in Table 2. Notice that the differences of the mesh with 963 are within 5% of those obtained using a 1283 grid.
Therefore, for the sake of computational efficiency, we use a 963 grid for all subsequent computations.
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The results of the swelling test at steady state when the inlet pressure reaches its limits is shown in Figure 4. The
cube swells like a sponge because of the increased pore pressure near the face x = 0, with the swelling gradually taper-
ing towards the face x = 1, as shown in Figure 4(A). Figure 4(B) shows the Darcy velocity field w, and it is clear that
the pore fluid mainly flows along the x-axis. Figure 4(C) shows the time profile of the added mass m at three different
points: (0, 0, 0); (0.5, 0.5, 0.5); and (1, 1, 1), and the corresponding pore pressure profiles are shown in Figure 4(d). By
comparing these results to those of Chapelle et al8 in Figure 4(C, D), we can see the two formulations produce nearly
identical results.

4.1.2 | Drainage for a cube

In the drainage test, the pressure in outer boundaries of the fluid domain is zero, the skeleton is fixed at (0,0,0), and
zero normal displacements are applied on the planes x = 0, y = 0 and z = 0. An external force on the solid of 10 kPa is
gradually applied on all the faces of the cube with Pv = 104(1 − exp(−t2/0.04)) Pa. For the pore flow, no-flux condition
is applied to all the faces, but the pore fluid is connected to a pressure sink term which is distributed throughout the

TABLE 1 Table of parameters

Name Description/definition Swelling test Drainage test Ventricle model Units

Mb Biot modulus 2.18 × 105 2.18 × 105 2.18 × 105 Pa

b Parameter of the skeleton 1 1 1 —

ρ Density 103 103 103 kg m−3

Ks Bulk modulus for skeleton 2.2 × 105 2.2 × 105 2.2 × 105 Pa

κ0 Penalty coefficient (as in8) 0.01 0.01 0.01 Pa

ϕ0 Initial porosity 0.1 0.1 0.15 —

K Permeability tensor 10−7 2:5× 10−6 2× 10−9 m2 Pa−1 s−1

βa — — — 3 × 10−5 Pa−1 s−1

βv — — — 3 × 10−2 Pa−1 s−1

pa — — — 2.7 kPa

pv — — — 1.3 kPa

00000uy = 0

ux
=

0

uz =============== 0000000

∂∂∂∂p/p/p/p/ ∂∂∂∂zzzzzzzzzzzz = 0

0

p=
0

∂p/ ∂z

∂p/p/p/p/p/p/p/p/ ∂y = 0

∂p/ ∂z

∂p/ ∂y =

p =
A

∂
p
p/ ∂∂∂∂∂∂∂∂zzzzzzzzzzzzzzzz ======= 0000000

(A) (B)FIGURE 3 The boundary conditions which are enforced on the

solid, (A), and fluid, (B), in the swelling test (as in Chapelle et al8).

Note that in the boundary conditions for the fluid, A = 103(1 − exp

(−t2/0.25))Pa and ux, uy, uz refer to the respective displacement

components

TABLE 2 Grid convergence tests using grid sizes of 643, 803, 963, and 1123

N Difference of p at the cube centre Difference of the maximum displacement

64 ≈10.5% ≈11.1%

80 ≈4.8% ≈5.1%

96 ≈3.8% ≈3.5%

112 ≈3.7% ≈3.3%

Note: Relative differences are determined by comparing the results to those obtained using a 1283 grid.
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skeleton. This is defined as S = − β(p − psink) with β = 10−4s−1Pa−1 and psink = 0 Pa, which allows for volume change
within the poroelastic structure.

Figure 5 shows the drainage test results, in which the pore fluid is connected to a pressure sink, which drains the
pore fluid out and shrinks the cube. Our results again show good agreement with the results from Chapelle's study for
p, m and J, in particular their patterns. However, we note that the values are not identical as in the swelling case. For
instance, the sharp drop in the pore pressure which is seen in the results of Chapelle et al is no longer present due to
differences between the three-phases immersed boundary approximation and a purely finite element approximation.
Other reasons include: (1) one parameter relating to the sink/source (βv) was adjusted, after communicating with the
authors, to ensure that it was sufficiently large enough to provide the pore pressure drop which is reported in fig. 2 of
Chapelle et al8; (2) the mass conservation constraint is different compared to the work of Chapelle et al, in which J = 1
was imposed, instead we impose J = 1 − m/ρf, see Equation (44) for details. Presumably, the mass conservation con-
straint will largely affect the levels of J and m and p, as we see in Figure 5.

4.2 | Fibre-reinforced material models

In Chapelle et al,8 the material property of the skeleton is considered to be nonlinear but isotropic. However, it is now
known eperimentally that the mechanical property of the myocardium is nonlinear and anisotropic. Therefore, we use
the Holzapfel–Ogden (HO) strain energy function31

Whyp =
a
2b

exp b I1−3ð Þ½ �+
X
i= f,s

ai
2bi

exp biI
?2
4i


 �
−1

� 

+

afs
2bfs

exp bfsI
2
8fs


 �
−1

� 

,

Wbulk = K ln J−mð Þð Þ2,
ð45Þ

(Pa) (cm/s)

(0, 0, 0)
(0, 0, 1)

(1, 0, 0)

(0, 1, 0)(A) (B)

(C) (D)

FIGURE 4 Results from the Swelling test: (A) pore pressure p; (B) Darcy velocityW; (C) pore pressure, p, as a function of time at three points

within the cube fixed in the current configuration (bottom left, centre and top right); (D) increasedmass over time at these same points. The results from

Chapelle et al8 are plotted as an insert to each graph for easy comparisonwhile 10 points have also been picked from these graphs and overlayed as red

stars, crosses and circles on our results. So as tomake the respective planes clear in (A) the point (x, y, z) = (0,0,0) is indicated alongwith three others
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where the material constants a, af, as, afs, b, bf, bs, bfs, and I?4i =max I4i,1ð Þ−1 , I4f = f0 � (Cf0), I4s = s0 � (Cs0), and
I8fs = f0 � (Cs0), and the material axes f0, s0, and n0 characterise the myofibre direction, sheet direction, and the sheet
normal in the reference configuration, respectively.

Following prior work,30 the first Piola-Kirchhoff stress for the skeleton is further modified as

Pe =
dW
d

−
a
2
exp b I1−3ð Þf g−T , ð46Þ

which will ensure that if =  , Pe = 0. Parameters in (45)1 are chosen to be the same as in prior work,32 which were
inferred by matching clinical measurement of left ventricular kinematics. These are a = 2.24 kPa, af = 2.42 kPa,
as = 0.55 kPa, afs = 0.40 kPa, b= 1.62, bf = 1.83, bs = 0.77, and bfs = 1.7. The value of the bulkmodulus is reported in Table 1.

To examine the changes resulting from a different constitutive law and the addition of fibre structure in the same geometry,
boundary conditions, and loading as in Chapelle et al,8 we first examine the case of a swelling cube. For this we consider three
cases:

• myofibres are along the x direction with f0 = (1,0,0), s0 = (0,1,0), and n0 = (0,0,1);
• myofibres are along the y direction with f0 = (0,1,0), s0 = (0,0,1,), and n0 = (1,0,0) and
• myofibres are along the z direction with f0 = (0,0,1), s0 = (1,0,0), and n0 = (0,1,0).
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FIGURE 5 Drainage test results, (A) drainage of the cube from the original position (shown as mesh) upon an external pressure, and

the time history of the volume averaged values of (B) added mass, (C) pore pressure, and (D) Jacobian J. The respective graphs from

Chapelle et al are included alongside the results from our simulations. We note that while the profiles are similar the graphs approach

different steady states, due to running with different values of some constants, as discussed in the text. So as to make the respective planes

clear in (A) the point (x, y, z) = (0,0,0) is indicated along with three others
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The results of these simulations are illustrated in Figure 5, which can clearly show that the fibre-reinforced cube
deforms very differently with different fibre structure and from the verification test in Figure 4. For example, in Figure 5
(A), the cube has expanded in both the y and z. This is caused by the stiffer material properties along the x-axis where the
myofibres lie. Similar results are also seen in panels (B) and (C), where the cube swells in the cross-fibre directions.

4.3 | Perfusion in a dynamic left ventricle model

We now use the methods developed in the previous sections to investigate a more physiologically relevant case by pre-
forming simulations in a previously developed left ventricle model.32 This particular LV geometry was reconstructed
from a cardiac magnetic resonance (CMR) imaging study of a healthy volunteer. Details of the imaging protocols and
reconstruction process, and development of a rule-based fibre architecture were provided previously.32,33

To account for the active tension, the first Piola-Kirckhoff stress for the skeleton is modelled as the sum of the active
and passive stresses,

Pe =
dW
d

+Pa, ð47Þ

in which the active stress Pa is

Pa = JTaf 0�f0 with Ta =ℱ t,Ca2+ ,SL,Treq
� �

: ð48Þ

In (48), Ta is the active tension determined by a group of ordinary differential equations ℱ which depends on time,
the intracellular calcium concentration Ca2+, sarcomere length (SL), and the required active tension Treq to achieve
measured systolic volume, set at 124 kPa in this study. This active contraction model was detailed previously in Refer-
ence 34 (Figure 6).

As in Chapelle et al,8 we do not include multiple compartments, as it remains challenging to parameterize a real
ventricular model in this way due to insufficient data on the distributions of coronary arteries, arterioles, capillaries,
venules, and veins. Thus a single compartment describing a distributed source is used for the ventricular perfusion
model. This is determined by

S= βa pa−pð Þ−βv p−pvð Þ, ð49Þ

in which βa, βv, pa, and pv are parameters characterising the small coronary arteries and veins; see Table 1.

FIGURE 6 Simulation results when preforming the swelling test, as in Figure 4, but changing with the H-O material model (45). These

results clearly show that altering the fibre direction changes the deformation with (A) illustrating fibres oriented along the x direction,

(B) fibres oriented along the y direction and (C) fibres oriented along the z direction. For ease, the fibre directions are illustrated by the

arrows alongside each result
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Figure 7 illustrates a schematic of the settings of the LV model within the IB/FE poroelastic framework. We set the
properties of the bathing fluid to be blood, thus the LV cavity fluid (blood) will be merged with the bathing fluid. Note
by including outflow/inflow tracts, the LV cavity fluid can be separated from the bathing fluid.20 An LV cavity pressure
is applied to the endocardial surface directly, and the displacements of the basal plane are fixed in the circumferential
and axial directions, while expansion is allowed radially. The pressure loading is applied by first linearly increasing the
endocardial pressure to an assumed end-diastolic value (8 mmHg) without active contraction, denoted as the diastolic
filling phase. Then the LV model enters into the systolic contraction phase in which the pressure rapidly increases to
the end-systolic value (112 mmHg), estimated by the measured brachial arterial pressure when the CMR images were
acquired The intracellular calcium concentration is simultaneously increased to its peak value to trigger the active ten-
sion generation and remains at its peak value afterwards. For the pore pressure, a no flux boundary condition is applied
to the base, endocardial and epicardial surfaces. Instead, the blood moves in the out of the myocardium through the
source term, see Equation (49). The initial porosity is set to ϕ0 = 0.15, and the permeability is assumed to be isotropic
and homogeneous across the ventricular wall with a value of k = 2 × 10−9 Pa−1s−1. We emphasise that the passive strain
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FIGURE 7 Illustration of the setting up of the LV model in

the IB/FE poroelastic framework, adapted from Reference 30. c:
the circumferential direction, r: the radial direction, l: the
longitudinal direction. The blue box represents the fixed

computational domain Ω with zero pressure and zero tangential

slip along all boundaries, where v is the Eulerian velocity and t is
the unit tangent vector

FIGURE 8 Simulation results of the LV model which are

coloured by the added mass. The two images are plotted at different

times with (A) corresponding to the end of dyastole and (B) the end

of systole
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energy function and active contraction model are different from those used by Chapelle et al.8 For comparison, we also
simulate a purely hyperelatic LV model that does not include the porous flow in myocardium, corresponding to ϕ0 = 0.
As in our previous studies,32,34 we simulate diastolic filling for the first 0.5 s and systolic ejection for the final 0.6 s, at
which point a steady state is reached. In these simulations, we set Δt = 1 ms and, as in previous simulations,30 use a
96 × 96 × 96 Cartesian grid. We also further compared the results for both the average pore pressure and maximum dis-
placement at the end of diastole between a 963 and a 1123 mesh with differences for these being in the region of 3% for
the displacements and 3.5% for p. Although this convergence test is less detailed than that carried out for the cubic case,
the convergence tests of the coupled LV model are similar to our previous study30 that a 96 × 96 × 96 Cartesian grid
proved optimal for obtaining computationally efficient, accurate results for a hyper-elastic LV model.

Figure 8 shows the added blood mass to the myocardium at end-diastole and end-systole, respectively. During dias-
tole, blood enters into the ventricular wall due to a lower pore pressure brought about by the passive expansion of ven-
tricular wall, and the much higher coronary arterial pressure then pushes the blood into the myocardium with little
flow out through the veins. In contrast, during systole, the active contraction exerts a much higher pore pressure in the
myocardium, which pushes blood into the veins (represented by the negative values of added mass). Furthermore, as
there is little inflow from the coronary arteries in systole, the net added mass drops below zero at this time.

Figure 9 shows the time histories of the added mass in terms of the wall-averaged value (mmean), epicardial averaged
value (mepi), and endocardial averaged value (mendo), along with the corresponding pore pressures. As expected, the
averaged added mass increases during diastolic filling, although the local value depends on the transmural wall posi-
tion, with a high value at the endocardium and a lower one at the epicardium. Similarly, during systole, the blood in
the myocardium is actively squeezed out of the ventricular wall through the veins. This results in a higher value of m
on the endocardium than that on the epicardium. This suggests that under our assumption of constant permeability,
the perfusion inside myocardium would be transmurally heterogeneous, because the endocardium contracts more than
epicardium. Figure 9(B) shows that the corresponding averaged pore pressures increase quickly at early diastole as the
blood flows into the ventricular wall chiefly through the coronary arteries, since the coronary arterial pressure is much
higher than the pore and venous pressures. Both pmean and pepimean then remain more or less constant for the rest of cycle,
presumably because most of the LV wall is well drained. Interestingly, there is a short rise in the endocardium pore

(A) (B)

(C)

FIGURE 9 Time histories of the added mass, in terms of the wall-averaged value (mmean), epicardial surface averaged value (mepi
mean),

and endocardium surface averaged value (mendo
mean), are plotted in (A), and the corresponding values of the pore pressure and porosity are

shown in (B) and (C)
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FIGURE 10 Comparison of the poroleastic (solid) and hyperelastic (dashed) models. (A) Three selected basal (red), middle (blue) and

apex (black) locations, (B) volume history, (C, D) transmural (from endocardium to epicardium) fibre stress (indicated by σff) at the three

locations as illustrated in (A), and (E, F) the corresponding fibre strain (indicated by Eff). The graphs in (C) and (E) are plotted at t = 0:5,

corresponding to the end of diastolic filling, while (D) and (F) are at t = 0:8, approaching the end of systolic ejection. (G) as in (E) but for Eed
ff

, which is the fibre strain with respect to end-diastole, a strain measure commonly used in clinical studies35
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pressure in systole, which seems to be associated with the sharp drop in the corresponding added mass at the
same time.

Figure 10 compares the poroelastic and hyperelastic models. Figure 10(B) shows the ventricular volume history
from diastole to systole for both poroelastic and hyperelastic LV models. Examining this, we see that for a given loading
condition, the poroelastic model has a slightly lower filling volume in diastole with an end-diastolic volume of ≈117 ml
compared to ≈124 ml in the hyperelastic LV model. This corresponds to a reduction of ≈7% and is in good agreement
with the experimental findings from May-Newman et al,36 in which a 10% reduction in chamber volume was observed
when comparing a regularly perfused heart to an unperfused one. Additionally, we note that this disparity is not as dis-
tinct during systolic contraction, where the respective volumes from the poroelastic and hyperelastic model are ≈39 ml
and ≈41 ml. This is again consistent with the study from May-Newman et al,36 who suggested that systolic function is
essentially unaltered by changes in perfusion.

Figure 10(E–G) compare the myofibre stress and strain transmurally at three different locations highlighted in
Figure 10(A). We evaluate the fibre strain using two different methods, one being with respect to early diastole (the ref-
erence geometry), denoted as Eff, and the other with respect to end diastole, denoted as Eed

ff . Although the former is
more natural for computational modelling, the latter is more commonly used in clinical settings.35,37 Using both
models, similar trends are seen in the stress and strain distributions. However, the differences are more pronounced in
diastole than in systole, with lower fibre stress and strain in the poroelastic LV. This is most clearly seen in the diastolic
distribution of Eed

ff . The reduced strain and stress in diastole may be explained by the stiffening effect in diastole due to
the increased fluid mass in myocardium. In systole, the same active tension is applied in both models. As this is much
stronger than passive loading, it ultimately dominates and as such overwhelms any potential model differences in sys-
tole. However one exception occurs around a small region in the middle of the wall thickness along the basal
section (indicated in red), where the fibre strain is slightly higher in the poroelastic model, which may result from the
local geometry. We also note that the fibre stress and strain are very similar for the two models when in systole.

Comparisons of the cavity flow patterns and wall deformation between both models at mid-diastole and mid-systole
can be found in the Appendix (Figure A1).

5 | DISCUSSION AND LIMITATIONS

The formulation of such models is in no small part possible due to various technological advancements enabling greater
clinical capabilities. This has produced, for example, cardiac imaging equipment capable of generating highly detailed
images of the coronary vessels which provide an essential template when developing the models which track blood flow
through capillaries. However, the asymmetric and complex nature of this distributed vascular network, which moreover
spans several orders of magnitude, reveal the significant challenges faced in accurately simulating the detail of this sys-
tem, while the distinctive mechanical environment of periodic contractile cycles leads to a sustained fluid–solid interac-
tion between coronary vessels and the myocardium in which they are embedded. Therefore, rather than considering
the multitude of microscopic flows as unique, individual branches, within this study these are instead aggregated into a
single macroscopic field perfusing the heart while the aforementioned fluid solid interaction is most effectively consid-
ered within the framework of poroelasticity. Previous models have indicated that these assumptions will not only pro-
duce physiologically accurate results but additionally, and of almost equal importance, they can provide a
computationally effective solution. Using a simplified coronary network allows our model and subsequent methods to
be benchmarked by comparing against a pair of test cases while the resulting formulation thereafter constitutes an
established framework to be expanded upon making the next steps, of, for example, linking with a full vessel network,
more easily achievable. Work to study heart perfusion to include detailed coronary network is on-going.

We also observe the expected stiffening effect in the poroelastic model compared to the unperfused hyperelastic
model as shown in Figure 10, a reduction of 7% in end-diastolic volume. The experimental study by May-Newman
et al36 found that by increasing perfusion pressure from 0 to 100 mmHg, a 10% reduction in LV chamber volume was
observed, but this was accompanied by no changes in fibre strain They further suggested the systolic function may not
be substantially impacted by changes in coronary perfusion. Our results show that the systolic function in the
poroelastic model is very close to the hyperelastic model with slightly smaller systolic volume, and the ejection fractions
generated by the two models are nearly same (66%). In fact, Arnold et al38 found that increased perfusion can even
cause a positive inotropic effect. The same stiffening effect was also demonstrated in Cookson et al's study13 with an iso-
tropic material model for myocardium. As shown in Figure 10(C–F), large differences exist in the apical region, which
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may be partially explained by the geometry feature near the apex and the difficulty of defining realistic fibre structure
at the apical region. Still, we find that the fibre strains in diastole for the two models at the basal and middle ventricle
are very close, which is again consistent with the experimental findings from May-Newman et al.36 The contracting
strains with respect to end-diastole are slightly smaller (less negative) in the poroelastic model overall, while we note
that the values of strains from both models are well within the ranges reported in prior clinical studies.35

6 | CONCLUSION

This paper introduces a three-phase fluid–structure interaction model for simulating poroelastic structure immersed in
a viscous incompressible fluid. Our formulation extends the hyperelastic immersed finite element approach of Griffith
and Luo and through a simple benchmark tests, we obtained excellent agreement with prior results of Chapelle et al.8

In addition we found that the fibre structure of the myocardium has a substantial impact on the pore flow within the
tissue. We then applied this approach to simulate ventricular mechanics using a human left ventricle model with an
anisotropic hyperelastic elastic material model. Differences between the hyperelastic and poroelastic models are com-
pared and discussed. We observe the expected myocardial stiffening in the poroelastic model caused by the perfusion
from the coronary arteries in diastole, consistent with published experimental and numerical studies. While the systolic
function from the poroelastic model is very close to a hyperelastic model with slightly smaller contracting fibre strain
but nearly the same ejection fraction. Although this paper uses only a simple model of the coronary network, the new
numerical framework developed paves the way for future more in-depth cardiac perfusion modelling.
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APPENDIX

Numerical implementation of IB/FE poroelasticity
The numerical implementation of the pororelastic immersed finite element framework is shown in Algorithm 1.

Algorithm 1

Numerical methods of IB/FE poroelasticity. ℛ is the velocity-restriction operator and S is a force-
spreading operator, details of ℛ and S, and the discretization of the IB/FE system in space and time
can be found in28,29
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FIGURE A1 Cavity flow fluid and wall deformation of a longitudinal cross-sectional view of the (A) hyperelastic model, (B) poroelastic

model in mid diastole (t = 0.25), and (C) hyperelastic model, (D) poroelastic model in mid systole (t = 0.7)
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