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1 Introduction

If C is a commutative ring and M is a finitely generated C-module, then there
is a descending chain of ideals in C, the Fitting ideals, Fitλ(M) (λ ∈ Z), defined
as follows. Take an exact sequence

F ′ ∂−→ F
ε−→M → 0, (1.1)

with F , F ′ free C-modules, and F of finite rank r. Let D be the matrix of ∂
with respect to bases for F ′ and F . Then

Fitλ(M) =


C, λ ≥ r,

the ideal generated
by all (r − λ)× (r − λ)
subdeterminants of D, λ < r

(with the convention that if there are no (r − λ) × (r − λ) submatrices of D,
then Fitλ(M) = 0). This chain is independent of the choice of exact sequence
(1.1) and of the choice of bases for F and F ′. The chain is thus an invariant of
M ; see [40, pp. 145–147].

On the other hand, if G is a finitely generated group, then there is the chain
of Alexander ideals, Aλ(G) (λ ∈ Z), defined as follows: take a presentation
P = 〈x; r〉 for G with x finite (so, the group G(P) defined by P is isomorphic
to G); compute the Alexander matrix,

D =
[
∂R

∂x

]
R∈r
x∈x

,

the entries of which lie in the integral group ring ZG(P) (here, denotes
the image in ZG(P)); apply the abelianising map ZG(P) → ZG(P)ab, to the
entries (here, G(P)ab is the quotient of G(P) by its derived subgroup), to obtain
a matrix Dab; then,

Aλ(P) =


ZG(P)ab, λ ≥ |x|,
the ideal generated
by all (|x| − λ)× (|x| − λ)
subdeterminants of Dab, λ < |x|.

These ideals lie in ZG(P)ab. They are invariants of G in the sense that if P ′

is another presentation of G, so that there is a group isomorphism φ : G(P)→
G(P ′), then the induced ring isomorphism of ZG(P)ab and ZG(P ′)ab carries
Aλ(P) to Aλ(P ′) for all λ. This is proved by considering the effect on the
Alexander matrix of Tietze transformations of presentations; see [24], [31].

Now, if F and F ′ are free ZG(P)-modules with bases x and r respectively,
then the Alexander matrix determines a map ∂ : F ′ → F , and it turns out that
we have an exact sequence

F ′ ∂−→ F
ε−→ IG(P)→ 0, (1.2)
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where IG(P) is the augmentation ideal of G(P). Consequently, the Alexan-
der ideals of G are akin to some sort of Fitting ideals for the module IG(P).
Note, however, that we start in a non-commutative setting, and then pass to a
commutative setting, essentially by applying ZG(P)ab ⊗ZG(P) − to (1.2).

There are, in fact, higher-dimensional Fitting ideals [62]. LetM be a module
of type FPn over the commutative ring C. Thus, there is a partial free resolution

F : Fn+1
∂n+1−−−→ Fn → · · · → F1 → F0 →M → 0,

with ri = rkC Fi finite for i = 0, . . . , n. Then, setting −→χ n(F) = rn − rn−1 +
· · ·+ (−1)nr0, and letting Dn be the matrix of ∂n+1 with respect to a choice of
bases for Fn+1 and Fn,

Fitnλ(M) =


C, λ ≥ −→χ n(F),
the ideal generated
by all (−→χ n(F)− λ)× (−→χ n(F)− λ)
subdeterminants of Dn, λ < −→χ n(F).

Again, these are invariants of M .
Our aim in this paper is to begin the development of a theory of higher-

dimensional Alexander ideals for groups. This theory can also be extended to
monoids, and we will say a little about this at the end of the paper.

We begin in Section 3 by discussing chains of ideals for (non-negative) free
chain complexes. If F is such a complex of type FPn over a (not necessarily
commutative) ring R, then, for any representation ρ : R → Matk(C) with C
commutative, we have a chain Eρ

n(F) of ideals in C. We introduce the important
notion of Tietze transformations of chain complexes, and show that, if F ′ is
Tietze equivalent to F , then Eρ

n(F) = Eρ
n(F ′). Other basic properties of these

chains are discussed. We also introduce the important concepts of E-triviality
and E-linkage. A complex F is Eρ[m,n]-trivial if the chains Eρ

i (F) (m ≤ i ≤ n)
are trivial in a particular sense. The Eρ[m,n]-linked condition is a weakening
of Eρ[m,n]-triviality.

In Section 4, we define for any R-module M of type FPn the chain Eρ
n(M)

by considering free resolutions ofM of type FPn. Since any two such resolutions
are Tietze equivalent, these chains are well defined. Properties of these chains
follow from properties established for arbitrary chain complexes in Section 3.
We also have the notions of Eρ[m,n]-trivial and Eρ[m,n]-linked modules. These
properties behave very well with respect to short exact sequences. We discuss
projective modules, and prove that any finitely generated projective R-module is
Eρ[0,∞]-trivial for all representations ρ : R→ Matk(C) with C indecomposable.
This result is intimately connected with work of Hattori [35] and Stallings [60]
and others on ranks of projective modules (the Hattori–Stallings rank).

In Section 5, we come to our main focus, the definition and theory of higher-
dimensional Alexander ideals for groups. Let K be a commutative ring. For
any group G, we then have the group ring KG. Regarding K as a KG-module
GK with trivial G-action, we say that G is of type FPn over K if the module
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GK is. In this case, for any ρ : KG → Matk(C), we have a well-defined
chain of ideals Eρ

n(G) = Eρ
n(GK). This chain is an invariant of the group G.

However, from a group-theoretic point of view we really want chains which
are invariants of the isomorphism type of G. To obtain such chains, we must
restrict ourselves to representations ρ which are ‘canonical’ in some sense. For
simplicity, we concentrate on one-dimensional representations τT , arising from
what we call an abelianising function T . An example of such a representation
is τab

G : KG→ KGab. For any abelianising function, we define ET
n (G,K) to be

EτT
G
n (G), for G of type FPn over K. If φ : H → G is a group isomorphism, then

there will be a group isomorphism φT : HT → GT , and the extension of this to
a ring isomorphism KHT → KGT will carry the chain ET

n (H,K) to the chain
ET
n (G,K). In this sense then, ET

n (−,K) is a group invariant.
The most important coefficient ring is K = Z, thanks to a ‘universal co-

efficient lemma’ in Section 5.1. In particular, Eab
1 (G,Z) is the chain of clas-

sical Alexander ideals, and, in general, the chains Eab
n (G,Z) are the higher-

dimension analogues of these. The chain Eab
2 (G,Z) is particularly amenable to

computation, using the theory of spherical pictures over group presentations
(Section 5.2).

We give some examples of E-ideals in Sections 5.2– 5.6.
We say that a group G is ET [m,n]-trivial over K if GK is EτT

G [m,n]-trivial
(in other words, the chains ET

i (G,K) (m ≤ i ≤ n) satisfy the appropriate
triviality conditions), and we define ET [m,n]-linked groups similarly. These
classes of groups are rather interesting, and some results concerning them are
given in Sections 5.5, 5.6 and 5.8. There is a connection between E-triviality and
Serre’s question of whether groups of type FP are of type FL. This is discussed
in Section 5.7.

It turns out that, for a moduleM over a ring R, the elements in the centre of
R which annihilate M have an influence on the chains Eρ

n(M) (Section 4.1). In
the context of groups, this translates to considering finite conjugacy classes of
elements of G, and leads to group-theoretic results about the behaviour of such
conjugacy classes. These results have a similar flavour to Gottlieb’s theorem
that a group G of type FL with χ(G) �= 0 has trivial centre.

As well as the classical Alexander ideals, there are also the classical Alexan-
der polynomials, which can be derived from the Alexander ideals [1], [24]. We
can similarly obtain higher-dimensional Alexander polynomials, which we con-
sider in Section 5.10.

Although we have concentrated here on one-dimensional representations of
groups, the ideals Eρ

n(G) for general representations ρ : KG → Matk(C) are
also of use. We intend to discuss this in more detail in future work. In the
present paper, however, we content ourselves with showing an intimate connec-
tion with ideas of R. Swan, M. Lustig and others on minimality of resolutions
in Section 5.11.

We finish the paper, in Section 6, by giving a brief outline of how the theory
of E-ideals can be extended from groups to monoids. Further work on this
direction will appear in [25].
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We finish this introduction with a ‘philosophical’ remark, namely, that the
theory of E-ideals is somehow ‘transverse’ to homology theory. To compute the
nth chain Eρ

n(M) for an R-module M and a representation ρ : R �→ Matk(C),
we in essence use the section

Fn+1
∂n+1−−−→ Fn

of a free resolution F of M , and then apply the tensor Ck ⊗R −. On the other
hand, to compute the nth Tor-group TorRn (C

k,M) we consider the section

∂n+1−−−→ Fn
∂n−→

of F and apply Ck⊗R−. When C is a principal ideal domain (and M is of type
FPn) the two theories give the same amount of information (but presented in
different ways); see Theorem 3.5 in Section 3.2. However, in general, the two
theories give complementary information.

We mention that in the context of groups, the well-known fact that the
Alexander polynomial of the fundamental group of a knot complement (‘knot
group’) evaluated at 1 is±1, is just a manifestation of the relationship mentioned
above between homology and E-ideals over a p.i.d. In this case, the p.i.d.
is Z and the chains Etriv

0 (G,Z), Etriv
1 (G,Z) (where triv : ZG → Z; g �→ 1 is

the trivial abelianising function) carry the same information as the integral
homology groups H0(G), H1(G) (see the remark at the end of Section 5.3).

Finally, we emphasise that the new invariants are, in general, quite distinct
from the higher-dimensional Fitting ideals. The manner in which they differ is
elucidated in remarks at the beginning of Section 4.1 and at the end of Sec-
tion 5.1.

2 Notation

All rings will have an identity, 1, and all ring homomorphisms will preserve the
identity. Modules will be left modules, unless otherwise stated.

Let R be a ring.
The centre {x : xy = yx for all y ∈ R} of R will be denoted by Z(R). For

an R-module B, the annihilator {x : xb = 0 for all b ∈ B} will be denoted by
Ann(B).

A non-negative chain complex (over R) is a collection B = (Bi, ∂i)i≥0 of R-
modules Bi and module homomorphisms ∂i : Bi → Bi−1 (we take ∂0 to be the
zero homomorphism B0 → 0) such that ∂i∂i+1 = 0 for all i. If all the modules
are free, then we call B a non-negative free chain complex and, if each Bi is
projective, we call B a non-negative projective chain complex. If, for some l,
Bi = 0 for all i > l, then we say that B is finite, and write it as (Bi, ∂i)li=0.
Since all chain complexes here will be non-negative, we will quite often omit the
adjective ‘non-negative’. Also, we will sometimes omit reference to the boundary
maps ∂i and just write B = (Bi)i≥0.
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The ith homology, Hi(B), of B is ker ∂i/im ∂i+1; B is exact in dimension i if,
and only if, Hi(B) = 0.

For m ≥ 0, we define the mth shift, B[m], of B to be the chain complex with
B

[m]
i = Bi+m (i ≥ 0), ∂[m]

i = ∂i+m (i > 0) (and, of course, ∂[m]
0 = 0).

A free resolution of a module M is a free chain complex F = (Fi, ∂i)i≥0
which is exact in positive dimensions, and such that there is a surjective homo-
morphism ε : F0 →M with im ∂1 = ker ε. We write F ε−→M → 0. Similarly, we
can have a projective resolution of M .

Let C be a commutative ring.
By a representation of R (over C) we mean a ring homomorphism ρ from

R to the matrix ring Matk(C) of all k × k matrices over C. We emphasise
that ρ must send the identity of R to the identity matrix Ik ∈ Matk(C). The
dimension, dim(ρ), of ρ is k.

A non-zero-divisor in C is an element u which is not a zero-divisor (that is,
uv = 0, for v ∈ C implies that v = 0).

An ascending chain of ideals in C is a family {Jκ}κ∈Z of ideals of C such
that Jκ ⊆ Jκ+1 (κ ∈ Z). Similarly, {Jκ}κ∈Z is a descending chain of ideals if
Jκ+1 ⊆ Jκ (κ ∈ Z). If J = {Jλ}λ∈Z, J ′ = {J ′

λ}λ∈Z are two chains (either both
ascending or both descending), then for m ∈ Z the convolution of J and J ′,
suspended by m, is the chain whose λth ideal is∑

κ∈Z

Jm+κJ
′
λ−κ

We denote this chain by J ∗[m] J ′. If m = 0, then we omit the superscript [m].
More generally, we can consider the convolution product

*
u∈u

[m]
Ju

of a family of chains Ju (u ∈ u).
For an l × m matrix X over C we have the descending chain J(X) =

{Jλ(X)}λ∈Z of elementary ideals, where

Jλ(X) =


C, λ ≤ 0,
the ideal generated by all
λ× λ subdeterminants of X, 0 < λ ≤ min{l,m},
0, λ > min{l,m}.

We allow l, but not m, to be ∞.
If X ′ is another l×m matrix over C and if each row (respectively, column) of

X ′ is a linear combination of rows (respectively, columns) of X, then Jλ(X ′) ⊆
Jλ(X) for all λ. If X has the form[

Y 0
Z Y ′

]
,

then
J(X) ⊇ J(Y ) ∗ J(Y ′),
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with equality if Z = 0. If Y ′ is in fact an identity matrix, say Y ′ = Ik, then

Jλ(X) = Jλ−k(Y )

for all λ ∈ Z.
For further discussion on elementary ideals see [24].

3 Free chain complexes

3.1 Ideals and their basic properties

Let R be a ring with the invariance of rank property (that is, the rank of a
free R-module is well defined). Consider a non-negative free chain complex
F = (Fi, ∂i)i≥0, where Fi is a free R-module of rank ri. The chain complex
is said to be of type FPn (n ≥ 0) if ri < ∞ for i = 0, 1, . . . , n. If this is the
case, we define the directed partial Euler characteristic, −→χ = −→χ n(F), of F to
be rn − rn−1 + · · ·+ (−1)nr0. The complex is said to be of type FP∞ if ri <∞
for all i.

Fix a representation ρ : R→ Matk(C), and suppose that F is of type FPn.
We then obtain an ascending chain

Eρ
n(F) =

(
Eρ
n,λ(F)

)
λ∈Z

of ideals in C as follows. Choose ordered bases zn+1,zn for Fn+1, Fn respec-
tively, and consider the rn+1× rn matrix D of ∂n+1 with respect to these bases.
Let Dρ be the krn+1 × krn matrix over C obtained by applying the map ρ to
each entry of D. Then

Eρ
n,λ(F) = Jk−→χ n−λ(D

ρ).

It follows from a remark in Section 2 that Eρ
n,λ(F) is independent of the choice

of ordered bases zn+1,zn.
Note that, if we regard Ck as a (C,R)-bimodule with R acting via ρ, then

Ck ⊗R F is a chain complex of free C-modules and

Eρ
n(F) = E1C

n (Ck ⊗R F), (3.1)

where 1C : C → C is the identity homomorphism.
Also, if α : C → C ′ is a ring homomorphism (with C ′ commutative), then we

have the induced homomorphism (also denoted α) from Matk(C) to Matk(C ′),
and thus the composition

αρ : R→ Matk(C ′).

It is easy to see that, for all λ ∈ Z,

Eαρ
n,λ(F) =

(
αEρ

n,λ(F)
)
, (3.2)
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where (·) denotes the ‘ideal generated by’ (these brackets are, of course, super-
fluous when α is surjective). We abbreviate this to

Eαρ
n (F) = αEρ

n(F).

If a complex F is of type FPm−1, then, for n ≥ m, F is of type FPn if, and
only if, the shift F [m] is of type FPn−m, and we have the dimension shifting
formula

Eρ
n−m,λ(F [m]) = Eρ

n,λ+(−1)n−m−1k−→χ m−1(F)(F) (λ ∈ Z). (3.3)

There are three important properties of these chains of ideals. The first is
invariance under what we call a Tietze transformation, the second is a relation-
ship between successive chains Eρ

n−1(F), Eρ
n(F), and the third is a relationship

between successive terms Eρ
n,λ−1(F), Eρ

n,λ(F) of a given chain Eρ
n(F).

For j ≥ 0, we define a Tietze transformation of rank j on a free chain complex
F to be an operation as follows. Let F be a free R-module, and let φ : F → Fj

be an R-homomorphism. Then replace the part

· · · ∂j+2−−−→ Fj+1
∂j+1−−−→ Fj

∂j−→ · · ·

of F by

· · · ∂′
j+2−−−→ Fj+1 ⊕ F

∂′
j+1−−−→ Fj ⊕ F

∂′
j−→ · · · ,

where, for fi ∈ Fi, f ∈ F ,

∂′
j(fj , f) = ∂j(fj + φ(f)),

∂′
j+1(fj+1, f) = (∂j+1(fj+1)− φ(f), f),
∂′
j+2(fj+2) = (∂j+2(fj+2), 0).

This gives a new free chain complex F ′. The Tietze transformation is said to be
finitary if F is of finite rank. It is easily shown that F ′ has the same homology
as F .
Remark. We can clearly define Tietze transformations on non-negative projec-
tive chain complexes in an analogous way. These will be needed in Section 4.3.

Theorem 3.1. Let F be of type FPn. If F ′ is obtained from F by a Tietze
transformation of rank j (finitary if j ≤ n), then F is of type FPn and Eρ

n(F ′) =
Eρ
n(F).
Proof. Notice that if Dj−1, Dj , Dj+1 are the matrices for ∂j , ∂j+1, ∂j+2 with
respect to chosen bases, and if we choose a basis for the free module F , then
the matrices D′

j−1, D
′
j , D

′
j+1 for ∂

′
j , ∂

′
j+1, ∂

′
j+2 with respect to the induced bases

will be of the following forms:

D′
j−1 =

[
Dj−1
Y

]
, D′

j =
[
Dj 0
Z Ir

]
, D′

j+1 =
[
Dj+1 0

]
.
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Here, r = rankF , Y is an r×rj−1 matrix whose rows are linear combinations of
the rows of Dj−1, and Z is some r× rj matrix. The matrices for the remaining
boundary maps are unchanged.

If n < j − 1 or if n > j + 1 and r is finite, then −→χ n(F ′) = −→χ n(F) and
∂′
n+1 = ∂n+1.
If n = j− 1, then −→χ n(F ′) = −→χ n(F) and, from the form of D′

j−1, we deduce
that Jκ(D

′ρ
j−1) = Jκ(D

ρ
j−1) (κ ∈ Z).

If n = j, then (assuming that r is finite) −→χ n(F ′) = r + −→χ n(F) and, from
the form of D′

j , we deduce that Jκ+rk(D
′ρ
j ) = Jκ(D

ρ
j ) (κ ∈ Z).

Finally, if n = j+1, then (for r finite) −→χ n(F ′) = −→χ n(F) and, from the form
of D′

j+1, Jκ(D
′ρ
j+1) = Jκ(D

ρ
j+1) (κ ∈ Z).

We can thus conclude that, in all cases, Eρ
n,λ(F ′) = Eρ

n,λ(F) (λ ∈ Z), as
required.

Theorem 3.2. Let F = (Fi, ∂i)i≥0 be of type FPn (n > 0). Then, for κ+λ < 0,

Eρ
n,κ(F) Eρ

n−1,λ(F) = 0.

Proof. Consider the non-negative free chain complex F̂ = (F̂i, ∂̂i)i≥0, where
F̂0 = F0, F̂i = Fi ⊕ Fi−1 (i > 0), and

∂̂1(f1, f0) = ∂1(f1) + f0,

∂̂i(fi, fi−1) = (∂i(fi) + fi−1,−∂i−1(fi−1)) (i > 1)

(this is the mapping cylinder of the identity chain map F → F). If Dn, Dn−1
are the matrices for ∂n+1, ∂n with respect to chosen bases for Fn+2, Fn+1, Fn,
then the matrix D̂n for ∂̂n+1 with respect to the induced bases will have the
form

D̂n =
[
Dn 0
Irn

−Dn−1

]
.

Thus, for all p, q ∈ Z,

Jp+q

(
D̂ρ

n

)
⊇ Jp (Dρ

n)Jq
(
Dρ

n−1

)
.

Hence, for all κ, λ ∈ Z,

Eρ
n,κ+λ(F̂) = Jk(−→χ n+−→χ n−1)−(κ+λ)

(
D̂ρ

n

)
⊇ Jk−→χ n−κ (D

ρ
n)Jk−→χ n−1−λ

(
Dρ

n−1

)
= Eρ

n,κ(F) Eρ
n−1,λ(F).

But F can be obtained from the zero chain complex 0 by a sequence of Tietze
transformations (finitary in dimensions lower than n), so Eρ

n(F̂) = Eρ
n(0) by

Theorem 3.1. Since

Eρ
n,λ(0) =

{
C, λ ≥ 0,
0, λ < 0,

the result follows.
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Remark. In general, let F ′ = (F ′
i , ∂

′
i)i≥0, F = (Fi, ∂i)i≥0 be free chain com-

plexes, let θ : F ′ → F be a chain map and let F̂ = (F̂i, ∂̂i)i≥0 be the corre-
sponding mapping cylinder. Thus, F̂0 = F0, F̂i = Fi ⊕ F ′

i−1 (i > 0), and

∂̂1(f1, f
′
0) = ∂1(f1) + θ0(f ′

0),

∂̂i(fi, f ′
i−1) = (∂i(fi) + θi−1(f ′

i−1),−∂i−1(f ′
i−1)) (i > 1).

If Dn, D′
n−1 are the matrices of ∂n+1, ∂′

n with respect to chosen bases, then the
matrix for ∂̂n+1 will be of the form

D̂n =
[
Dn 0
Θn −D′

n−1

]
,

where Θn is the matrix of the nth homomorphism θn of the chain map θ.
An argument like that in the proof of Theorem 3.2 then gives the following
proposition.

Proposition 3.1. If F ′ is of type FPn−1 and F is of type FPn, then Eρ
n(F̂) ⊇

Eρ
n−1(F ′) ∗ Eρ

n(F).
For the third property, suppose that ζ ∈ Z(R). Then we have a chain map

ζ · 1F : F → F , whose ith homomorphism, ζ · 1Fi
: Fi → Fi, is multiplication by

ζ. This chain map is homotopic to zero if there are homomorphisms ψ : Fi−1 →
Fi (i > 0) such that

ζ · 1F0 = ∂1ψ1,

ζ · 1Fi = ∂i+1ψi+1 + ψi∂i (i > 0).

Now, if ρ : R → Matk(C) is surjective, then ρ(ζ) ∈ Z(Matk(C)), so ρ(ζ) = ζIk
for some ζ ∈ C. Then

1Ck ⊗ ζ · 1F : Ck ⊗R F → Ck ⊗R F
is equal to ζ ·1Ck⊗R1F , and if ζ ·1F is homotopic to zero, then so is ζ ·1Ck⊗R1F .
Applying (3.1), we deduce from [29, Theorem 1] the following result.

Theorem 3.3. Suppose that F is of type FPn. If ζ · 1F is homotopic to zero
and ρ is surjective, then, for λ ∈ Z,

λζ En,λ(F) ⊆ Eρ
n,λ−1(F).

3.2 Derived invariants

For a free chain complex F of type FPn, we define

νρn = νρn(F) = min
{
λ ∈ Z : Eρ

n,λ(F) = C
}
,

δρn = δρn(F) = min
{
λ ∈ Z : Eρ

n,λ(F) �= 0
}
.

10



By definition,

−k−→χ n±1(F) ≤ δρn(F) ≤ νρn(F) ≤ k−→χ n(F).
If α : C → C ′ is a homomorphism of commutative rings, we then have, using
(3.2),

δρn(F) ≤ δαρn (F) ≤ ναρn (F) ≤ νρn(F). (3.4)

Theorem 3.4. Let F be of type FPn (n > 0).

(i) If one of the ideals Eρ
n−1,δρ

n−1
(F), Eρ

n,δρ
n
(F) contains a non-zero-divisor,

then
δρn−1 + δρn ≥ 0. (3.5)

In particular, (3.5) holds if C is an integral domain.

(ii) If C has a quotient which is an integral domain, then

νρn−1 + νρn ≥ 0.

Proof. (i) If one of the ideals contains a non-zero-divisor, then the product of
the two ideals cannot be zero, so (3.5) follows by Theorem 3.2.

(ii) If α is the quotient map, then we have

0 ≤ δαρn−1 + δαρn (by (i))
≤ νρn−1 + νρn (by (3.4)),

as required.

It will be convenient to set

Qρ
n(F) =

νρ
n−1⊕

λ=δρ
n

Eρ
n,λ+1(F)
Eρ
n,λ(F)

=
⊕
λ≥δρ

n

Eρ
n,λ+1(F)
Eρ
n,λ(F)

 ,

Lρ
n(F) = Cδρ

n−1+δρ
n ⊕Qρ

n(F) (whenever (3.5) holds).

We take δρ−1 = 0, always.

Theorem 3.5. If C is a principal ideal domain (p.i.d.), then

Lρ
n(F) ∼= Hn(Ck ⊗R F).

Proof. We can write Hn(Ck ⊗R F) in the form

Cqn ⊕
 pn⊕

j=1

C

(ηj)


for some uniquely determined pn, qn ≥ 0 and some non-zero, non-units ηj ∈ C
(uniquely determined up to multiplication by units) such that ηj |ηj+1. Similarly,
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each Hi(Ck ⊗R F) can be written in such a form; in particular, we have the
numbers qi = rkC Hn(Ck ⊗R F) (0 ≤ i < n).

Set F i = Ck ⊗R Fi, ∂i = 1Ck ⊗ ∂i, Bi = im ∂i+1 and Zi = ker ∂i. Since Bi

and Zi are submodules of the C-free module F i, they are both free. The short
exact sequence

0→ Zi → F i
∂i−→ Bi−1 → 0

then splits, so F i = Zi⊕B̃i−1, where B̃i−1 is a lift of Bi−1 via ∂i (take B̃−1 = 0).
We also have the short exact sequence

0→ Bi → Zi → Hi(Ck ⊗R F)→ 0.

Considering the C-ranks of the modules in this sequence, we have

rkC Zi = qi + bi,

where bi = rkC(Bi), and so Zi
∼= Bi ⊕ Cqi . Consequently,

F i
∼= Bi ⊕ Cqi ⊕ B̃i−1

and
rkC F i = bi + qi + bi−1.

Choosing ordered bases for Bn+1, B̃n, Bn and B̃n−1 and for the free parts of
Hi(Ck⊗RF) (i = n, n+1) induces ordered bases for Fn+1 and Fn, with respect
to which ∂n+1 has the matrix  0 0 0

0 0 0
∆n 0 0

 (3.6)

(with one less column of zero matrices when n = 0). Here ∆n is some bn × bn
matrix over C. Because C is a p.i.d., we can choose bases for B̃n and Bn such
that ∆n is a diagonal matrix. But this matrix is a presentation matrix for the
torsion part of Hn(Ck ⊗F), we must have

∆n = diag(1, . . . , 1, η1, . . . , ηpn).

Now,
k−→χ n(F) = bn + δ,

where δ = qn − qn−1 + · · ·+ (−1)nq0, and so

Eρ
n,λ(F) = Jbn+δ−λ(∆n)

=


C, λ ≥ pn + δ,(∏pn+δ−λ

j=1 ηj

)
, δ ≤ λ < pn + δ,

0, λ < δ.

12



Thus, since the ηj are non-zero and are not units, δρn(F) = δ and νρn(F) = δ+pn.
Also, for δ ≤ λ < δ + pn,

Eρ
n,λ+1(F)
Eρ
n,λ(F)

∼= C

(ηpn+δ−λ)
,

so Qρ
n(F) ∼= ⊕jC/(ηj) and the theorem follows.

3.3 E-triviality and E-linkage

Let 0 ≤ m ≤ n. We will say that F is:

(i) Eρ[m,n]-trivial if νρi = δρi (m ≤ i ≤ n) and δi + δi+1 = 0 (m ≤ i < n);

(ii) Eρ[m,n]-linked if Eρ
i,δρ

i
(F) contains a non-zero-divisor (m ≤ i ≤ n) and

δi + δi+1 = 0 (m ≤ i < n).

We will say that F is Eρ[m,∞]-trivial if it is Eρ[m,n]-trivial for all n > m,
and that it is Eρ[m,∞]-linked if it is Eρ[m,n]-linked for all n > m.

Note that, if F is Eρ[m,n]-trivial, then it is Eρ[m,n]-linked.
Clearly a free chain complex F is Eρ[m,n]-trivial if, and only if, Lρ

m(F) =
Qρ

m(F) and Lρ
i (F) = 0 for m < i ≤ n.

We obtain the next result using Theorem 3.5.

Proposition 3.2. If C is a p.i.d., then

(i) Eρ[m,n]-triviality is the homological condition that Hm(Ck ⊗R F) is tor-
sion and Hi(Ck ⊗R F) = 0 for m < i ≤ n;

(ii) the Eρ[m,n]-linked property is the homological condition that Hi(Ck⊗RF)
is torsion for m < i ≤ n.

4 Modules

4.1 Invariant ideals of modules

A module M is said to be of type FPn if it has a free resolution which is of
type FPn. For an R-module M of type FPn, we define Eρ

n(M) to be Eρ
n(F)

for any free resolution F ε−→ M → 0 of M of type FPn, and we define νρn(M)
to be νρn(F) and δρn(M) to be δρn(F). These definitions are valid, since, if

F ′ ε′
−→ M → 0 is another free resolution of type FPn of M , then there are

resolutions F (n+1) and F ′(n+1) of type FPn, which are obtained from F and
F ′ respectively by a finite number of Tietze transformations (finitary in rank n
and below), and which are identical in dimension n+1 and below. Theorem 3.1
then gives Eρ

n(F) = Eρ
n(F (n+1)) = Eρ

n(F ′(n+1)) = Eρ
n(F ′). For the first step in

constructing these new resolutions, choose φ0 : F ′
0 → F0 and ψ0 : F ′

0 → F0 such
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that εφ0 = ε′ and ε′ψ0 = ε. Then apply Tietze transformations of rank 0 to F
and F ′ to obtain new resolutions

F (1) : · · ·Fj
∂j−→ Fj−1 → · · · ∂

(1)
2−−→ F1 ⊕ F ′

0
∂
(1)
1−−→ F0 ⊕ F ′

0
ε(1)−−→M → 0,

F ′(1) : · · ·F ′
j

∂′
j−→ F ′

j−1 → · · · ∂′
2
(1)

−−−→ F0 ⊕ F ′
1

∂′
1
(1)

−−−→ F0 ⊕ F ′
0

ε′(1)
−−−→M → 0,

with ε(1)(f0, f
′
0) = ε(f0 + φ0(f ′

0)) = ε(f0) + ε′(f ′
0) = ε′(1)(f0, f

′
0). Repeat this

step in dimension 1 by choosing φ1 : F0⊕F ′
1 → F1⊕F ′

0 and ψ1 : F1⊕F ′
0 → F0⊕F ′

1

such that ∂(1)
1 φ1 = ∂′

1
(1) and ∂′

1
(1)

ψ1 = ∂
(1)
1 , and so on.

Remark. It should be noted that the chain Eρ
n(M) = E1C

n (Ck ⊗R M) is not
in general the same as the chain of n-dimensional Fitting ideals of Ck ⊗R M .
To calculate the latter, we take a free resolution of the C-module Ck ⊗R M .
However, to calculate the former we start with a free resolution F of the
R-module M , and then pass to Ck ⊗R F . This is a chain complex of free
C-modules, but is not in general a resolution of Ck⊗RM , since applying Ck⊗R−
will usually destroy exactness. See also the Remark at the end of Section 5.1.

We obtain the next result from Theorem 3.2.

Theorem 4.1. For κ+ λ < 0,

Eρ
n−1,λ(M) Eρ

n,κ(M) = 0.

Remark. This was proved for commutative R in [62].

Suppose that ζ ∈ Z(R) ∩ Ann(M). Then, for any free resolution F of
M , ζ · 1F is homotopic to zero (see [20]), and so the next result follows from
Theorem 3.3.

Theorem 4.2. For ζ ∈ Z(R) ∩Ann(M) and surjective ρ,

λζ Eρ
n,λ(M) ⊆ Eρ

n,λ−1(M).

We define Qρ
n(M) to be Qρ

n(F) for some free resolution F of M of type FPn,
and we define Lρ

n(M) to be Lρ
n(F) (when defined). The next result is a corollary

of Theorem 3.5.

Theorem 4.3. If C is a p.i.d., then Lρ
n(M) ∼= TorRn (C

k,M).

We will say that M is Eρ[m,n]-linked if M is of type FPn and some (and
hence any) free resolution of type FPn of M is Eρ[m,n]-linked, and that M is
Eρ[m,n]-trivial if some free resolution of M is. We will say that M is eventually
Eρ-linked if it is Eρ[l,∞]-linked for some l ≥ 0 and that it is eventually Eρ-trivial
if it is Eρ[l,∞]-trivial for some l ≥ 0. We then define δρ(M) to be (−1)lδρl (M)
(this is well defined, since δρi (M) + δρi+1(M) = 0 for i ≥ l).

Proposition 4.1. If F is a finitely generated, free R-module, then F is
Eρ[0,∞]-trivial for any ρ, and δρ(F ) = k rk(F ).
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More generally, recall that a module M is said to be of type FL if it has a
finite free resolution F = (Fi)li=0 with each Fi finitely generated. The Euler
characteristic χ(M) of M is then (well) defined [58], [40] to be rkF0 − rkF1 +
· · ·+(−1)l rkFl(= (−1)l−→χ l(F)). It is easy to show by direct computation that
M is Eρ[l,∞]-trivial and δρl (M) = k−→χ l(F).
Theorem 4.4. If M is of type FL, then M is eventually Eρ-trivial and δρ(M) =
kχ(M).

We will discuss later the extension of this result to modules of type FP (see
Theorem 4.11).

4.2 Short exact sequences of modules

We now consider the behaviour of the Eρ-ideals with respect to short exact
sequences. For this section, we fix a short exact sequence

0→M ′ ι−→M →M ′′ → 0

of R-modules.

Theorem 4.5. (i) If M ′ is of type FPn−1 (n > 0) and M is of type FPn,
then M ′′ is of type FPn and

Eρ
n(M

′′) ⊇ Eρ
n−1(M

′) ∗ Eρ
n(M).

(ii) If M ′ and M ′′ are of type FPn (n ≥ 0), then so is M and

Eρ
n(M) ⊇ Eρ

n(M
′) ∗ Eρ

n(M
′′)

(with equality when the short exact sequence splits, that is, when M ∼=
M ′ ⊕M ′′).

(iii) If M is of type FPn (n > 0) and M ′′ is of type FPn+1, then M ′ is of type
FPn and

Eρ
n(M

′) ⊇ Eρ
n+1(M

′′) ∗ Eρ
n(M).

Proof. (i) If F ′ and F are free resolutions of M ′ and M respectively, then ι
lifts to a chain map from F ′ to F . The mapping cylinder of this chain map is
then a free resolution of M ′′ [58]. The result follows from Proposition 3.1.

(ii) If F ′ and F ′′ are free resolutions of M ′ and M ′′ respectively, then the
horseshoe construction [57] gives a free resolution ofM . The (n+1)th boundary
map of this resolution will have a matrix of the form[

D′
n 0

Xn D′′
n

]
,

where D′
n and D′′

n are matrices for the (n+ 1)th boundary maps of F ′ and F ′′

respectively. An argument similar to that leading to Proposition 3.1 then gives
the result. When the sequence splits, Xn will be 0, and we then obtain equality.
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(iii) Let ε : F →M be a surjective homomorphism with F free of finite rank
r. There are then free resolutions F ε−→ M → 0 and F ′′ αε−→ M ′′ → 0 of type
FPn and FPn+1 respectively, with F0 = F ′′

0 = F . Then the shifts F [1], F ′′[1]

are free resolutions of type FPn−1, FPn for ker ε, kerαε respectively. Since we
have a short exact sequence

0→ ker ε→ kerαε→M ′ → 0,

we deduce from (i) and the dimension shifting formula (3.3), that for all λ, κ ∈ Z

Eρ
n,λ+κ(M

′) ⊇ Eρ
n−1,λ(ker ε) E

ρ
n,κ(kerαε)

= Eρ
n,λ+(−1)nr(M) Eρ

n+1,κ+(−1)n+1r(M
′′),

and the result follows.

Remark. Part (ii) was proved for commutative R in [62].

We can generalise the parenthetical result of Theorem 4.5(ii) to arbitrary
finite direct sums of modules.

Corollary 4.1. If Mi, i = 1, . . .m, are modules of type FPn, then

Eρ
n

(
m⊕
i=1

Mi

)
=

m

*
i=1

Eρ
n(Mi).

We now use Theorem 4.5 to obtain some combination results. It will be con-
venient in what follows to denote Eρ

i,λ(M
′) by E′

i,λ, E
ρ
i,λ(M) by Ei,λ, E

ρ
i,λ(M

′′)
by E′′

i,λ, δ
ρ
i (M

′) by δ′
i, δ

ρ
i (M) by δi and δρi (M

′′) by δ′′
i (when defined).

Theorem 4.6. Suppose that M ′ is Eρ[m,n]-linked (0 ≤ m < n). Then, for
m < i ≤ n, M is of type FPi if, and only if, M ′′ is, and in this case

δi = δ′
i + δ′′

i .

Furthermore, Ei,δi contains a non-zero-divisor if, and only if, E′′
i,δ′′

i
does.

If M ′ is in fact Eρ[m,n]-trivial, then

Ei,λ = E′′
i,λ−δ′

i
(λ ∈ Z).

Proof. By assumption, M ′ is of type FPi (and hence of type FPi−1). By
Theorem 4.5(i), if M is FPi, then so is M ′′ and, for all λ ∈ Z,

E′′
i,λ ⊇ E′

i−1,δ′
i−1

Ei,λ−δ′
i−1

. (4.1)

When λ − δ′
i−1 ≥ δi, the right-hand side cannot be 0 (and, furthermore, will

contain a non-zero-divisor if Ei,δi
(⊆ Ei,λ−δ′

i−1
) does). Thus, for λ ≥ δ′

i−1 + δi,
E′′
i,λ �= 0, so

δ′′
i ≤ δ′

i−1 + δi. (4.2)

16



On the other hand, by Theorem 4.5(ii), if M ′′ is FPi, then so is M , and

Ei,λ ⊇ E′
i,δ′

i
E′′
i,λ−δ′

i
. (4.3)

An argument like that above then gives

δi ≤ δ′
i + δ′′

i . (4.4)

Since δ′
i−1 = −δ′

i, we deduce from (4.2) and (4.4) that

δi = δ′
i + δ′′

i ,

as required. If Ei,δi contains a non-zero-divisor, then, by the comment following
(4.1), E′′

i,δ′′
i
also contains a non-zero-divisor. The reverse implication follows

from (4.3) by a similar argument.
If M ′ is Eρ[m,n]-trivial, then (4.1) and (4.3) become

E′′
i,λ ⊇ Ei,λ−δ′

i−1
= Ei,λ+δ′

i
and Ei,λ ⊇ Ei,λ−δ′

i
.

Replacing λ by λ− δ′
i in the first of these, we get

Ei,λ = E′′
i,λ−δ′

i
,

as required.

Theorem 4.7. Suppose that M is Eρ[m,n]-linked (0 < m < n). Then, for
m ≤ i < n, M ′ is of type FPi if, and only if, M ′′ is of type FPi+1, and in this
case

δi = δ′
i − δ′′

i+1.

Furthermore, E′
i,δ′

i
contains a non-zero-divisor if, and only if, E′′

i+1,δ′′
i

does.
If M is in fact Eρ[m,n]-trivial, then

E′
i,λ = E′′

i+1,λ−δi
(λ ∈ Z).

Theorem 4.8. Suppose that M ′′ is Eρ[m,n]-linked (0 < m < n). Then, for
m ≤ i < n, M is of type FPi if, and only if, M ′ is, and in this case

δi = δ′
i + δ′′

i .

Furthermore, Ei,δi
contains a non-zero-divisor if, and only if, E′

i,δ′
i
does.

If M ′′ is in fact Eρ[m,n]-trivial, then

Ei,λ = E′
i,λ−δ′′

i
(λ ∈ Z).

The proofs of these two theorems are similar to that of Theorem 4.6, and
are left to the reader.

As a consequence of the above three theorems, we obtain the following corol-
laries.
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Theorem 4.9. Suppose that 0 < m < n.

(i) If M ′ and M ′′ are both Eρ[m,n]-linked or both Eρ[m,n]-trivial, then so is
M .

(ii) If M is Eρ[m,n]-linked (respectively, -trivial), and M ′ is Eρ[m− 1, n− 1]-
linked (respectively, -trivial), then M ′′ is Eρ[m,n]-linked (respectively, -
trivial).

(iii) If M is Eρ[m,n]-linked (respectively, -trivial), and M ′′ is Eρ[m+1, n+1]-
linked (respectively, -trivial), then M ′ is Eρ[m,n]-linked (respectively, -
trivial).

Proof. (i) Suppose that M ′, M ′′ are Eρ[m,n]-linked. Using Theorem 4.6, we
deduce, for m < i ≤ n, that M is of type FPi, that Ei,δi

contains a non-zero-
divisor, and that δi = δ′

i + δ′′
i . We deduce the same for m ≤ i < n using

Theorem 4.8. Thus, δi + δi+1 = 0 for m ≤ i < n, and so M is Eρ[m,n]-
linked. If M ′, M ′′ are in fact Eρ[m,n]-trivial, then we deduce additionally
from Theorem 4.6 that, for m < i ≤ n, Ei,λ = E′′

i,λ−δ′′
i
(λ ∈ Z), and from

Theorem 4.8 that, for m ≤ i < n, Ei,λ = Ei,λ−δ′′
i
(λ ∈ Z), and it follows that

M is Eρ[m,n]-trivial.
(ii) can be proved in a similar manner using Theorems 4.6 and 4.7, and (iii)

can be proved using Theorems 4.7 and 4.8.

Corollary 4.2. If any two of M ′, M , M ′′ are eventually Eρ-linked or any two
are eventually Eρ-trivial, then so is the third, and

δρ(M) = δρ(M ′) + δρ(M ′′).

Corollary 4.3. If

0→Ml → · · · →M1 →M0 →M → 0

is an exact sequence with M0,M1, . . . ,Ml all eventually Eρ-linked or all even-
tually Eρ-trivial, then M is too, and

δρ(M) =
l∑

i=0

(−1)iδρ(Mi).

4.3 Projective modules

Let Q be a finitely-generated projective C-module. Then there is another
finitely-generated projective C-module Q′ such that Q⊕Q′ is a free C-module
Φ. We have the projection maps

π : Φ→ Φ; (q, q′) �→ (q, 0),
π′ : Φ→ Φ; (q, q′) �→ (0, q′).

Let D, D′ be the matrices of π, π′ (with respect to some basis of Φ).
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The Hattori–Stallings rank hC(Q) of Q is defined to be the trace of D. Thus,
if D = [dij ]i,j , then

hC(Q) =
∑
i

dii ∈ C.

This is well defined in that it is independent of the choice of Q′ and the choice
of basis of Φ [60]. This rank function is normalized (that is, hC(C) = 1), and
is additive (that is hC(Q1 ⊕Q2) = hC(Q1) + hC(Q2) for two finitely-generated
projective C-modules Q1, Q2).

Now suppose that C is indecomposable (that is, C cannot be written in the
form J ⊕ J ′ for ideals J, J ′ �= C, 0). For any prime ideal I of C, CI ⊗C Q is a
finitely generated free CI -modules (here, CI is the localisation of C at I), and
the rank of this module is the same for all primes I. This common value is
denoted by rkC(Q). This rank function is also normalised and additive. We
have

hC(Q) = rkC(Q) · 1 (4.5)

(see [14]), where 1 is the identity of C. (For commutative rings which are
not indecomposable, there is a more complicated formula for hC(Q) – see [14,
p. 238].) If D, D′ are the matrices above, we have [2]

JrkC(Q)(D) = C = JrkC(Q′)(D′). (4.6)

If we have a finite chain complex Q = (Qi)li=0 of finitely-generated projective C-
modules, then we define hC(Q) to be

∑l
i=0(−1)i hC(Qi). Also, in the case when

C is indecomposable, we define rkC(Q) to be
∑l

i=0(−1)i rkC(Qi). Notice that,
if Q′ is obtained from Q by a finitary Tietze transformation, then hC(Q′) =
hC(Q), and also, for C indecomposable, rkC(Q′) = rkC(Q).

Now suppose that P is a finitely-generated projective R-module. Then
Ck ⊗R P is a finitely-generated projective C-module. We define hρ(P ) to be
hC(Ck ⊗R P ), and, for C indecomposable, rkρ(P ) to be rkC(Ck ⊗R P ).

Recall that an R-moduleM is said to be of type FP if it has a finite resolution

(Pi)li=0 : 0→ Pl → · · · → P1 → P0 →M → 0

of finitely-generated projective R-modules. For such a module, we define hρ(M)
to be hC((Ck⊗RPi)li=0). This is well defined, since (using an argument like that
at the start of this section) if (P ′

i )
l′
i=0 is another finite projective resolution, then

there is a third finite projective resolution obtainable from both by a finite num-
ber of finitary Tietze transformations. Since applying Ck⊗R− will preserve the
Tietze transformations, we will have hC((Ck ⊗R Pi)li=0) = hC((Ck ⊗R P ′

i )
l′
i=0).

Similarly, in the case when C is indecomposable, we can unambiguously
define rkρ(M) to be rkC((Ck ⊗R Pi)li=0). From (4.5), we have

hρ(M) = rkρ(M) · 1.
Theorem 4.10. If P is a finitely-generated projective R-module and C is in-
decomposable, then P is Eρ[0,∞]-trivial and δρ(P ) = rkρ(P ).

19



Proof. Let P ′ be a finitely-generated projective R-module such that F = P⊕P ′

is free, of rank s, say. Let ∂, ∂′ be the projections onto the first and second
factors respectively. Then we have the free resolution of P

· · · ∂′
−→ F

∂−→ F
∂′
−→ F

∂−→ P → 0.

Applying Ck ⊗R − and using (4.6), we find that for n ≥ 0

Eρ
n,ks−rkC(Ck⊗RP ′)(P ) = C (n even),

Eρ
n,− rkC(Ck⊗RP )(P ) = C (n odd).

Note that ks− rkC(Ck ⊗R P ′) = rkC(Ck ⊗R P ).
Now, for n odd and λ < − rkC(Ck ⊗R P ), we have, from Theorem 3.2 and

the above,

0 = Eρ
n,λ(P ) E

ρ
n+1,rkC(Ck⊗RP )(P )

= Eρ
n,λ(P )C

= Eρ
n,λ(P ).

Similar, for n even and λ < rkC(Ck ⊗R P ), Eρ
n,λ(P ) = 0, and the theorem

follows.

Using Corollary 4.3, we extend this to modules of type FP (cf. Theorem 4.4).

Theorem 4.11. If M is of type FP and C is indecomposable, then M is even-
tually Eρ-trivial and δρ(M) = rkρ(M).

4.4 Eventual E-linkage and eventual E-triviality

Let FL(R), FP(R), ETρ(R) and ELρ(R) denote, respectively, the classes of
R-modules which are of type FL, type FP, eventually Eρ-trivial and eventually
Eρ-linked. Then we have the following diagram of containments and associated
rank functions:

(ELρ(R), δρ)

⊆

(ETρ(R), δρ)

⊆ ⊆(when C is indecomposable)

(FL(R), kχ) ⊆ (FP(R),hρ, rkρ (C indecomposable)) .

All of these classes have the property that, if

0→M ′ →M →M ′′ → 0

is a short exact sequence and any two of M ′, M , M ′′ are in the class, then so
is the third, and then

r(M) = r(M ′) + r(M ′′)

for the rank(s) r associated with the class.
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By Theorem 4.4, δρ extends kχ. If C is indecomposable, then rkρ extends
kχ (easily shown), and δρ extends rkρ (by Theorem 4.11). In general, hρ ‘nearly’
extends kχ in that, for M ∈ FL(R), hρ(M) = kχ(M) ·1, where 1 is the identity
of C; thus, if 1 has infinite order in C, then hρ(M) and kχ(M) are essentially
the same.

We will discuss the above inclusions further in the context of groups in
Section 5.7.

5 Groups

5.1 Chains arising from abelianising functions

Let G be a group, K a commutative ring (with 1), and let KG be the corre-
sponding group ring (with coefficient ringK). We can regardK as aKG-module
with G acting trivially (so g · x = x for all g ∈ G, x ∈ K). This module will
be denoted by GK, or simply as K. The group G is said to be of type FPn

over K if GK is of type FPn. For such a group and for any representation
ρ : KG → Matk(C), we then have the chain Eρ

n(GK) (which we will denote
by Eρ

n(G)) and the corresponding numbers νρn(GK) and δρn(GK) (which we will
denote by νρn(G) and δρn(G) respectively). These chains and numbers are invari-
ants of the group G, but are not, in general, invariants of the isomorphism type
of G. To get such group invariants, we need to consider representations which
are canonical in some sense.

To this end, we introduce the notion of an abelianising function, T , on groups.
Such a function assigns to each group G an abelian group GT together with an
epimorphism τTG : G → GT , with the property that, if α : H → G is an
isomorphism, then there is an isomorphism αT : HT → GT such that τTGα =
αT τTH . We do not require T to be functorial, although in practice it will be. The
main examples of such functions which are of interest to us here (and which are
all functorial) are: abelianisation, ab, where Gab is the quotient of G by its
derived subgroup G′; torsion-free abelianisation, tf , where Gtf is obtained from
Gab by factoring out its torsion subgroup; and trivialisation, triv, where Gtriv is
the trivial group. Other examples include: n-abelianisation, n-ab, for a positive
integer n, where Gn-ab is the quotient of G by GnG′ (thus, G1-ab is just Gab);
factoring out π-torsion, π-tf, for a set of primes π, where Gπ-tf is the quotient
of Gab obtained by factoring out all those torsion elements whose orders are
π-numbers (thus, when π is the set of all primes, Gπ-tf is just Gtf). Another
example, which will feature in Section 5.8, is weak torsion-free abelianisation,
wtf , where Gwtf is the quotient of G obtained by factoring out the subgroup
generated by the elements of G of finite order, and then abelianising.

For any group homomorphism φ : G→ G1, we will denote the induced ring
homomorphism KG → KG1 by the same symbol φ. Thus, in particular, in
the above we obtain induced ring homomorphisms α, αT , τTG and τTH such that
τTGα = αT τTH still holds.
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Let G be of type FPn over K. If T is an abelianising function, then we
have the one-dimensional representation τTG : KG→ KGT , and so we have the
chain EτT

G
n (GK). We denote this chain by ET

n (G,K), and denote its λth term
by ET

n,λ(G,K).

Lemma 5.1. If α : H → G is an isomorphism, then αT carries ET
n,λ(H,K)

isomorphically to ET
n,λ(G,K) for all λ ∈ Z.

Proof. Let F be a free resolution of HK and, for i ≥ 0, let zi be a basis for
Fi. Now, KH acts on KG on the right via α, and so we can consider the free
chain complex KG⊗KH F . This is a KG-free chain complex which, since α is
an isomorphism, is a resolution of KG⊗KH HK ∼= GK.

If F is of type FPn, then so is KG⊗KH F , and the matrix of the (i+ 1)th
boundary map of KG⊗KH F with respect to the induced bases 1⊗zi+1, 1⊗zi

can be obtained from the matrix of ∂i+1 with respect to zi+1, zi by applying
α to each entry. Thus, since τTGα = αT τTH , the isomorphism αT will carry
ET
n,λ(H,K) to ET

n,λ(G,K) for all λ ∈ Z.

Remarks. (i) The above lemma, though easily proved, is of basic importance.
It shows that if H and G are isomorphic groups (of type FPn), then there is
a ring isomorphism KHT → KGT , which is induced by a group isomorphism
HT → GT and which carries the chain ET

n (H,K) isomorphically to the chain
ET
n (G,K). It is in this sense that ET

n (−,K) is a group invariant. Moreover, we
obtain a method for showing that two groups are not isomorphic: if there is no
ring isomorphism KHT → KGT , induced by a group isomorphism HT → GT ,
which carries the chain ET

n (H,K) to ET
n (G,K), then H � G. We will give ex-

amples which illustrate this below (see Examples 5.1 and 5.2 and Theorem 5.9).
(ii) With a suitable definition of an abelianising representation, we can ex-

tend the above lemma to higher-dimension representations ρ : KG→ Matk(C).
Many of the following results also extend to the higher-dimensional situation.
However, for simplicity, we concentrate on the one-dimensional case.

We will say that an abelianising function T is compatible with monomor-
phisms if for any monomorphism α : H → G there is a homomorphism αT :
HT → GT (not necessarily a monomorphism) such that τTGα = αT τTH . All of
the above examples are compatible with monomorphisms.

The following variation on Lemma 5.1 will be needed when we come to
discuss E-ideals for certain group constructions.

Lemma 5.2. If α : H → G is a monomorphism and if T is compatible with
monomorphisms, then for any left KH-module M of type FPn,

αT EτT
H
n (M) = EτT

G
n (KG⊗KH M).

Proof. In the proof of Lemma 5.1, replace HK by M and let F be a free
resolution of type FPn ofM . ThenKG⊗KHF is a free resolution ofKG⊗KHM
(since KG is a free right KH-module).
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Note that ab is the strongest abelianising function. If T is any abelianising
function, then τTG = βGτ

ab
G for some epimorphism βG : Gab → GT . Thus,

ET
n (G,K) = βG Eab

n (G,K). (5.1)

At the other end of the spectrum, triv is the weakest abelianising function, and
for any T we have

Etriv
n (G,K) = augET

n (G,K), (5.2)

where aug : KGT → K is the augmentation map. In general, if T , T ′
are

abelianising functions and if, for a given group G, τT
′

G factors through τTG (that
is, τT

′
G = γGτ

T
G for some γG), then

ET ′
n (G,K) = γGE

T
n (G,K). (5.3)

The most important coefficient ring is Z, due to the following ‘universal
coefficient lemma’. Let ιG : ZG→ KG be the ring homomorphism which sends
1 ∈ Z to 1 ∈ K and sends g to g (g ∈ G).

Lemma 5.3. If G is of type FPn over Z, then, for any K, G is of type FPn

over K and
ET
n (G,K) = ιGT ET

n (G,Z).

Proof. If F is a ZG-free resolution of Z of type FPn, then K ⊗Z F (with G
acting diagonally) is a KG-free resolution of K ⊗Z Z ∼= K of type FPn (see, for
example, [10, p. 4]). A choice of bases for Fn+1, Fn induces a choice of bases
for K⊗Z Fn+1, K⊗Z Fn, and the matrix DK for 1⊗∂n+1 will then be obtained
from the matrix D for ∂n+1 by applying ιG to its entries. We then have

ET
n,λ(G,K) = J−→χ n(K⊗ZF)−λ

(
D

τT
G

K

)
= J−→χ n(F)−λ

(
DτT

G ιG
)

= J−→χ n(F)−λ

(
DιGT τT

G

)
(since ιGT τTG = τTG ιG)

=
(
ιGT ET

n,λ(G,Z)
)
,

as required.

For a group G of type FPn over K, we define the associated invariants

νTn (G,K) = ν
τT

G
n (GK) = min

{
λ ∈ Z : ET

n,λ(G,K) = KGT
}
,

δTn (G,K) = δ
τT

G
n (GK) = min

{
λ ∈ Z : ET

n,λ(G,K) �= 0
}
.

From (5.1) and (5.2), we deduce that

δab
n (G,K) ≤ δTn (G,K) ≤ δtriv

n (G,K) ≤ νtriv
n (G,K) ≤ νTn (G,K) ≤ νab

n (G,K),
(5.4)
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and, from Lemma 5.3, we deduce that

δTn (G,Z) ≤ δTn (G,K) ≤ νTn (G,K) ≤ νTn (G,Z).

We also define QT
n (G,K) to be QτT

G
n (GK) and LT

n (G,K) to be LτT
G
n (GK),

when defined.

Terminology and notation. When working with the basic coefficient ring Z,
we will usually omit reference to it in terminology and notation. For example,
we will say that G is of type FPn if it is of type FPn over Z, as is usual, and
we will then denote the chain ET

n (G,Z) by ET
n (G) and denote its λth term by

ET
n,λ(G). We will also write νTn (G) instead of νTn (G,Z) and δTn (G) instead of

δTn (G,Z).
Similarly, when T is ab, we will usually omit reference to it in notation. Thus,

we will write En(G,K) instead of Eab
n (G,K), etc.

As discussed above, the most powerful chains of ideals are the chains En(G),
and so we will tend to concentrate on these in the sequel. Note, however,
that, because they carry the most information, they can also be the hardest to
compute, and in practical situations we quite often pass to a weaker abelianising
function or a different coefficient ring. Moreover, we may have a group which is
not of type FPn (so En(G) does not exist), but is of type FPn over some other
coefficient ring K.

When G is of type FPn over K, where KGT is a p.i.d., we have (by Theo-
rem 4.3)

LT
i (G,K) ∼= TorKG

i (KGT ,K)

for 0 ≤ i ≤ n. In particular, Ltriv
i (G) ∼= Hi(G), and we can deduce the follow-

ing result, where rkZ(·) denotes the Z-rank, and d(·) the minimal number of
generators.

Lemma 5.4. If G is of type FPn, then

δtriv
n (G) = rkZ Hn(G)− rkZ Hn−1(G) + · · ·+ (−1)n rkZ H0(G),

νtriv
n (G) = d(Hn(G))− rkZ Hn−1(G) + · · ·+ (−1)n rkZ H0(G).

Remark. We amplify a remark made at the start of Section 4.1 in the context
of groups. For any group G, it is straightforward to show that ZGab ⊗ZG GZ is
isomorphic as a ZGab-module to GabZ. Thus, the chain of n-dimensional Fitting
ideals of ZGab ⊗ZG GZ is the same as En(Gab). In general, this chain is quite
different from En(G). For example, if Gab is an infinite cyclic group 〈t〉, then,
for n ≥ 1,

En,λ(Gab) =

{
Z〈t〉, λ ≥ 0,
0, λ < 0,

whereas the chains En(G) can be quite complicated (see Example 5.2, Theo-
rem 5.9).
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5.2 Low-dimensional chains

We consider the chains ET
n (−) for small values of n.

For any group G, let IG denote its augmentation ideal, that is, IG is the
kernel of the augmentation map

aug : ZG→ Z; g �→ 1 (g ∈ G).

If s is a set of generators of G, then {1− s : s ∈ s} is a set of generators of IG
as a left ZG-module [14], and we have the partial free resolution

ZG|s| ∂1−→ ZG
aug−−→ Z → 0, (5.5)

where ∂1 is given by the |s|×1 column matrix
[
1− s

]
s∈s

. We easily deduce the
following lemma.

Lemma 5.5. For any group G,

ET
0,λ(G) =


ZGT , λ > 0,
IGT , λ = 0,
0, λ < 0.

Now, let
P = 〈x; r〉 (5.6)

be a group presentation. Here, x is a set (the generating symbols) and r is a
set of non-empty, cyclically reduced words on x ∪ x−1 (the defining relators).
The group G = G(P) defined by P is the quotient of the free group F (x) on x
by the normal closure N = N(r) of r in F . We have the ring homomorphism

: ZF (x)→ ZG; W �→WN = W (W ∈ F ).

For an abelianising function T and for x ∈ x, we let ∂T /∂x denote the
composition

∂T

∂x
: ZF (x)

∂
∂x−−→ ZF (x) −→ ZG

τT
G−−→ ZGT ,

where ∂/∂x is (left) Fox derivation on the free group F [30] [24]. Assuming that
x is finite, we let AT

λ (P) (λ ∈ Z) be the ((|x| − 1) − λ)th elementary ideal of
the |r| × |x| matrix [

∂TR

∂x

]
R∈r
x∈x

. (5.7)

As usual, when T is ab, we omit it, and simply write Aλ(P); this ideal is the
(λ+ 1)th Alexander ideal of P [30], [24].

Associated with the presentation P, there is a standard partial free resolution
(see, for example, [14]):

ZG|r| ∂2−→ ZG|x| ∂1−→ ZG
aug−−→ Z → 0, (5.8)
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where ∂1 is as in (5.5) (with s = {x : x ∈ x}) and ∂2 is given by the matrix[
∂R

∂x

]
R∈r
x∈x

.

The next theorem then follows immediately.

Theorem 5.1. Let P be a group presentation as in (5.6), and let G be the group
defined by P. If x is finite, then ET

1,λ(G) = AT
λ (P) (λ ∈ Z).

A consequence of this theorem is the invariance of the Alexander ideals [30],
[24].

Example 5.1. For l = 1, 2, 3, . . . , let

Pl = 〈a, b, t; a3, b3, (ab)7, tlat−la−1〉
and let Gl = G(Pl). Since Gl

∼= G1 ∗t=xl 〈x〉, these groups all have the same
integral homology by the Mayer–Vietoris sequence for amalgamated products
[36], [10]. Now, for each l,

Gab
l = 〈â〉 × 〈t̂〉 ∼= Z3 × Z,

where â, t̂ correspond to a, t respectively. The matrix (5.7) (taking T to be ab)
is then 

1 + â+ â2 0 0
0 1 + â2 + â 0
7 7â 0

t̂l − 1 0
∑l−1

i=0 t̂
i(1− â)

 .

From this we obtain (after some simplification)

E1,λ(Gl) = Aλ(Pl) =


ZGab

l , λ ≥ 2,(
1 + â+ â2, 7,

∑l−1
i=0 t̂

i
)
, λ = 1,(

1 + â+ â2, 7(t̂l − 1), 7
∑l−1

i=0 t̂
i(1− â)

)
, λ = 0,

0, λ < 0.

It proves more convenient (using (5.1) and Lemma 5.3) to consider

Etf
1,λ(Gl,Z3) =


Z3〈t̂〉, λ ≥ 1,(
t̂l − 1

)
, λ = 0,

0, λ < 0.

Suppose that l �= l′. If Gl
∼= Gl′ , then, by Lemma 5.1, there would be an

automorphism of Z3G
tf
l = Z3G

tf
l′ = Z3〈t̂〉, induced by an automorphism of 〈t̂〉,

which carries Etf
1,λ(Gl,Z3) to Etf

1,λ(Gl′ ,Z3) for each λ. However, neither of the
possible automorphisms

Z3〈t̂〉 → Z3〈t̂〉; t̂ �→ t̂±1

carries Etf
1,0(Gl,Z3) to Etf

1,0(Gl,Z3). Thus, Gl � Gl′ .
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Notational remark. Throughout the rest of the paper, we will adopt the
convention used above: that is, for a group G given by a presentation 〈x; r〉,
the element of G corresponding to a word W on x∪x−1 will be denoted by W ,
and the image of W under τTG will be denoted by Ŵ .

Associated with P is a (left) ZG-module π2(P), called the second homotopy
module. Elements of π2(P) can be represented by geometric objects called
spherical pictures. A collection of spherical pictures which represents a set of
module generators of π2(P) is called a set of generating pictures. There is now a
well established calculus for computing a set of generating pictures for a group
presentation [6], [12], [51].

Let D be a spherical picture over P. Each disc ∆ has a basepoint 0∆ and,
when we read clockwise round ∆ from 0∆, we obtain a word R

ε(∆)
∆ , where

R∆ ∈ r and ε(∆) = ±1. Choose a point 0 outside D and let γ∆ be a transverse
path from 0 to 0∆. Let W∆ be the label on this path. If we choose another
transverse path, we get a different word W ′

∆, but W∆ and W ′
∆ represent the

same element of G. Thus, for each R ∈ r, we have a well-defined element

∂D

∂R
=

∑
∆:R∆=R

ε∆W∆

of ZG. For an abelianising function T , we write ∂TD/∂R for the image of ∂D/∂R
under τTG : ZG→ ZGT .

Let d be a set of generating pictures for π2(P). Assuming that P is finite,
we let BT

λ (P) (λ ∈ Z) be the ((|r| − |x| + 1) − λ)th elementary ideal of the
|d| × |r| matrix [

∂TD

∂R

]
D∈d
R∈r

(strictly speaking, we should denote this ideal by BT
λ (P,d), but we will omit

d). When T is ab, we simply write Bλ(P).
Now, the partial resolution (5.8) can be extended to

ZG|d| ∂3−→ ZG|r| ∂2−→ ZG|x| ∂1−→ ZG
aug−−→ Z → 0, (5.9)

where ∂3 is given by the matrix [
∂D

∂R

]
D∈d
R∈r

(5.10)

(see [18]), and we deduce the following result.

Theorem 5.2. If P is a finite presentation and if G is the group defined by P,
then ET

2,λ(G) = BT
λ (P) (λ ∈ Z).

This then gives a method for computing the E2-ideals for finitely-presented
groups; note, however, that there are groups which are of type FP2, but which
have no finite presentation [9].
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Figure 1: A dipole for the relator a3.

aaa

a a a
t

t t

Figure 2: A spherical picture over Ql for l = 4.

Example 5.2. For l = 1, 2, . . . , let

Ql = 〈a, b, t; a3, b2, (ab)7, tlat−la−1〉
and let Hl = G(Ql). Notice that these presentations differ from those in Ex-
ample 5.1 only by the power of b. As in Example 5.1, all these groups have the
same homology. For each l,

Hab
l = 〈t̂〉 ∼= Z,

and the matrix (5.7) (with T as ab) is
3 0 0
0 2 0
7 7 0

t̂l − 1 0 0

 .

Thus,

E1,λ(Hl) =

{
Z〈t̂〉, λ ≥ 0,
0, λ < 0

and, consequently, the E1-ideals are unable to distinguish the groups Hl.
The calculus of pictures [12] gives four generating pictures for Ql, namely

three ‘dipoles’ as in Figure 1 corresponding to the three relators which are proper
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powers, together with an extra picture, as illustrated in Figure 2. We then find
that the matrix (5.10) is

1− a 0 0
0 1− b 0
0 0 1− ab

1− t
l 0 1 + a+ a2

 .

When τab
Hl

is applied to this, the first three rows become zero, and the last row
becomes

[
1− t̂l 0 3

]
. Thus,

E2,λ(Hl) = Bλ(Ql) =


Z〈t̂〉, λ ≥ 2,(
1− t̂l, 3

)
, λ = 1,

0, λ < 1.

By an argument like that at the end of Example 5.1, if l �= l′, then Hl � Hl′ .

The fact that the E1-ideals cannot distinguish the groups in this example is
an illustration of the following general situation.

A relative presentation is a triple

〈H, t;w〉, (5.11)

where H is a group (the ‘coefficient group’) and w is a set of non-empty, cycli-
cally reduced words in H ∗ 〈t〉 \H. The group G defined by the relative presen-
tation is the quotient of H ∗ 〈t〉 by the normal closure of w. If PH = 〈a;v〉 is a
presentation for H, then a presentation for G is given by

P = 〈a, t;v,w〉 (5.12)

(where we assume that the elements of w ⊆ H ∗ 〈t〉 are expressed as words on
(a ∪ t)±1). Groups defined by relative presentations have been widely studied,
particularly in the context of equations over groups.

For W ∈ w, let W ◦ be the word obtained from W by deleting all letters
from a±1 and cyclically reducing. Let

P◦ = 〈t;W ◦ (W ∈ w)〉
and let G◦ be the group defined by P◦. There is then an epimorphism α : G→
G◦.

Theorem 5.3. If H is perfect, then αab : Gab → G◦ab is an isomorphism and
αab E1(G) = E1(G◦).

The proof of this is left to the reader; it is made easier by choosing a pre-
abelian presentation [47] for H at the outset.

Now, if we have two presentations P, P̃ as in (5.12) arising from perfect
groups H, H̃ respectively, then the E1-ideals will only be able to determine non-
isomorphism of G(P) and G(P̃) if the E1-ideals can determine non-isomorphism
of G(P◦) and G(P̃◦).

29



5.3 (Relatively) aspherical groups

In certain favourable circumstances, the partial resolution (5.9) can be usefully
extended further.

For example, there is a notion of asphericity of relative presentations (see
[5], [11], [28], [37]). If a relative presentation as in (5.11) is aspherical and
‘orientable’ (that is, no element of w is conjugate to its inverse), then the natural
map ι : H → G is injective and the partial resolution (5.8) corresponding to an
ordinary presentation P for G as in (5.12) can be extended to a full resolution
as follows.

Let

· · · ∂H
4−−→ FH

3
∂H
3−−→ FH

2 = ZH |v| ∂H
2−−→ ZH |a| ∂H

1−−→ ZH
aug−−→ HZ → 0

be a free resolution extending the partial resolution (5.8) arising from PH . For
W ∈ w, write W = W

p(W )
0 , where W0 is not a proper power and p(W ) ≥ 1

– we call W0 the root of W and p(W ) the period of W . Let w′ = {W : W ∈
w, p(W ) > 1}. For W ∈ w′ and ε = ±1, let ξε(W ) ∈ ZG be defined to be
1 −W0 if ε = +1 and 1 +W0 + · · · +W0

p(W )−1
if ε = −1. Let F be the free

ZG-module with basis eW (W ∈ w′) and let φε (ε = ±1) be the map

φε : F → F ; eW �→ ξε(W )eW (W ∈ w′).

Then the partial free resolution (5.8) arising from P extends to a free resolution,
the generalised Lyndon resolution, thus:

· · · → F4
∂4−→ F3

∂3−→ F2
∂2−→ ZG|a|+|t| ∂1−→ ZG

aug−−→ GZ → 0, (5.13)

where F2 = (ZG ⊗ZH FH
2 ) ⊕ ZG|w|, Fi = (ZG ⊗ZH FH

i ) ⊕ F (i ≥ 3) and
∂i = (1 ⊗ ∂Hi ) ⊕ φ−ε(i) (i ≥ 3), with ε(i) = +1 or −1 according to whether i is
even or odd.

From this resolution we can compute the ET
n -ideals for G in terms of those for

H. Let ξTε (W ) be the image of ξε(W ) under the map ZG→ ZGT , and let ITε,j
be the ideal generated by all products ξTε (W1)ξTε (W2) · · · ξTε (Wj) for j distinct
elements Wi ∈ w′. Assuming that t and w are finite, we let ET

ε (w) (ε = ±1)
be the chain of ideals

ET
ε,λ(w) =


ZGT , λ ≥ χε,

ITε,χε−λ, −χ−ε ≤ λ < χε,

0, λ < −χ−ε,

where χ1 = |w| − |t|, χ−1 = |w′| − |w| + |t|. A straightforward calculation,
which we omit, then gives the following theorem.

Theorem 5.4. Let n ≥ 2 and let H be a finitely generated group of type FPn.
Let 〈H, t;w〉 be an orientable, aspherical presentation over H, with t and w
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finite. Let G be the group defined by this relative presentation, and let ι : H → G
be the natural embedding. Then G is of type FPn and

ET
n = ιT ET

n (H) *ET
ε(n)(w).

In the special case when H = 1, the relative presentation essentially reduces
to an ordinary presentation, and asphericity is what is normally called com-
binatorial asphericity (CA) (for ordinary presentations, the term asphericity
(A) is reserved for CA presentations in which each relator has period 1). The
resolution (5.13) is then the standard Lyndon resolution [46], [38].

Since, when H is trivial, we have

ET
n,λ(H) =

{
ZHT , λ ≥ ε(n),
0, λ < ε(n)

(for all n),

we deduce the following.

Corollary 5.1. If G is the group defined by a finite CA presentation 〈t;w〉,
then for n ≥ 2

ET
n,λ(G) = ET

ε(n),λ−ε(n)(w) (λ ∈ Z).

Example 5.3. For instance, let p be an integer greater than 1 and let t = {s, t}.
Suppose that for each W ∈ w, p(W ) = p, the exponent sum of s in W0 is 1,
and the exponent sum of t in W0 is 0. Using small cancellation theory, CA
presentations of this form can easily be constructed for w arbitrarily large. The
group Gab is then the direct sum of a cyclic group of order p (generated by a,
say) and an infinite cyclic group, and for n ≥ 2 we have

En,λ(G) =


ZGab, λ ≥ |w| − 1,(
(1− a)|w|−1−λ

)
, −1 ≤ λ < |w| − 1,

0, λ < −1
(n even),

En,λ(G) =


ZGab, λ ≥ 1,(
(1 + a+ · · ·+ ap−1)1−λ

)
, 1− |w| ≤ λ < 1,

0, λ < 1− |w|
(n odd).

In particular, assuming that (1− a)|w| �= 0 (as is certainly the case when |w| ≤
p), for i ≥ 2, δi(G) + δi+1(G) = −|w|. This demonstrates that the conditions
in Theorem 3.4(i) cannot, in general, be relaxed. Notice that if we pass to Gtf

by killing a, then we have

Etf
n,λ(G) =

{
ZGtf , λ ≥ |w| − 1,
0, λ < |w| − 1

(n even),

Etf
n,λ(G) =


ZGtf , λ ≥ 1,(
p1−λ

)
, 1− |w| ≤ λ < 1,

0, λ < 1− |w|
(n odd).
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The conditions of Theorem 3.4(i) now hold, and we see that, for i ≥ 2, δi(G) +
δi+1(G) ≥ 0, as expected.

We discuss the phenomenon in Example 5.3 in more detail in Section 5.8.

Remark on knot groups. If X is a (tame) knot in R3, then the corresponding
knot groupG is the fundamental group of the complement R3\X. The Wirtinger
presentation [24] of this group has the same (finite) number of defining relators
as generators. Any one of these defining relators is a consequence of the others,
and so we can remove one of them, to obtain a deleted Wirtinger presentation.
This presentation is aspherical [50], and so (sinceGab in infinite cyclic, generated
by t, say) we find that for n ≥ 2

En,λ(G) =

{
Z〈t〉, λ ≥ 0,
0, λ < 0.

Although these chains are ‘trivial’, they are not useless, since they are still
invariants of the group, and hence the knot.

Of course, E1(G) is just the chain of Alexander ideals of the knot. In particu-
lar, E1,−1(G) = 0 and E1,0(G) is a principal ideal generated by the knot polyno-
mial e(t) (see [24] and also Section 5.10, where we discuss invariant polynomials
in greater depth). Since H0(G) = H1(G) = Z, we must have, by Lemma 5.4,
that δtriv

0 (G) = 1 and δtriv
1 (G) = νtriv

1 (G) = 0, so Etriv
1,0 (G) = (e(1)) = Z. That

is, we recover the well-known fact that the knot polynomial evaluated at 1 is ±1
[24].

5.4 The R. Thompson group

Let G be the group given by the presentation

〈x0, x1, x2, . . . ;xixj = xj+1xi (i < j)〉.

This group was originally defined by R. Thompson and has been much studied
subsequently (see [19] for a survey). The abelianisation of G is free abelian of
rank 2. In [17], Brown and Geoghegan showed that G is of type FP∞ and gave
a resolution F = (Fi, ∂i)i≥0 of type FP∞, with F0 of rank 1 and Fi of rank 2
for i > 0 (see below). We will use this to give the following result.

Theorem 5.5. If G is the R. Thompson group, then, for all n,

En,λ(G) =


ZGab, λ > 0,
IGab, λ = 0,
0, λ < 0.

Proof. Let φ be the endomorphism of G induced by xi �→ xi+1 (i ≥ 0). A
map α : M →M ′ of ZG-modules will be said to be φ-semi-linear if α(g ·m) =
φ(g) · α(m), for g ∈ G, m ∈M . We define φ2-semi-linearity similarly.
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Let F0 be a free ZG-module of rank 1 with basis element z(0) and, for n > 0,
let Fn be free of rank 2 with basis {z(n)

0 , z
(n)
1 }. We now define ZG-linear maps

∂n : Fn → Fn−1 (n > 0), ∂0 : F0 → Z inductively, using φ-semi-linear maps
ψn : Fn → Fn and φ2-semi-linear maps hn : Fn → Fn+1:

h0(z(0)) = z
(1)
0 , hn(z

(n)
0 ) = 0, hn(z

(n)
1 ) = z

(n+1)
0 (n > 0),

ψ0(z(0)) = z(0), ψn(z
(n)
0 ) = z

(n)
1 (n > 0),

∂0(z(0)) = 1, ∂1(z
(1)
0 ) = (1− x0)z(0),

∂n+1(z
(n+1)
1 ) = ψn∂n+1(z

(n+1)
0 ) (n ≥ 0),

ψn(z
(n)
1 ) = hn−1∂n(z

(n)
0 ) + x0z

(n)
1 (n > 0),

∂n+1(z
(n+1)
0 ) = ψ2

n(z
(n)
1 )− x0ψn(z

(n)
1 )− hn−1∂n(z

(n)
1 ) (n > 0).

The complex F = (Fi, ∂i) thus defined is a resolution of type FP∞ for G
[17].

Let Dn be the matrix associated with ∂n+1, so

D0 =
[
1− x0
1− x1

]
,

and suppose that for n > 0

Dn =

[
α

(n)
11 α

(n)
12

α
(n)
21 α

(n)
22

]
.

Then

α
(1)
11 = (x1 − x0)(1− x2)− (1− x3),

α
(1)
12 = (x1 − x0)x0 + 1− x3,

α
(1)
21 = ((x2 − x1)x1 + 1− x4)(1− x2),

α
(1)
22 = (x2 − x1)(1− x3 + x1x0) + (1− x4)(x0 − 1),

and the definitions of the boundary maps show that

α
(n+1)
11 = (x1 − x0)φ2(β(n))− φ2(δ(n)),

α
(n+1)
12 = φ3(β(n)) + (x1 − x0)x0,

α
(n+1)
21 = (φ4(β(n)) + (x2 − x1)x1)φ2(β(n)),

α
(n+1)
22 = (φ4(β(n)) + (x2 − x1)x1)x0 + (x2 − x1)φ3(β(n))− φ3(δ(n)).

Now let us apply the abelianising map τ = τab
G : ZG→ ZGab. Note that Gab is

free abelian of rank two, on generators x̂0, x̂1, and the homomorphism τ sends
xi to x̂1, for i > 0, and x0 to x̂0. Note also that, for j ≥ 1, τφj = τφ = φabτ ,
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where φab is the map x̂i �→ x̂1 (i = 0, 1). If we apply τ to each entry in Dn+1,
we get the matrix

Dab
n+1 =

[
(x̂1 − x̂0)φabτ(β(n))− φabτ(δ(n)) φabτ(β(n)) + (x̂1 − x̂0)x̂0

φabτ(β(n))2 φabτ(β(n))x̂0 − φabτ(δ(n))

]
.

By induction, starting with

Dab
1 =

[
(x̂1 − x̂0 − 1)(1− x̂1) (x̂1 − x̂0)x̂0 + (1− x̂1)

(1− x̂1)2 −(1− x̂1)(1− x̂0)

]
,

we obtain

Dab
n =

[
(1− x̂0)(1− x̂1) (x̂1 − x̂0)x̂0 + (1− x̂1)

(1− x̂1)2 −(x̂1 − x̂0 − 1)(1− x̂1)

]
for even n and Dab

n = Dab
1 for odd n. Now, for n > 0, det(Dab

n ) = 0 and, for
n ≥ 0, the entries of Dab

n generate the ideal (1− x̂0, 1− x̂1), and so we obtain
the result.

5.5 E-trivial groups

We will say that G is ET [m,n]-trivial (0 ≤ m ≤ n ≤ ∞) if GZ is EτT
G [m,n]-

trivial; in other words, δTi (G) = νTi (G) for each integerm ≤ i ≤ n and δTi+1(G) =
−δTi (G) for m ≤ i < n. As usual, when T is ab we (usually) omit reference to
it.

Lemma 5.6. (i) If G is E[m,n]-trivial, then it is ET [m,n]-trivial for any T .

(ii) If G is ET [m,n]-trivial for some T , then it is Etriv[m,n]-trivial; conse-
quently, Hi(G) = 0 for each integer m < i ≤ n and

δTi (G) = δtriv
i (G) = (−1)i

m∑
j=0

(−1)j rkZ Hj(G)

for m ≤ i ≤ n.

This follows from (5.1), (5.2), (5.4) and Lemma 5.4.
We can characterise E[0, n]-trivial groups in terms of homology.

Theorem 5.6. A group G is E[0, n]-trivial (n > 0) if, and only if, G is of type
FPn and Hi(G) = 0 for each integer 0 < i ≤ n. For such a group, δi(G) = (−1)i
for 0 ≤ i ≤ n.

Proof. By Lemma 5.5, G is E[0, 0]-trivial if, and only if, IGab = 0, that is,
Gab = 1, so Gab = Gtriv. Now use Proposition 3.2.

In particular, the E[0, 1]-trivial groups are the finitely generated perfect
groups, the E[0, 2]-trivial groups are the super-perfect groups of type FP2 (see,
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for example, [7] or [26]), and the E[0,∞]-trivial groups are the acyclic groups of
type FP∞ [8].

Later, in Example 5.6, we will give examples of groups which are E[m,n]-
trivial, but not E[m − 1, n]-trivial (when m > 0) or E[m,n + 1]-trivial (when
m <∞).

One importance of E-triviality is that it enables us to get formulæ for the
E-ideals for various group constructions in terms of the E-ideal of the groups
used in the construction. We give an instance of this here, and more later (see
Section 5.6).

Let G be an extension of G0 by H, that is, there is a short exact sequence
of groups

1→ H → G
α−→ G0 → 1.

Suppose thatH is a finitely generated perfect group (that is, H is E[0, 1]-trivial).
Since H = H ′ ⊆ G′, we have

Gab = G/G′ ∼= (G/H)
/
(G′/H) ∼= G0/G

′
0 = Gab

0

and αab : Gab → Gab
0 is an isomorphism. It follows from Theorem 5.3 that

αab E1(G) = E1(G0). From Lemma 5.5, we also have αab E0(G) = E0(G0).
This extends to higher dimensions as follows.

Theorem 5.7. Let G be an extension of G0 by H, as above. Suppose that H
is E[0, n]-trivial. Then G is of type FPn if, and only if, G0 is, and in that case
αab Ei(G) = Ei(G0) for 0 ≤ i ≤ n.

Proof. It follows from [63] that if G0 is of type FPn, then so is G. Conversely,
suppose that G has a resolution F of type FPn. Consider the complex ZG0⊗ZG

F (where we regard ZG0 as a right ZG-module with G-action via α). Now,
noting that ZG0 ∼= Z⊗ZH ZG as right ZG-modules, we have, for 1 ≤ i ≤ n,

TorZGi (ZG0,Z) ∼= TorZGi (Z⊗ZH ZG,Z)
∼= TorZHi (Z,Z)
= Hi(H)
= 0.

Thus, ZG0 ⊗ZG F is exact in dimensions 1, . . . , n, and so gives rise to a partial
resolution of length n + 1 for ZG0 ⊗ZG Z (∼= Z as a left ZG0-module). If
Di (0 ≤ i ≤ n) is the matrix of the (i+ 1)th boundary map of F , then that of
ZG0 ⊗ZG Z is Dα

i , the matrix obtained from Di by applying α to each entry.
The result then follows, since τab

G0
α = αabτab

G .

We can, of course, define ET [m,n]-trivial groups over any coefficient ring K
by considering the chains ET

i (G,K). By Lemma 5.3 (the universal coefficient
lemma), if G is ET [m,n]-trivial (over Z), then it is ET [m,n]-trivial over K for
any K. However, as we would expect, a group can be ET [m,n]-trivial over some
K without being ET [m,n]-trivial.
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Example 5.4. Let G be given by the presentation

〈a, t; ap, t−1at = aq〉

with 1 < q < p, (p, q) = 1. Then Gab = 〈â〉 × 〈t̂〉 ∼= Z(q−1,p) × Z and, for n > 1,

En,λ(G) =


ZGab, λ ≥ 1,(
1− â, p, 1− ql t̂

)
, λ = 0,

0, λ < 0,

where n = 2k or 2k − 1 (see Example 5.5, below). Thus, G is E[2,∞]-trivial
over Zq, but it is not E[m,n]-trivial for any 2 ≤ m < n ≤ ∞.

5.6 Graphs of groups and other group constructions

If G is the fundamental group of a finite connected graph of groups [59] (with
vertex groups Gv (v ∈ v) and edge groups Ge (e ∈ e)), then there is an associ-
ated short exact sequence of ZG-modules [21]

0→
⊕
e∈e+

ZG⊗ZGe Z
ι−→
⊕
v∈v

ZG⊗ZGv Z → GZ → 0 (5.14)

(here e+ is an orientation [59] of the edge set e of the underlying graph). If we
have resolutions Fe (e ∈ e+), Fv (v ∈ v) for the edge and vertex groups, then

Fe =
⊕
e∈e+

ZG⊗ZGe Fe, Fv =
⊕
v∈v

ZG⊗ZGv Fv

will be resolutions for⊕
e∈e+

ZG⊗ZGe Z,
⊕
v∈v

ZG⊗ZGv Z

respectively, and ι will lift to a chain map ι : Fe → Fv. The mapping cylinder
of this chain map will then give a ZG-resolution of GZ [58]. If each Fe is of
type FPn−1 (n > 0), and each Fv is of type FPn, then F will be of type FPn.
A matrix Dn for the (n+ 1)th boundary map of F will have the form

Dn =
[
∆n 0
Xn −∆′

n−1

]
,

where ∆n is a matrix for the (n+ 1)th boundary map of Fv, ∆′
n−1 is a matrix

for the nth boundary map of Fe and Xn is a matrix for the nth homomorphism
of the chain map ι. From this, we can (in theory) compute the chain En(G).

We give an illustrative example.

Example 5.5. Let H be the group given by the finite, one-relator presentation
〈x;Rp

0〉, where p > 1. Let H0 be the subgroup of H generated by the image R0
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of R0 in H, so H0 is cyclic of order p. For q co-prime to p, there is an embedding
of H0 in H induced by the map R0 �→ Rq

0. Let G be the corresponding HNN-
extension given by the presentation

〈x, t;Rp
0, t

−1R0t = Rq
0〉.

The sequence (5.14) becomes

0→ ZG⊗ZH0 Z
ι−→ ZG⊗ZH Z → Z → 0,

where ι(1 ⊗ 1) = (1 − t) ⊗ 1. Using the standard (Lyndon) resolutions for H
and H0, we obtain a resolution for G with

D1 =


[
ξ ∂R0

∂x

]
x∈x

0[
(1− t(1 +R0 + · · ·+R0

q−1
))∂R0

∂x

]
x∈x

−(1−R0)

 ,

Dn =



[
1−R0 0
1− qkt −ξ

]
, n = 2k,

[
ξ 0

1− qkt(1 +R0 + · · ·+R0
q−1

) −(1−R0)

]
, n = 2k + 1

(k ≥ 1).

Here, ξ = 1 +R0 + · · ·+R0
p−1

. We then find that

E1,λ(G) =


ZGab, λ ≥ |x|,(
1− R̂0, p

∂̂R0
∂x , (1− qt̂) ∂̂R0

∂x (x ∈ x)
)
, λ = |x| − 1,

0, λ < |x| − 1,

and, for n > 1,

En,λ(G) =


ZGab, λ > (−1)n(1− |x|),(
1− R̂0, p, 1− qk t̂

)
, λ = (−1)n(1− |x|),

0, λ < (−1)n(1− |x|),

where n = 2k or 2k − 1.

For convenience, we set

δTn (e) =
∑
e∈e+

δTn (Ge), δTn (v) =
∑
v∈v

δTn (Gv).

By Corollary 4.1, we have

EτT
G
n

(⊕
e∈e+

ZG⊗ZGe
Z

)
= *

e∈e+
EτT

G
n (ZG⊗ZGe

Z) .
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If T is compatible with monomorphisms, then by Lemma 5.2

EτT
G
n (ZG⊗ZGe

Z) = ιTe ET
n (Ge)

(where ιe : Ge → G is the natural injection), and so, in this case, we get

EτT
G
n

(⊕
e∈e+

ZG⊗ZGe Z

)
= *

e∈e+
ιTe ET

n (Ge).

Similarly (again assuming that T is compatible with monomorphisms), we get

EτT
G
n

(⊕
v∈v

ZG⊗ZGv Z

)
= *

v∈v
ιTv ET

n (Gv).

Now, applying Theorems 4.6 and 4.7 to the short exact sequence (5.14), we
obtain the following result.

Theorem 5.8. Suppose that T is compatible with monomorphisms, and that
each Gv (v ∈ v) is of type FPn and each Ge (e ∈ e) is of type FPn−1, so G is
of type FPn. Then

(i) if each Ge (e ∈ e) is ET [m− 1, n− 1]-trivial (m > 0),

ET
i (G) = *

v∈v

[δT
i (e)] (

ιTv ET
i (Gv)

)
,

for m ≤ i < n;

(ii) if each Gv (v ∈ v) is ET [m,n]-trivial (m > 0),

ET
i (G) = *

e∈e+

[−δT
i (v)] (

ιTe ET
i−1(Ge)

)
,

for m < i ≤ n.

In particular, since the trivial group is E[0,∞]-trivial, with δn(1) = (−1)n,
we have the following corollary.

Corollary 5.2. Suppose that T is compatible with monomorphisms. If G1, G2
are groups of type FPn, then, for n ≥ 1

ET
n (G1 ∗G2) = ιTi ET

n (G1)*
[(−1)n]

ιT2 ET
n (G2).

Remark. This was proved for the chains of Alexander ideals (the E1-ideals) in
[30].

Corollary 5.3. Suppose that T is compatible with monomorphisms. If each
Gv (v ∈ v) is ET [m,n]-trivial and each Ge (e ∈ e) is ET [m − 1, n − 1]-trivial
(m > 0), then G is ET [m,n]-trivial and, for m ≤ i ≤ n,

δTi (G) = δTi (v)− δTi (e).
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Example 5.6. For any m,n, with 0 ≤ m ≤ n ≤ ∞, we find a group Gm,n

which is E[m,n]-trivial, but neither ET [m − 1, n]-trivial (when m > 0), nor
ET [m,n+ 1]-trivial (when n <∞) for any T .

For finite n, let H be a group of type FPn+1 which is E[0, n]-trivial, but
is not E[0, n + 1]-trivial. Such a group exists [48], [8], [39]. Notice that, by
Theorem 5.6, Hn+1(H) �= 0.

LetGm,n = H×Zm. We show by induction onm thatGm,n is E[m,n]-trivial.
By definition, G0,n = H is E[0, n]-trivial. Now suppose that, for m ≥ 1, Gm−1,n
is E[m−1, n]-trivial. Then, from Corollary 5.3, since Gm,n is an HNN-extension
of Gm−1,n, it is E[m,n]-trivial.

Now, since Hm(Gm,n) = Z �= 0 and Hn+1(Gm,n) = Hn+1(H) �= 0, by
Lemma 5.6, Gm,n can be neither Etriv[m−1, n]-trivial nor Etriv[m,n+1]-trivial,
and so cannot be ET [m− 1, n]- or ET [m,n+ 1]-trivial for any T .

To deal with the case when n = ∞, take H to be an acyclic group of type
FP∞, and proceed as above.

In Example 5.2, we exhibited groups which could not be distinguished by
their integral homology or by their E1-ideals, but which could be shown to be
distinct by their E2-ideals. We now prove a more general result of this kind.

Theorem 5.9. For every n, there exists an infinite family of groups which have
the same integral homology and, for 0 ≤ i ≤ n, the same Ei-ideals, but whose
En+1-ideals distinguish them.

Proof. Again, let H be a group of type FPn which is E[0, n]-trivial, but not
E[0, n+ 1]-trivial. Let G = H × 〈t〉, and, for l ≥ 1, let Gl be the amalgamated
product

G *
〈t〉=〈sl〉

〈s〉.

Let αl : G→ Gl be the natural injection. From the Mayer–Vietoris sequence for
the homology of an amalgamated product [36], we deduce that H∗(Gl) = H∗(G)
for all l. Since the infinite cyclic group 〈t〉 is E[1,∞]-trivial, with δi(〈t〉) = 0 for
i ≥ 1, we obtain from Theorem 5.8(i) that, for 2 ≤ i ≤ n,

Ei,λ(Gl) =
(
αab
l Ei,λ(G)

)
.

By Theorem 5.7, for i ≤ n
Ei(G) = Ei(〈t〉).

Thus, for 2 ≤ i ≤ n,

Ei,λ(Gl) =

{
Z〈ŝ〉, λ ≥ 0,
0, λ < 0.

A simple calculation, using a pre-abelian presentation for H [47], shows that
this also holds for i = 1.

We compute En+1(G). Suppose that

Hn+1(H) = Zq ⊕
 p⊕

j=1

Z

(cj)

 ,
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where each cj is an integer greater than 1, with cj |cj+1. If F0 is a resolution of
type FPn+1 for H, then, as in the proof of Theorem 3.5, bases may be chosen
so that, if Di is the matrix of ∂i+1, then Dab

i = Dtriv
i has the form (3.6). For

i = 0, . . . , n, ∆i in (3.6) is the (−→χ i(F0) − (−1)i)-square identity matrix, and
∆n+1 is the (−→χ n+1(F0) − q − (−1)n+1)-square diagonal matrix with diagonal
entries 1, . . . , 1, c1, . . . , cp. The group 〈t〉 has the resolution

F1 : 0→ Z〈t〉 t�→1−t−−−−→ Z〈t〉 aug−−→ Z → 0.

The ZG-complex F = (ZG⊗ZH F0)⊗ (ZG⊗Z〈t〉F1) is then a resolution of type
FPn+1 for G, with −→χ i(F) equal to the rank ri of the ith module of F0. The
matrix of its (n+ 2)th boundary map is[

Dn+1 0
(−1)n(t− 1)Irn

Dn

]
with respect to the induced bases, whence

En+1,λ(G) =


Z〈t〉, λ ≥ p+ q,({

c1 · · · ck(t̂− 1)p+q−λ−k
}p+q−λ

k=0

)
, q ≤ λ < p+ q,({

c1 · · · ck(t̂− 1)p+q−λ−k
}p
k=0

)
, 0 ≤ λ < q,

0, λ < 0.

Now,
En+1,λ(Gl) =

(
αab
l En+1,λ(G)

)
,

and so, in particular, En+1,1(Gl) = (c1, ŝl − 1). But, if l �= l′, neither of the
automorphisms

Z〈ŝ〉 → Z〈ŝ〉; ŝ �→ ŝ±1

sends (c1, ŝl − 1) to (c1, ŝl
′ − 1). We conclude that, if l �= l′, then Gl �= Gl′ .

Remark. There are certain other constructions where an analysis similar to
that for graphs of groups can be used to obtain information about the E-ideals
of the constructed group in terms of those of the groups used in the construction.
However, an extra technique may be needed, namely that of dimension shifting
(a well-known term in homological algebra) .

For example, in [52] an analysis was given of groups with presentations
where the set of generator is partitioned into ‘types’ and each defining relator
involves at most two types of generators. For such a group G, under certain
circumstances, there is a short exact sequence similar to (5.14) except that the
last term GZ is replaced by the augmentation ideal IG, and the summands in
the other two terms have the form ZG⊗ZA IA for certain subgroups A of G (see
[52] for precise details). In this case, we would need to use the fact (which can
be deduced from (3.3)) that for any group H

EτT
H

n,λ(IH) = ET
n+1,λ+(−1)n+1(H) (λ ∈ Z).

A similar situation arises in connection with generalised graphs of groups
[4], [12].
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5.7 Eventually E-trivial groups and a question of Serre

We will say that a group G is eventually ET -trivial over K if it is ET [l,∞]-trivial
over K for some l. We then have the invariant δT (G,K) = (−1)lδTl (G,K).

We denote the class of groups of type FL over K by FLK , the class of groups
of type FP over K by FPK , and the class of eventually ET

K-trivial groups by
ETT

K . As usual, when K is Z, or T is ab, we omit it. For each of these classes
CK , we have C ⊆ CK . We also have the following inclusions:

ETtriv
K

⊆
ETK ⊆ ETT

K

⊆ ⊆ (when KGT is indecomposable).
FLK ⊆ FPK

The question of whether the containment FL ⊆ FP is proper is a major
open question raised by Serre [58]. At one stage, we hoped to show that this
inclusion is proper using the following strategy: find a group G which is of type
FP, but not obviously of type FL, construct an infinite free resolution of type
FP∞ for G, compute from this the E-ideals of G, and thereby, hopefully, show
that G /∈ ET (and thus G /∈ FL). However, this strategy cannot work, since
the group ring with Z-coefficients of any group is indecomposable (see [49]), so
Theorem 4.10 applies, and we have

FL ⊆ FP ⊆ ET.
So now, in addition to Serre’s question of whether the first inclusion is proper,

a further intriguing question arises.

Open Question 1. Is the inclusion FP ⊆ ET proper?

In view of Theorem 5.6, a positive answer to this question could be obtained
by answering the following question positively.

Open Question 2. Is there an acyclic group of type FP∞ which is not of type
FP?

A possible candidate for such an example is mentioned in [15].
Although the above strategy does not work for Z-coefficients, it does work

for slightly larger coefficient rings, as we now show – the strategy also works for
monoids, as we will see in Section 6.

Theorem 5.10. Let G be defined by a finite CA presentation 〈t;w〉 (as in
Section 5.3). Let K be any ring containing Z[1/p(W ) (W ∈ w)]. Then

(i) G ∈ FPK ; and

(ii) if the ideal I of KGab generated by the elements ξab
+1(W ) (W ∈ w′) is

non-zero, then G /∈ ETK (and so G /∈ FLK).
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Proof. (i) From the Lyndon resolution (5.13), we get the short exact sequence

0→ im ∂3 →
⊕
W∈w

ZGeW
∂2−→ im ∂2 → 0,

where im ∂3 is the submodule generated by the elements (1−W0)eW (W ∈ w).
Then, applying K ⊗−, we find that K ⊗ im ∂2 is isomorphic to⊕

W∈w′

KG

KG(1−W0)
.

But KG/KG(1−W0) is a projective KG-module, for we have the map

KG
α−→←−
β

KG

KG(1−W0)
; αβ = 1,

where α is the natural surjection, and

β(ξ +KG(1−W0)) =
1

p(W )
ξ

p(W )−1∑
i=0

W0
i

(ξ ∈ KG).

Then K⊗ im ∂2 is projective, so applying K⊗− to the exact sequence (obtained
from (5.8))

0→ im ∂2 → ZG|t| ∂1−→ ZG→ GZ → 0

gives a projective resolution of GK.
(ii) Using Corollary 5.1 and Lemma 5.3, we find that, for even n > 0,

En,|w|−|t|(G,K) = I.

Now, I lies in the augmentation ideal of KGab, so I �= KGab. Thus, if I �= 0,
then G cannot be E[l,∞]-trivial over K for any l.

Example 5.7. LetG be a one-relator group with torsion given by a presentation
〈t;Rp

0〉 (p > 1). If R0 does not lie in the derived subgroup of the free group on
t (that is, some t ∈ t occurs in R0 with non-zero exponent sum), then G is of
type FP over Z[1/p], but not of type FL over Z[1/p].

Example 5.8. Lee and Park [42] proved (by different methods) that a Fuchsian
group G given by a presentation of the form

〈x1, . . . , xq;xni
i (i = 1, . . . , q), (xi . . . xq)nq+1〉,

where n1, . . . , nq+1 ≥ 2 and either q > 2 or q = 2 and 1/n1 + 1/n2 + 1/n3 ≤ 1,
is of type FP over Q, but not of type FL over Q. Provided G is not perfect, this
result follows from our theorem.

In fact, let K be any commutative ring containing Z[1/ni (1 ≤ i ≤ q + 1)].
Now, the above presentation is CA (shown, for example, by the weight test [12]).
Also, I is the augmentation ideal of KGab, so, provided G is not perfect, I �= 0,
and then G will be of type FP over K, but not FL over K.
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Remark. It is conceivable that the strategy described above for answering
Serre’s question for Z-coefficients could be made to work by computing the chain
Eρ
n(G) for some representation ρ : ZG→ Matk(C). Of course, by Theorem 4.10,

this approach would only be feasible for C not indecomposable.

5.8 (Eventually) E-linked groups

We will say that a group G is ET [m,n]-linked if GZ is and we will say that G
is eventually ET -linked if it is ET [l,∞]-linked for some l. In the latter case, we
define δT (G) to be (−1)lδTl (G).

When T is triv, these concepts have homological interpretations.

Proposition 5.1. A group G is Etriv[m,n]-linked if, and only if, it is of type
FPn and Hi(G) is torsion for m < i ≤ n. In this case,

δtriv
i (G) = (−1)i

m∑
j=0

(−1)j rkZ Hj(G)

for m ≤ i ≤ n.

This follows from Theorem 3.5.
In particular, a group is eventually Etriv-linked if, and only if, it is of type

FP∞ and H∗(G) is eventually torsion, and in this case

δtriv(G) =
∑
i≥0

(−1)i rkZ Hi(G)

=
∑
i≥0

(−1)i dimHi(G,Q).

Thus, the eventually Etriv-linked groups are the groups of type FP∞ whose
rational homology H∗(G,Q) is eventually 0, and δtriv(G) is then Brown’s Euler
characteristic χ̃(G) [13].

Proposition 5.2. Suppose that G is ET ′
[m,n]-linked. Let T be such that τT

′
G

factors through τTG and ET
i,δT

i
(G) contains a non-zero-divisor for m ≤ i ≤ n.

Then G is ET [m,n]-linked and

δTi (G) = δT
′

i (G) (m ≤ i ≤ n).

Proof. If G is ET ′
[m,n]-linked, then, for m ≤ i < n,

δT
′

i (G) + δT
′

i+1(G) = 0.

By Theorem 3.4(i), we also have

δTi (G) + δTi+1(G) ≥ 0 (m ≤ i < n).
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By (5.3),
δTi (G) ≤ δT

′
i (G). (5.15)

Thus,
0 ≤ δTi (G) + δTi+1(G) ≤ δT

′
i (G) + δT

′
i+1(G) = 0,

so G is ET [m,n]-linked.
To show the second part, we need only show that δTm(G) = δT

′
m (G). From

(5.15),
−δTm(G) = δTm+1(G) ≤ δT

′
m+1(G) = −δT ′

m (G),

so δT
′

m (G) ≤ δTm(G), and thus δT
′

m (G) = δTm(G), as required.

In particular, since ZGtf is an integral domain, and since Gtriv factors
through Gtf , we deduce the following.

Corollary 5.4. If G is Etriv[m,n]-linked, then it is Etf [m,n]-linked.

The converse is false: the R. Thompson group is Etf [0,∞]-linked (with
δtf(G) = 0), but it is not Etriv[m,n]-linked for any 0 ≤ m < n ≤ ∞.

The E-linked property is actually quite subtle. We illustrate this in the
context of CA groups.

Suppose thatG is defined by a finite CA presentation 〈t;w〉, as in Section 5.3.
Recall that for W ∈ w′

ξ+1(W ) = 1−W 0,

ξ−1(W ) = 1 +W 0 + · · ·+W
p(W )−1
0 .

Now, since the E-ideals forG repeat with period 2 from dimension 2 onwards,
it is enough to consider when G is ET [2, 3]-linked (in which case it will be
ET [2,∞]-linked).

Note that ξtriv
−1 (W ) is non-zero, so that ξT−1(W ) is non-zero for any T . Thus,

the ideal E3,−1+|t|−|w|(G), which is generated by

ξT =
∏

W∈w′
ξT−1(W )

is non-zero. Since ET
3,λ(G) = 0 for λ < −1 + |t| − |w|, we have

δT3 (G) = −1 + |t| − |w|.
For −(1−|t|+ |w|− |w′|) ≤ λ < 1−|t|+ |w|, ξT ∈ Ann(ET

2,λ(G)), so all the
elements of ET

2,λ(G) \ {0} are zero-divisors. Thus, in order for G to be ET [2, 3]-
linked, the ideals ET

2,λ(G) (−(1 − |t| + |w| − |w′|) ≤ λ < 1 − |t| + |w|) must
be 0. Since the largest of these, ET

2,−|t|+|w|(G), is generated by the elements
ξT+1(W ) (W ∈ w′), the condition that all these ideals be 0 is just the condition
that the image of W 0 (W ∈ w′) in GT is 1. If this condition holds, then we
have

δT2 (G) = 1− |t|+ |w|.
Thus, we have proved the following result.
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Theorem 5.11. Let G be the group defined by the finite CA presentation 〈t;w〉.
Then G is ET [2, 3]-linked (and hence ET [2,∞]-linked) if, and only if, the image
of each element W0 (W ∈ w′) in GT is 1. In this case

δTi (G) = (−1)i(1− |t|+ |w|)
for all i ≥ 2.

This result can be reformulated in terms of the abelianising function wtf .
By the torsion theorem for CA groups [38], the elements of finite order in

G are powers of conjugates of the elements W0 (W ∈ w′). Consequently, the
quotient G0 of G by the normal subgroup generated by the elements of finite
order is given by the presentation 〈t;W0 (W ∈ w)〉, and Gwtf is then Gab

0 . The
condition that the image of each element W0 (W ∈ w′) in GT is 1 is just the
condition that τTG : G→ GT factors through τwtf

G : G→ Gwtf .

Theorem 5.12. A group given by a finite CA presentation is ET [2,∞]-linked
if, and only if, τTG : G→ GT factors through τwtf

G : G→ Gwtf .

Example 5.9. Let G be given the CA presentation 〈a, b; (aba−1bq−1)p〉 (p, q >
1). Then Gab, Gwtf and Gtf are given by the presentations 〈a, b; bpq, aba−1b−1〉,
〈a, b; bq, aba−1b−1〉 and 〈a; 〉 respectively. The group G is thus Ewtf [2,∞]-linked
and Etf [2,∞]-linked, but not Eab[2,∞]-linked.

Before we leave E-linked groups, we consider further the inclusions of classes
in Sections 4.4 and 5.7. If we let ELT

K denote the class of groups which are
eventually ET -linked over K, then we have the inclusions

ELK ⊆ ELT
K ⊆ ELtriv

K

⊆ ⊆ ⊆

ETK ⊆ ETT
K ⊆ ETtriv

K

⊆ ⊆

FLK ⊆ FPK ,

where, in general, the inclusion FPK ⊆ ETT
K only holds when KGT is inde-

composable. Unlike the situation in Section 5.7, the inclusions ETT
K ⊆ ELT

K

are known to be proper in many cases – consider, for instance, CA groups and
R. Thompson’s group.

5.9 Finite conjugacy classes and a theorem like Gottlieb’s

Let U be a finite conjugacy class of G and for any coefficient ring K let ζU be
the element

|U | · 1−
∑
u∈U

u

of KG. Then ζU ∈ Z(KG) ∩ Ann(GK). We thus deduce the following result
from Theorem 4.2.
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Theorem 5.13. Let G be of type FPn. Then, for any finite conjugacy class U
of G,

λζTU ET
n,λ(G,K) ⊆ ET

n,λ−1(G,K) (λ ∈ Z)

(here ζTU is the image of ζU in KGT ).

Example 5.10. Consider the braid group Bn(n ≥ 3) with presentation

〈a1, . . . , an−1; aiai+1ai = ai+1aiai+1 (1 ≤ i ≤ n− 2),
aiaj = ajai (1 ≤ i ≤ n− 2, i+ 1 ≤ j ≤ n− 1)〉.

Then Bab
n is infinite cyclic, generated by t, say. The centre of Bn is infinite

cyclic, generated by u = (ā1 · · · ān−1)n [22]. Then ζab
u = 1− tn(n−1).

For n = 3, 4,

E1,λ(Bn) =


Z〈t〉, λ ≥ 1,(
1− t+ t2

)
, λ = 0,

0, λ < 0,

and, for n ≥ 5,

E1,λ(Bn) =

{
Z〈t〉, λ ≥ 0,
0, λ < 0.

For λ > 0 (or λ > 1 when n = 3, 4) or λ < 0, we clearly have ζab
u E1,λ(Bn) ⊆

E1,λ−1(Bn), and for λ = 0 we clearly have 0 · ζab
u E1,0(Bn) = E1,−1(Bn). Since

1−t+t2 is a factor of 1−t6 (and hence of 1−t12), we also have 1·ζab
u E1,1(Bn) ⊆

E1,0(Bn) for n = 3, 4.

Example 5.11. Consider the group Gl in the proof of Theorem 5.9. Taking
p = q = 2, for instance, we have

En+1,λ(Gl) =



Z〈ŝ〉, λ ≥ 4,(
ŝl − 1, c1

)
, λ = 3,(

(ŝl − 1)2, c1(ŝl − 1), c1c2
)
, λ = 2,(

(ŝl − 1)3, c1(ŝl − 1)2, c1c2(ŝl − 1)
)
, λ = 1,(

(ŝl − 1)4, c1(ŝl − 1)3, c1c2(ŝl − 1)2
)
, λ = 0,

0, λ < 0.

Now, u = s̄l is central and ζab
u = 1 − ŝl. We see that ζab

u En+1,λ(Gl) ⊆
En+1,λ−1(Gl) (2 < λ), ζab

u En+1,λ(Gl) = En+1,λ−1(Gl) (0 < λ ≤ 2) and
0 · ζab

u En+1,0(Gl) = En+1,−1(Gl).

Example 5.12. Let G be the group defined by the presentation

〈x, y, a; a2, xyx−1y−1, xay−1a−1〉.

Then Gab is a direct product of a cyclic group 〈â〉 of order 2 (corresponding to
a) and an infinite cyclic group generated by x̂ corresponding to x (and y). The
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two elements x and y of G represented by x and y form a single conjugacy class
U , and ζab

U = 2(1− x̂).
A free resolution of GZ is

· · · → F3
∂3−→ F2

∂2−→ F1
∂1−→ F0

ε−→ Z → 0,

where rkZG F0 = 1, rkZG F1 = 3, rkZG F2 = 3, rkZG Fn = 2 (n ≥ 3) and
∂1, ∂2, ∂3, ∂4, ∂n (n ≥ 5) are given by the matrices1− x

1− y
1− a

 ,

 0 0 1 + a
1− y x− 1 0
1 −a x− 1

 ,

[
1− a 0 0

−(x− 1)(y − 1) 1 + a (a+ 1)(y − 1)

]
,[

(x− 1)(y − 1) 1− a
1 + a 0

]
,

[
1− (−1)na (−1)n(x− 1)(y − 1)

0 1 + (−1)na
]

respectively. We deduce that

E1,λ(G) =


ZGab, λ > 0(
1 + â, (1− â)(x̂− 1), (x̂− 1)2

)
, λ = 0,

0, λ < 0,

and for n > 1

En,λ(G) =


ZGab, λ > 0,(
1− â, 1 + â, (x̂− 1)2

)
=
(
1− â, 2, x̂2 + 1

)
, λ = 0,

0, λ < 0.

Note that
ζab
U = (1− x̂) · (1 + â)− 1 · (1− â)(x̂− 1),

so ζab
U E1,1(G) ⊆ E1,0(G), as expected. Clearly, also, for n > 1, ζab

U En,1(G) ⊆
En,0(G), as expected.

In the last example, we have δn(G) = 0 for all n. This is illustrative of the
following general result.

Theorem 5.14. If G has a finite conjugacy class such that the image û in Gab

of some u ∈ U has infinite order, then δn(G) = 0, when defined.

Proof. From Theorem 5.13, we have

δn(G)|U |(1− û)e = 0

for any e ∈ En,δn(G)(G). Since û has infinite order, 1− û is not a zero-divisor in
ZGab. Since En,δn(G)(G) is non-trivial, we may choose e to be non-zero. Thus,
we must have δn(G) = 0.
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Notice that in the above proof, if we could choose e to be a non-zero-divisor,
then we would only need to require that û be non-trivial to arrive at a similar
conclusion. Thus, we obtain the next result.

Theorem 5.15. Suppose that G is of type FPn and that En,δn(G)(G) contains
a non-zero-divisor. If G has a finite conjugacy class U such that the image of
some u ∈ U in Gab is non-trivial, then δn(G) = 0.

Corollary 5.5. If G is eventually E-linked and if δ(G) �= 0, then every finite
conjugacy class of G is contained in the derived subgroup G′ of G.

In particular, if G is of type FL and if χ(G) �= 0, then every finite conjugacy
class of G is contained in G′. However, in this case there is a stronger result,
which follows from Stallings’ proof [60] of Gottlieb’s theorem, namely:

If G is of type FL and χ(G) �= 0, then G has no non-trivial finite conjugacy
classes. (See [40, p. 145].)

Open Question 3. Is there an eventually E-linked group with δ �= 0 having a
non-trivial finite conjugacy class?

5.10 Invariant polynomials

For a finitely generated group G, the group Gtf will be free abelian on a finite set
x, and an argument like that in [24, Section VIII.2] shows that, if K is a unique
factorisation domain, then the Laurent polynomial ring KGtf = K[x, x−1 (x ∈
x)] is a greatest common divisor domain in which the only units are the ‘obvious’
ones of the form cg (for c a unit of K, and g ∈ Gtf).

If G is of type FPn, then Etf
n,λ(G,K) (λ ∈ Z) will be contained in a smallest

principal ideal E
tf
n,λ(G,K). We let en,λ(G,K) denote a generator of this ideal.

This polynomial is then unique up to multiplication by a unit of the Laurent
polynomial ring KGtf . We deduce from Lemma 5.1 that these polynomials are
group invariants in the following sense.

Lemma 5.7. If α : H → G is an isomorphism, then αtf carries en,λ(H,K) to
en,λ(G,K) (λ ∈ Z), up to multiplication by a unit.

When K = Z and n = 1, these polynomials are, of course, just the standard
Alexander polynomials [24].

Since Etf
n,λ(G,K) ⊆ Etf

n,λ+1(G,K), we have E
tf
n,λ(G,K) ⊆ E

tf
n,λ+1(G,K), and

so
en,λ+1(G,K)

∣∣ en,λ(G,K) (λ ∈ Z).

Example 5.13. Let G be given by the presentation

〈a, b, t; [a, b], t−matm = ap, t−mbtm = bq〉
where m, p, q > 0. The calculus of pictures [4] shows that this presentation has
one generating picture, and the matrix (5.10) is then[

(1 + a+ · · ·+ ap−1)(1 + b+ · · ·+ b
q−1

)tm − 1 1− b a− 1
]
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So

Etf
2,0(G,Z) =



(
pqt̂m − 1

)
, p, q > 1,(

qt̂m − 1, â− 1
)
, p = 1, q > 1,(

pt̂m − 1, b̂− 1
)
, p > 1, q = 1,(

t̂m − 1, â− 1, b̂− 1
)
, p = q = 1,

and

e2,0(G,Z) =

{
pqt̂m − 1, p, q > 1,
1, p = 1 or q = 1.

Example 5.14. Let G be the group in Example 5.12. Then Etf
n,0(G,Z) =

(2, x̂2 +1) for all n, so en,0(G,Z) is just the constant polynomial 1. However, if
we pass to Z2-coefficients we get the more interesting polynomial en,0(G,Z2) =
x̂2 + 1.

Example 5.15. For the group Gl in the proof of Theorem 5.9, let r be a prime
divisor of c1. Then

en+1,λ(Gl,Zr) =


1, λ ≥ p+ q,

(ŝl − 1)p+q−λ, 0 ≤ λ < p+ q,

0, λ < 0.

5.11 Minimality of resolutions

If G is a group and F is a free resolution of GZ of type FPn, then, by the
definition of the E-ideals,

1
dim(ρ)

νρn(G) ≤ −→χ n(F)

for any representation ρ of ZG. Thus, for a group G of type FPn,

−→χ n(G) = min {−→χ n(F) : F a free resolution of Z of type FPn}

exists and
1

dim(ρ)
νρn(G) ≤ −→χ n(G)

for any representation ρ.
Note in particular that taking the one-dimensional representation τ triv

G :
ZG→ Z gives the second equality of Lemma 5.4,

νtriv
n (G) = d(Hn(G))− rkZ Hn−1(G) + · · ·+ (−1)n rkZ H0(G),

which is the well-known lower bound for −→χ n(G) obtained in [61].
If G has an Eilenberg–Mac Lane complex K with finite n-skeleton (so G is

of type Fn), then the chain complex of the universal cover of K gives a free
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resolution F(K) of GZ of type FPn with −→χ n(F(K)) equal to the directed Euler
characteristic −→χ n(K) of the n-skeleton of K. Thus, if G is of type Fn, then

qn(G) = min{−→χ n(K) : K is a K(G, 1)-space with finite n-skeleton}
exists and −→χ n(G) ≤ qn(G).

A resolution F (respectively, K(G, 1)-space K) is said to be n-minimal if it re-
alises −→χ n(G) (respectively, qn(G)), and we will say that it is n-optimal if −→χ n(F)
(respectively, −→χ n(K)) is equal to (1/dim(ρ))νρn(G) for some representation ρ.
Obviously, n-optimality implies n-minimality.

The invariant −→χ n(G) was defined and studied by Swan [61] (where it is
denoted by µn(G)). The invariant q2 (which is concerned with the minimality
and ‘efficiency’ of group presentations) has been much studied (see [4], [34],
the references cited there, and [43]), and the higher invariants qn have been
considered by Eckmann [27].

In [44] (see also [45]) Lustig gave a test for n-minimality as follows. Let
F = (Fi, ∂i)i≥0 be a free resolution of GZ of type FPn. The nth Fox ideal,
Φn(F), of F is the (two-sided) ideal of ZG generated by the entries of the
matrix of ∂n+1 with respect to a choice of bases for Fn, Fn+1 (the Fox ideal is
independent of the choice of bases).

Lustig’s Test. If there is a representation ρ of ZG with ρ(Φn(F)) = 0, then
F is n-minimal.

Example 5.16. Let G be the R. Thompson group and consider the resolution
F due to Brown and Geoghegan [17] described in Section 5.4. For each n ≥ 0,
the image of Φn under the abelianising map ZG→ ZGab is IGab, so the image of
Φn under the trivialising map ZG→ Z is 0. Thus, F is n-minimal for all n, and
so −→χ n(G) = 1 (n ≥ 0). It follows from [17] that F arises from a K(G, 1)-space,
so qn(G) = −→χ n(G) = 1 for all n.

Example 5.17. Let G be the group of Example 5.5, and consider the resolution
described there. Then

Φ0 =
(
1− x (x ∈ x), 1− t

)
,

Φ1 =
(
1−R0, p

∂R0

∂x
, (1− qt)

∂R0

∂x
(x ∈ x)

)
Φn =

(
1−R0, p, 1− q[(n+1)/2]t

)
(n > 1).

Since q is coprime to p, its image in Zp is a unit. The map

ρn : ZG→ Zp; x �→ 1, t �→ q−[(n+1)/2]

sends Φn to 0 (n ≥ 0). Thus, the resolution is n-minimal for all n, so
−→χ 0(G) = 1, −→χ n(G) = (−1)n(1− |x|) (n > 0).

(Again, it can be shown that the resolution in question is the chain complex of
a K(G, 1)-space, so qn(G) = −→χ n(G) for all n.)
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We show that Lustig’s test is, in fact, a test for n-optimality.

Theorem 5.16. A resolution F will satisfy Lustig’s test if, and only if, it is
n-optimal

Proof. Suppose that F is n-optimal, so νρn(G) = k−→χ n(F) for some represen-
tation ρ : ZG → Matk(C). If D = [aij ] is a matrix for the (n + 1)th boundary
map ∂n+1 of F , then J = Eρ

n,νρ
n−1(G) is the ideal of C generated by the entries

of all the matrices ρ(aij) as i, j vary, and J �= C. Define ρ to be the composition

ZG
ρ−→ Matk(C)→ Matk(C/J).

Then ρ(aij) = 0 for all i, j, so F satisfies Lustig’s test.
Now suppose that F satisfies Lustig’s test for some ρ : ZG → Matk(C).

Then En,k−→χ n(F)−1(G) is the ideal of C generated by the entries of the matrix
Dρ = [ρ(aij)], and this is the zero ideal, since ρ(aij) = 0 for each i, j. Thus,
νρn(G) = k−→χ n(F), and so F is n-optimal.

If G is given by a finite CA presentation 〈t;w〉 (see Section 5.3), then for the
Lyndon resolution L we find that Φn(L) (n ≥ 2) is generated by the elements
ξε(n)(W ) (W ∈ w′). When n is even, ξε(n)(W ) ∈ IG, so the one-dimensional
representation τ triv

G : ZG→ Z sends Φn(L) to 0. The Lyndon resolution is thus
n-minimal for n ≥ 2, even.

Open Question 4. Is the Lyndon resolution n-minimal for n ≥ 3, odd?

6 Monoids

We can easily extend the definition of the E-ideals from groups to monoids.
However, we must distinguish a left- and a right-hand case. If S is a monoid,
then by considering free left resolutions of type FPn of the left ZS-module SZ

we can obtain a chain of ideals E(l)
n (S) in ZSab (or, more generally, a chain of

ideals E(l)T
n (S) in ZST for T an abelianising function on monoids). If we instead

consider resolutions of type FPn of the trivial right ZS-module ZS , we obtain
a chain of ideals E(r)

n (S).
When S is a group, the automorphism

ZSab → ZSab; sS′ �→ s−1S′ (s ∈ S)

of ZSab sends E(l)
n,λ(S) to E(r)

n,λ(S) for each λ ∈ Z, which is why, for groups, we
have only discussed the chains of ideals En(S) = E(l)

n (S). However, in general,
the E(l)

n - and E(r)
n -ideals may be different. In fact, an example due to Cohen

[23] shows that, for a given dimension n > 0, the chain of E(l)
n -ideals can exist

while the chain of E(r)
n -ideals does not (and vice versa). Even when they do

both exist, they can be different, as shown in the example below.
Given a monoid presentation P = [x; r] for S = S(P), there is a concept of

spherical pictures over P representing elements of a certain (ZS,ZS)-bimodule
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[53], [54]. If we let d be a set of pictures representing generators for this bimod-
ule, then there are partial left and right resolutions of Z analogous to (5.9) [54].
These partial resolutions may then be used to calculate the E0-, E1- and E2-
ideals of S. We mention that a calculus of pictures over monoid presentations
is emerging [53], [55], [56], [64].

When S has a finite complete rewriting system, it is known that S is both
left and right FP∞. Moreover, the rewriting system can be used to explicitly
compute a left or right free resolution of Z [3], [16], [32], [41]. This makes the
computation of the E(l)

n - and E(r)
n -ideals for S tractable.

Example 6.1. Let S be the monoid defined by the complete rewriting presen-
tation [

x, θ;xθ = θ, θ2 = θ
]
.

Using the method of [16], we obtain a free right resolution

· · · → Fn
∂n−→ Fn−1 → · · · → F1

∂1−→ F0
∂0−→ ZS → 0,

where F0 = ZS, Fn = zxZS⊕ zθZS (n > 0), ∂1(zx) = 1−x, ∂1(zθ) = 1− θ and,
for n > 1,

∂n(zx) =

{
zxθ, n even,
zx(1− θ), n odd,

∂n(zθ) =

{
zθθ, n even,
zθ(1− θ), n odd.

This then gives

E(r)
0,λ(S) =


ZSab, λ ≥ 1,
(1− θ̂, 1− x̂) = (1− θ̂), λ = 0,
0, λ < 0,

E(r)
n,λ(S) =


ZSab, λ ≥ 1,
(1− θ̂), λ = −1, 0,
0, λ < −1

(n > 0, even),

E(r)
n,λ(S) =


ZSab, λ ≥ 1,
(θ̂), λ = −1, 0,
0, λ < −1

(n odd).

In a similar way, we can obtain a free left resolution of SZ. This resolution
may then have a collapsing scheme [16] applied to it (that is, a number of inverse
Tietze transformations), giving the resolution

· · · 1 �→θ−−−→ ZS
1 �→1−θ−−−−−→ ZS

1 �→θ−−−→ ZS
1 �→1−θ−−−−−→ ZS

aug−−→ SZ → 0.

This gives

E(l)
n,λ(S) =


ZSab, λ ≥ 1,
(1− θ̂), λ = 0,
0, λ < 0

(n even),


ZSab, λ ≥ 0,
(θ̂), λ = −1,
0, λ < −1

(n odd).
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Notice that S is neither eventually E(l)-trivial, nor eventually E(r)-trivial, so S
can be neither left nor right FL. However [33], cd(l)(S) = 0 and cd(r)(S) = 1.
Thus, Z as a left ZS-module and IS as a right ZS-module are both projective, so
S is left and right FP. Thus, we see that the monoid version of Serre’s question
(Open Question 1) can be answered (negatively), using the strategy described
in Section 5.7.

Remark. The ideals found in the last example are a special case of a general
result concerning monoids with a zero (here, θ is a right zero). This result, and
others, will appear in [25].
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