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Abstract

A finite rewriting system is presented that does not satisfy the homotopical finite-
ness condition FDT, although it satisfies the homological finiteness condition FHT.
This system is obtained from a group G and a finitely generated subgroup H of G
through a monoid extension that is almost an HNN-extension. The FHT property
of the extension is closely related to the FP2 property for the subgroup H, while
the FDT property of the extension is related to the finite presentability of H. The
example system separating the FDT property from the FHT property is then ob-
tained by applying this construction to an example group considered by Bestvina
and Brady (1997).

1 Introduction

In the theory of finite string rewriting systems, two related geometric properties have
been introduced. The first, a homotopical property, finite derivation type (FDT), was
defined and studied by Squier [SOK]. The second, finite homological type (FHT), was
introduced in [WP]. Both these properties are invariants in the sense that if two finite
rewriting systems are Tietze equivalent (that is, if they represent the same monoid), then
if one has the property so does the other. This allows us to talk about FDT or FHT
monoids. In general, FDT implies FHT, and the properties are equivalent for groups
[WP]. It has been an open question whether the properties are equivalent in general.
Here we will show that this is not the case.

∗This work was supported by a grant from the EPSRC under the MathFIT 2000 initiative.
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Let G be a finitely presented group, and let H be a finitely generated subgroup of
G. From G and H we obtain a monoid M by forming the free product G ∗ {t}∗ of G
and the free monoid on t, and then factoring by the congruence generated by the pairs
(th, ht) (h ∈ H). This monoid can be defined by a finite rewriting system. Here we
will establish the following result, relating the FDT and FHT properties of M to certain
properties of G and H.

Theorem 1 (i) M is FDT if and only if G is FDT, and H is finitely presented.

(ii) M is FHT if and only if G is FHT (= FDT), and H is of type FP2.

Bestvina and Brady [BB] have exhibited a finitely generated subgroup H of a right-
angled Coxeter group (or graph group) G which is of type FP2, but not finitely presented.
As a graph group, G is FDT. Thus, our construction applies to this group and its subgroup
H. Further, as we will see in Section 5, the monoid M obtained from Bestvina and
Brady’s example has word problem decidable in quadratic time. This yields the following
consequence.

Corollary 2 There is a finite rewriting system R that has all of the following properties:

1. The word problem for R is decidable in quadratic time.

2. R is FHT.

3. R is not FDT.

McGlashan [McG01],[McG02] has introduced and studied higher dimensional proper-
ties FDT2, FHT2 for rewriting systems. At the end of our paper we will briefly discuss
these properties, and the relevance of our example to McGlashan’s work.

2 Preliminaries

2.1 2-Complexes

It will be convenient throughout this paper to take a combinatorial model of 2-complexes.
A graph will consist of a set of vertices, and a set of edges. Each edge e will have an

initial vertex ιe, and a terminal vertex τe. Also, each edge e will have an inverse edge
e−1 (6= e), with (e−1)−1 = e, ιe−1 = τe, τe−1 = ιe. A selection of one edge from each pair
{e, e−1} will be called an orientation e+ of the edge set e.

A non-empty path α will consist of a sequence of edges e1 e2 . . . en with τei = ιei+1

(1 ≤ i < n). We then define ια, τα, α−1 to be ιe1, τen, e−1
n . . . e−1

2 e−1
1 , respectively. For

each vertex v there is also the empty path 1v at v with no edges and ι(1v) = τ(1v) = v,
1−1

v = 1v. A path α will be said to be closed (at v) if ια = τα = v. If α, β are paths with
τα = ιβ, then we can form the product path α β consisting of the edges of α followed by
the edges of β.

A 2-complex K will consist of a graph, together with a set s of closed paths (“defining
paths”) in the graph. The underlying graph of K will be called the 1-skeleton of K. Two
paths will be said to be homotopic (in K) if one can be transformed to the other by a
finite number of the following operations (“homotopy moves”):

(i) insert/delete a subpath ee−1 (e an edge);
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(ii) replace a subpath α by β if α β−1 is a cyclic permutation of some path in s ∪ s−1.

A path will be said to be null-homotopic if it is homotopic to an empty path.
The fundamental group π1(K, v) of K at a vertex v will consist of all homotopy classes

(α) of closed paths α at v, with multiplication (α)(β) = (α β).
Let A be a group, and let λ be a function which associates to each edge e of K an

element λe ∈ A, such that λe−1 = λ−1
e . For a non-empty path α = e1e2 . . . en we then

define λα to be λe1λe2 . . . λen (product in A). If α is an empty path we define λα to be
the identity of A. We will say that λ is a mapping of K to A if λσ = 1 for each σ ∈ s.
For such a mapping we will then have λα = λβ whenever α and β are homotopic. In
particular, for any vertex v of K we will have a well-defined group homomorphism

π1(K, v) −→ A, (α) 7→ λα.

We have the chain complex

C(K) : 0 −→ C2
∂2−→ C1

∂1−→ C0 −→ 0

where C2 is the free abelian group on s, C1 is the free abelian group on an orientation e+

of the edge set of K, and C0 is the free abelian group on the vertex set of K. The maps
∂2, ∂1 are defined by

∂1e = τe− ιe (e ∈ e+)

∂2σ =
∑n

i=1 εiei (σ ∈ s, σ = eε1
1 . . . eεn

n , ei ∈ e+, εi = ±1 for 1 ≤ i ≤ n).

Then
H1(K) =

Ker ∂1

Im ∂2

is the first homology group of the chain complex C(K).
A combinatorial 2-complex as described above is a blueprint for a 2-dimensional CW-

complex, where the 1-skeleton is the geometric realization of the underlying graph and
the defining paths are used as attaching maps for 2-cells.

For further information on combinatorial 2-complexes see the Appendix to [NP], or
§1 of [Pr88].

2.2 The Squier complex

Let R = [x; r] be a string rewriting system. Here x is an alphabet and r is a set of
rewriting rules. A typical rule R ∈ r has the form R : R+1 = R−1, where R+1 and R−1

are distinct words on x. The monoid S = S(R) corresponding to R is the quotient of
the free monoid x∗ by the congruence generated by the rewriting rules r. The congruence
class of W ∈ x∗ will be denoted by [W ].

There is a 2-complex D = D(R) associated with R as follows.

The 1-skeleton has vertex set x∗, and edge set consisting of quadruples

E = (U,R, ε, V ), U, V ∈ x∗, R ∈ r, ε = ±1.

The initial, terminal, and inverse functions on edges are given by

ι(E) = URεV, τ(E) = UR−εV, E−1 = (U,R,−ε, V ),
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respectively. The edge E is called positive if ε = +1. There are left and right actions of
x∗ on this graph: if Y, Z ∈ x∗, then for any vertex W , Y ·W · Z = Y WZ (the product
in x∗), and for any edge E as above Y · E · Z = (Y U,R, ε, V Z). These actions naturally
extend to paths. Note that an edge corresponds to a single application of a rewriting rule,
and so a path P corresponds to a derivation of τ(P) from ι(P). Thus, for W ∈ x∗, the set
of vertices of the connected component containing W is just the congruence class [W ].
Hence, the connected components are in one-to-one correspondence with the elements of
S.

Now it may be that a word W has two disjoint occurrences of rewriting rules, that
is, W = URεV U ′R′

ε′V
′, where U, V, U ′, V ′ ∈ x∗, R, R′ ∈ r, and ε, ε′ ∈ {−1, +1}. Let

E = (U,R, ε, V ), E′ = (U ′, R′, ε′, V ′). Then the path P = (E · ιE′)(τE ·E′) corresponds to
first rewriting Rε to R−ε and then rewriting R′

ε′ to R′
−ε′ , while the path P′ = (ιE·E′)(E·τE′)

corresponds to first rewriting R′
ε′ to R′

−ε′ and then rewriting Rε to R−ε. We will say that
the two edges in the path P are disjoint, and similarly for P′. We want to regard the
paths P, P′ as “essentially the same.” This can be achieved by adjoining the closed path
PP′−1 as a defining path.

Thus, for any two edges E1,E2 in the graph we adjoin a defining path

[E1,E2] = (E1 · ιE2)(τE1 · E2)(E−1
1 · τE2)(ιE1 · E−1

2 ).

The resulting 2-complex D = D(R) is the Squier complex of R. The left and right actions
of x∗ extend naturally to actions on D: for a defining path [E1,E2],

U · [E1,E2] · V = [U · E1,E2 · V ] (U, V ∈ x∗).

The fundamental groups of connected components of Squier complexes are called
diagram groups. They have been extensively studied in [Fa, GS97, GS99, GS02, Ki].

Let p be a set of closed paths in D. We can form a new 2-complex Dp by adjoining
additional defining paths U ·P·V (U, V ∈ x∗,P ∈ p). We will say that p is a homotopy (re-
spectively, homology) trivializer, if all closed paths in Dp are null-homotopic (respectively,
null-homologous). Clearly a homotopy trivializer is also a homology trivializer.

If two paths P1,P2 are homotopic in D, we will write P1 ' P2. Moreover, if p is a set
of closed paths, then we will write P1 'p P2 if P1,P2 are homotopic in Dp. A path which
is null-homotopic in Dp will be said to be null-homotopic modulo p.

For any two paths P,Q in D we have the closed path

[P,Q] = (P · ιQ)(τP ·Q)(P−1 · τQ)(ιP ·Q−1).

Now if P = P1P2, then [P,Q] is null-homotopic modulo [P1,Q], [P2,Q] (see Figure 1),
and similarly if Q = Q1Q2, then [P,Q] is null-homotopic modulo [P,Q1], [P,Q2]. It thus
follows by induction on the lengths of P,Q that [P,Q] is null-homotopic in D. These
closed paths, and the fact that they are null-homotopic, will be of importance in our
computations.

Figure 1: [P1P2,Q]
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Definition 3 The rewriting system R is said to be of finite derivation type (FDT),
respectively, finite homological type (FHT), if R is finite and there is a finite homotopy,
respectively homology, trivializer.

The FDT property was introduced in a different (but equivalent) form in [SOK].
The FHT property was introduced in [WP]. In both cases, it turns out that if two
finite rewriting systems R1,R2 are Tietze equivalent (which, by the Tietze Theorem
amounts to the assertion that S(R1) ∼= S(R2)), then if one has the property so does the
other [SOK],[WP]. This allows us to talk about FDT and FHT monoids. It is shown
further in [WP] that both properties are invariant under retraction, that is, if the monoid
S ′ is a retract of S, then if S is FDT or FHT, so is S ′. Recall that S ′ is a retract of S, if
S ′ is a submonoid of S, and there exists a homomorphism S→S′ which restricted to S′

is the identity. Clearly FDT implies FHT. It is shown in [CO, Pr99] that for groups the
two properties are equivalent.

Next we make some comments on the homology group H1(D). We have the chain
complex

C(D) : 0 −→ C2(D) ∂2−→ C1(D) ∂1−→ C0(D) −→ 0

of D. Here C0(D) is the free abelian group with basis x∗, C1(D) is the free abelian group
with basis the set of positive edges, and C2(D) is the free abelian group with basis the
set of defining paths. The chain groups are (Zx∗,Zx∗)-bi-modules via the left and right
actions of x∗ on the bases of the chain groups, and the boundary maps are bi-module
homomorphisms. It is shown in [Pr95] that the first homology group H1(D) inherits a
(ZS,ZS)-bi-module structure under the actions induced from those of Zx∗:

[U ] · (c + Im ∂2) · [V ] = UcV + Im ∂2 (c ∈ Ker ∂1, U, V ∈ x∗).

This bi-module is called the homology bi-module of R, and it is denoted by π(b)(R). For
any closed path P = Eε1

1 Eε2
2 · · ·Eεn

n (Ei a positive edge, εi = ±1, i = 1, . . . , n) we denote
the homology class of the corresponding 1-cycle

n
∑

i=1

εiEi

by ζP.
There is a (ZS,ZS)-bi-module homomorphism

ρ : π(b)(R) −→
⊕

R∈r

ZS · eR · ZS (1)

of π(b)(R) into the free (ZS,ZS)-bi-module with basis eR (R ∈ r), where, for a closed
path P as above with Ei = (Ui, Ri, +1, Vi) (1 ≤ i ≤ n),

ρ(ζP) =
n

∑

i=1

εi[Ui] · eRi · [Vi].

An important result is that this map is actually an embedding [GS97, KO].
It is clear from the above discussion that an equivalent reformulation of the FHT

property is that π(b)(R) is finitely generated as a (ZS,ZS)-bi-module. Note also that if
p is a set of closed paths in D, then H1(Dp) is isomorphic to H1(D)/L, where L is the
submodule of H1(D) generated by ζP (P ∈ p). The isomorphism sends the homology
class of a closed path Q in Dp to ζQ + L.
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2.3 Some remarks concerning ZM

The monoid M is obtained by factoring the free product of G and the infinite cyclic
monoid on t, by the congruence generated by the pairs (th, ht) (h ∈ H). We also have
the HNN extension G obtained by factoring the free product of G and the infinite cyclic
group on t, by the smallest normal subgroup containing the elements tht−1h−1 (h ∈ H).
There is then a monoid homomorphism M → G induced by the map

g 7→ g (g ∈ G), t 7→ t.

If Σ is a left transversal for H in G, then it is easily seen that each element of M can be
represented in the form

σ0tσ1t . . . tσnh (2)

(n ≥ 0, σ0, . . . , σn ∈ Σ, h ∈ H). By taking the image in G and using the normal form
theorem for HNN extensions [LS], we see that each element of M is uniquely represented
in the above form (and as a bi-product, we have that the map M → G is injective).
Similarly, if Σ′ is a right transversal for H in G, then each element of M has a unique
representative in the form

hσ′0tσ
′
1t . . . tσ′n (3)

(n ≥ 0, σ′0, . . . , σ
′
n ∈ Σ′, h ∈ H).

Let Λ be the set of all elements represented in the form (2) with h = 1. Then, as an
abelian group,

ZM =
⊕

λ∈Λ

ZλH.

Moreover, ZλH is isomorphic to ZH as a right ZH-module over itself, so ZM is free
(with basis Λ) as a right ZH-module. Similarly, using (3), we find that ZM is free as a
left ZH-module. Consequently we have that

the functors ZM ⊗ZH − and −⊗ZHZM are exact. (4)

Also, the following general lemma applies to the rings ZH and ZM .

Lemma 4 Let D be a subring of a ring C, and suppose C is free as a left and right D-
module. Let K be a (D,D)-bi-module. Then K is finitely generated as a (D,D)-bi-module
if and only if C ⊗D K ⊗D C is finitely generated as a (C,C)-bi-module.

Proof. The ‘only-if’ part is obvious. For the ‘if’ part, let Ω and Ω′ be right, respectively,
left bases for C as a free D-module (with 1 the basis element corresponding to D itself).
We have a well-defined map

ϕ : C ×K × C −→
⊕

Ω×Ω′
ωKω′ = L,

where ωKω′ is a copy of K, as follows. For (c, k, c′) ∈ C ×K × C, write (uniquely)

c =
∑

ω∈Ω

ωdω and c′ =
∑

ω′∈Ω′
dω′ω′,

where dω, dω′ ∈ D. Then the (ω, ω′)-component of ϕ(c, k, c′) is dωkdω′ . This mapping is
tri-linear over D, and so we get an induced map

ϕ̂ : C ⊗D K ⊗D C → L.
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Let ψ denote the map L → K defined through

1K1
id7−→ K, ωKω′ 7−→ 0 ((ω, ω′) 6= (1, 1)).

If C ⊗D K ⊗D C is finitely generated, then it will have a generating set of the form
1⊗ j⊗ 1 (j ∈ j) for some finite subset j of K. Thus for k ∈ K, 1⊗ k⊗ 1 will be a (C, C)-
bilinear combination of the elements 1⊗j⊗1. Applying ψϕ̂ will then give k = ψϕ̂(1⊗k⊗1)
as a (D,D)-bilinear combination of the elements j = ψϕ̂(1 ⊗ j ⊗ 1) (j ∈ j). Hence j
generates K. �

3 Homotopy of a rewriting system for M

3.1 A homotopy trivializer

Choose a finite group presentation

P = 〈a;y〉

for the group G, where a contains a subset b representing a set of group generators for
H. This gives rise to a rewriting system

P̂ = [a, a−1; Y = 1 (Y ∈ y), aεa−ε = 1 (a ∈ a, ε = ±1)]

for G. A rewriting system for M is then given by

M = [a, a−1, t; Y = 1 (Y ∈ y), aεa−ε = 1 (a ∈ a, ε = ±1), tbε = bεt (b ∈ b, ε = ±1)].

It will be convenient to denote the rule tbε = bεt by Tb,ε, and to denote the set of all such
rules by t. An edge of D(M) of the form (U, Tb,ε,±1, V ) (U, V ∈ (a∪a−1 ∪{t})∗) will be
called a Tb,ε-edge, and an edge will be called a t-edge if it is a Tb,ε-edge for some Tb,ε ∈ t.

We let d denote a homotopy trivializer for D(P̂).
For any word Z = bε1

1 bε2
2 . . . bεn

n on b ∪ b−1 we have a path

BZ : tZ = Z0tZ ′
0
T1−→ Z1tZ ′

1
T2−→ · · · Ti−1−→ Zi−1tZ ′

i−1
Ti−→ ZitZ ′

i
Ti+1−→ · · · Tn−→ ZntZ ′

n = Zt,

inD(M), where Zi = bε1
1 . . . bεi

i , Z ′
i = bεi+1

i+1 . . . bεn
n (0 ≤ i ≤ n), and Ti = (Zi−1, Tbi,εi , +1, Z ′

i−1)
for all i = 1, . . . , n. Note that for any two words Z, U ∈ (b ∪ b−1)∗ we have BZU =
(BZ · U)(Z · BU).

For b ∈ b and ε = ±1 we have the closed path

Kb,ε = (1, Tb,ε, +1, 1)(bεt, (b−εbε = 1),−1, 1)(bε, Tb,−ε, +1, bε)(1, (bεb−ε = 1), +1, tbε),

which can be represented as follows:

Kb,ε : tbε T−→ bεt E−→ bεtb−εbε T′−→ bεb−εtbε E′−→ tbε.

Modulo this path we can exchange a negative Tb,ε-edge for a positive Tb,ε-edge (at the
expense of adding two additional non-t-edges):

T−1 'Kb,ε ET′E′. (5)
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If W1, W2 are words on b∪b−1 with [W1] = [W2], then there is a path PW1,W2 in D(P̂)
from W1 to W2. We then obtain a closed path QW1,W2 in D(M) as in Figure 2.

Notice that if PW1,W2 is another path in D(P̂) from W1 to W2, then P−1
W1,W2

PW1,W2 is a
closed path in D(P̂), and is therefore null-homotopic modulo d. Hence, exchanging the
two occurrences of PW1,W2 in QW1,W2 by PW1,W2 gives a path QW1,W2

'd QW1,W2 . Thus:

up to homotopy modulo d, QW1,W2 is independent of the choice of the path PW1,W2 . (6)

We will use this simple, but important observation frequently, often without mention.

Figure 2: QW1,W2

We will denote by w the set of all words on b ∪ b−1 which define the identity in H.
For W ∈ w, taking W1 = 1 and W2 = W above, we get a closed path as in Figure 3.
Here, for convenience, we denote P1,W and Q1,W simply by PW and QW , respectively.

Figure 3: QW
We let

k = {Kb,ε : b ∈ b, ε = ±1} ,

q0 = {Qbεb−ε : b ∈ b, ε = ±1} ,

q = {QW : W ∈ w} .

Lemma 5 The set d ∪ k ∪ q is a homotopy trivializer for D(M).

Proof. Let X be a closed path in D(M). We will proceed by induction on the number
#t(X) of occurrences of the letter t in ι(X).

If #t(X) = 0, then X is a path in D(P̂), which is therefore null-homotopic modulo d.
Suppose that #t(X) > 0, and write ι(X) = ZtV , where Z ∈ (a∪a−1)∗. Modulo k, we

can assume that all t-edges in X are positive (see (5)).
We will say that an edge of D(M) is of:

(a) Type 1, if it has the form Ut · E, where U ∈ (a ∪ a−1)∗;

(b) Type 2, if it has the form (U, T, +1, U ′), where T ∈ t and U ∈ (a ∪ a−1)∗;

(c) Type 3, if it has the form E · tW , where ι(E) ∈ (a ∪ a−1)∗.

A path will be said to be of Type i (1 ≤ i ≤ 3) if all its edges are of Type i. Note that a
path of Type 2 is of the form U · BW · U ′ for some W ∈ (b ∪ b−1)∗ and U ∈ (a ∪ a−1)∗.

Now observe that if E,F are edges with τ(E) = ι(F), where E is of Type i and F is of
Type j for some i > j, then E,F are disjoint. Thus, EF is homotopic in D(M) to a path
F′ E′ with E′ of Type i and F′ of Type j. It follows that X is homotopic to a product
X1X2X3, where Xi is a path of Type i (1 ≤ i ≤ 3).

We have ι(X1) = ZtV , so τ(X1) = ZtV ′, where [V ′] = [V ] in M . Then X2 = Z ·BW ·U ,
where W ∈ (b ∪ b−1)∗. We must then have that V ′ = WU . Thus, τ(X2) = ZWtU =
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ι(X3). Since τ(X3) = ZtV (and since X3 is of Type 3), [ZW ] = [Z] and U = V . In
particular, W ∈ w, and so we have the path QW ∈ q. Modulo QW , X2 = Z · BW · V can
be replaced by (Zt · P−1

W · V )(Z · PW · tV ), giving X 'QW X′1X′3, where

X′1 = X1(Zt · P−1
W · V ) and X′3 = (Z · PW · tV )X3.

Now X′1 is a closed path of Type 1, and it has the form Zt ·Y, where #t(Y) = #t(X)− 1,
so the inductive hypothesis applies. Also X′3 is a closed path of Type 3, and so has the
form D · tV for some path D in D(P̂). Hence, X′3 is null-homotopic modulo d. �

3.2 The FDT property for M

We will need some preliminary lemmas.

Lemma 6 For W,W ′ ∈ w we have QWQW ′ 'd QWW ′.

Proof. Up to homotopy modulo d (see (6)) we can take PWW ′ to be PW (W ·PW ′). Now
refer to Figure 4. The boundary of this diagram is labelled with QWW ′ . All the rectangles
in this diagram are labelled by closed paths of the form [X,Y], which are null-homotopic
in D (see Subsection 2.2). Thus, we can perform homotopy moves to eliminate all these
rectangles, leaving a diagram (consisting of two triangles) whose boundary label QW QW ′

will be homotopic to the boundary label of the original diagram. �

The following two lemmas are more general than needed for our present purposes, but
we will require the greater generality (of Lemma 8) in Subsection 4.2.

Lemma 7 Let U,Z ∈ (b ∪ b−1)∗ with [U ] = [Z], and suppose that U = U1WU2 with
W ∈ w. Then

QZ,U 'd∪{QW } QZ,U1U2 .

Proof. Modulo d we can take PZ,U to be PZ,U1U2(U1 ·PW ·U2). Then the boundary of the
diagram in Figure 5 is labelled by QZ,U . The two lower rectangles are bounded by null-
homopotic paths in D, and the boundary label of the lower triangle is null-homotopic in
D{QW }. Thus, the boundary label QZ,U1U2 of the upper pentagon is homotopic in D{QW }

to QZ,U . �

If in Lemma 7 we take W of the form bεb−ε (b ∈ b, ε = ±1), then QW ∈ q0. Thus, we
deduce the following.

Lemma 8 If Z,U, U ′ are words on b ∪ b−1 with [Z] = [U ] and U , U ′ freely equivalent,
then

QZ,U 'd∪q0 QZ,U ′ .

Figure 4: QWQW ′ 'd QWW ′

Figure 5: QZ,U1WU2 .
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Let F be the free group on b. We will denote the free equivalence class of a word Z on
b∪b−1 by 〈Z〉. For any subset v of w, let N(v) denote the normal closure of {〈V 〉 : V ∈ v}
in F . We let qv = {QV : V ∈ v}, and we denote the 2-complex D(M)d∪k∪q0∪qv by D(v).
We will be interested in the component D(v)t of D(v) containing the vertex t. For a
closed path X on D we will denote its homotopy class in D(v) by (X)v.

When v = w we simply write N instead of N(w). Note that F/N ∼= H.

Lemma 9 The fundamental group π1(D(v)t) of D(v)t (at the vertex t) is isomorphic to
N/N(v).

Proof. We have a mapping

w → π1(D(v)t), W 7→ (QW )v (W ∈ w).

By Lemma 8 (with Z = 1), this gives rise to a well-defined mapping

φ : N → π1(D(v)t), 〈W 〉 7→ (QW )v,

and by Lemma 6, φ is a homomorphism.
The map φ is surjective. For if in the proof of Lemma 5 we takeX with ι(X) = τ(X) = t

(so that, in the notation of that proof, #t(X) = 1 and Z, V are empty), then the argument
given there shows that

X 'd∪k QW

for some W ∈ w.
Now N(v) is generated by elements of the form 〈C〉〈V 〉〈C〉−1 (V ∈ v, C a word on

b ∪ b−1). Taking U1 = C,W = V, U2 = C−1 and Z = 1 in Lemma 7 we see that QCV C−1

is homotopic modulo d∪qv to QCC−1 , and by Lemma 8, QCC−1 is null-homotopic modulo
d ∪ q0. Thus, φ(〈C〉〈V 〉〈C〉−1) is trivial. Hence N(v) ⊆ Ker φ, so we get an induced
surjective homomorphism

φ∗ :
N

N(v)
→ π1(D(v)t).

It remains to show that φ∗ is injective. Define a function λ from the edges of D(v)
to A = F/N(v) as follows: all non-t-edges are sent to the identity, and for a t-edge
T = (U, Tb,ε, δ, U ′) (U,U ′ ∈ (a ∪ a−1 ∪ {t})∗, b ∈ b, ε, δ ∈ {+1,−1}), λT = 〈bεδ〉N(v).

This does not in general give rise to a mapping (as described in Subsection 2.1) from
D(v) to A. Certainly for all defining paths

P ∈ (a ∪ a−1 ∪ {t})∗ · (d ∪ k ∪ q0 ∪ qv) · (a ∪ a−1 ∪ {t})∗

we have λP = 1. Also, for a defining path [E,E′], we have λ[E,E′] = 1 unless E, E′ are
both t-edges. If E, E′ are both t-edges, then λ[E,E′] will in general just be an element of
the derived subgroup of A. However, if we restrict attention to the component D(v)t,
then the endpoints of any edge have just one occurrence of t, so no path [E,E′] with E,
E′ both t-edges can lie in D(v)t. Thus, we do obtain a mapping from D(v)t to A, giving
rise to a group homomorphism

λ∗ : π1(D(v)t) −→ A.

The injectivity of φ∗ now follows, since λ∗((QW )v) = 〈W 〉N(v). �
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We can now prove part (i) of our Main Theorem.

If G is not FDT, then neither is M , since the map that kills t is a retraction of M
onto G. So we can assume that G is FDT, which means that we can choose d to be finite.
Since the set d ∪ q ∪ k is a homotopy trivializer for D(M), we then have the following
sequence of equivalent statements:

M is FDT ⇔ some finite subset of d ∪ k ∪ q is a homotopy trivializer for D(M)
⇔ there is a finite subset v ⊂ w such that d∪k∪q0∪qv is a homotopy

trivializer for D(M)
⇔ there is a finite subset v ⊂ w such that each closed path in q is

null-homotopic mod d ∪ k ∪ q0 ∪ qv

⇔ there is a finite subset v ⊂ w such that N = N(v),

where the last implication follows by Lemma 9. Hence, M is FDT if and only if N is
the normal closure of a finite set of elements of F , that is, if and only if H is finitely
presented.

4 Homology of a rewriting system for M

Throughout this section it will be convenient to regard H as lying inside M . Thus, the
elements of H will be taken to be congruence classes [U ] of words U ∈ (b ∪ b−1)∗.

In addition we will let Q = 〈b;v〉 be a group presentation for H on the generators b.
As previously, we will denote the free group on b by F , and we will denote the free
equivalence class of a word U ∈ (b ∪ b−1)∗ by 〈U〉. We have the natural epimorphism

F −→ H, 〈U〉 → [U ] (U ∈ (b ∪ b−1)∗).

The kernel of this epimorphism is then N(v).
It follows from Lemmas 5 and 9 that the set d∪ k∪ q0 ∪ qv is a homotopy trivializer

for D(M), and so
{ ζP | P ∈ d ∪ k ∪ q0 ∪ qv }

is a set of bi-module generators for π(b)(M). We let B denote the submodule of π(b)(M)
generated by the set

{ ζP | P ∈ d ∪ k ∪ q0 }.

For ζ ∈ π(b)(M) we denote its image in π(b)(M)/B by ζ. Note that the bi-module
π(b)(M)/B is generated by the elements ζQV

(V ∈ v). Note also that π(b)(M)/B is
isomorphic to H1(Dd∪k∪q0) (see the end of Subsection 2.2).

4.1 The relation (bi)module

(For further general information on relation bi-modules, see [Iv] and the references cited
there.)

Let J denote the kernel of the ring homomorphism

ZF −→ ZH

induced by the group epimorphism F → H above. Then J is a (ZF,ZF )-bi-module and
J2 is a submodule of J . Thus, J/J2 is a (ZF,ZF )-bi-module, and J annihilates J/J2 on

11



both the left and the right. Consequently J/J2 inherits a (ZH,ZH)-bi-module structure
with action given by

[U1] · (ξ + J2) · [U2] = 〈U1〉ξ〈U2〉+ J2 (U1, U2 ∈ (b ∪ b−1)∗, ξ ∈ J).

This bi-module is the relation bi-module of Q [Iv], which we denote by Rel(b)(Q) (or
simply Rel(b)). The left relation module of Q is

Rel(l)(Q) = Rel(b)(Q)⊗ZH Z

(where H acts trivially on Z). Similarly there is the right relation module

Rel(r)(Q) = Z⊗ZH Rel(b)(Q),

but we will not need to consider this.
As an abelian group, J is generated by the elements

〈U1〉 − 〈U2〉 (U1, U2 ∈ (b ∪ b−1)∗, [U1] = [U2]).

For h ∈ H, we let Jh be the subgroup generated by the elements of the above form with
[U1] = [U2] = h. Then, as an abelian group,

J =
⊕

h∈H

Jh.

Clearly, Jh1Jh2 ⊆ Jh1h2 for all h1, h2 ∈ H. Hence

J2 =
⊕

h∈H

Kh,

where
Kh =

∑

h1,h2∈H
h1h2=h

Jh1Jh2 ≤ Jh.

Letting

Rel(b)h =
Jh

Kh
(h ∈ H),

we then have the abelian group decomposition

Rel(b) =
⊕

h∈H

Rel(b)h . (7)

Moreover, for all h, h1, h2 ∈ H, we have h1 · Rel(b)h · h2 = Rel(b)h1hh2
.

It is clear that if Rel(b)(Q) is finitely generated as a bi-module, then Rel(l)(Q) is finitely
generated as a left module. We will need the converse of this. The converse follows from
the decomposition (7), by making use of a general result of McGlashan [McG01], which
we now describe.

Let Γ be a group, and let A be a (ZΓ,ZΓ)-bi-module with an abelian group decom-
position

A =
⊕

γ∈Γ

Aγ

such that γ1 ·Aγ ·γ2 = Aγ1γγ2 for all γ, γ1, γ2 ∈ Γ. Then A1 has a left ZΓ-module structure
with Γ-action

γ ∗ a = γ · a · γ−1 (γ ∈ Γ, a ∈ A1).

12



Lemma 10 [McG01]

(i) A⊗ZΓ Z and A1 are isomorphic as left ZΓ-modules.

(ii) If A1 is finitely generated as a left ZΓ-module, then A is finitely generated as a
bi-module.

As a bi-module, Rel(b)(Q) is generated by the elements

(〈V 〉 − 1) + J2 (V ∈ v).

There is an embedding [BD], [Le] (see also [Iv])

µ : Rel(b)(Q) −→
⊕

b∈b ZH · eb · ZH

(〈V 〉 − 1) + J2 7→ ∂V
∂b (V ∈ v)

(8)

into the free (ZH,ZH)-bi-module with basis eb (b ∈ b). Here ∂
∂b is the Fox bi-derivative,

where for any word Z = bε1
1 bε2

2 . . . bεr
r (bi ∈ b, εi = ±1, i = 1, . . . , r)

∂Z
∂b

=
r

∑

i=1

εi[bε1
1 . . . bεi−1

i−1 b
εi−1

2
i ] · ebi · [b

εi−1
2

i bεi+1
i+1 . . . bεr

r ].

We then get an induced mapping

µ(l) : Rel(l)(Q)
µ⊗1−→

(

⊕

b∈b

ZH · eb · ZH

)

⊗ZH Z ∼=
⊕

b∈b

ZH · eb

into the free left ZH-module with basis eb (b ∈ b) given by the left Fox derivation. It
turns out that µ(l) is also an embedding [BD], [Le] (see [Iv] §1 or [Br], p. 43, taking
account of Prop. 0.1 of [Iv]). Moreover, there is an exact sequence

0 −→ Rel(l)(Q)
µ(l)

−→
⊕

b∈b

ZH · eb −→ ZH −→ Z −→ 0.

It follows from this and the generalized Schanuel Lemma [Br] that, if H is finitely gener-
ated, then H is of type FP2 if and only if Rel(l)(Q) is finitely generated.

Summarizing the above, we have the following.

Lemma 11 Let H be a finitely generated group, and let Q be a group presentation for
H on a finite set of generating symbols. Then the following are equivalent:

(i) The group H is of type FP2;

(ii) Rel(l)(Q) is finitely generated as a left ZH-module;

(iii) Rel(b)(Q) is finitely generated as a (ZH,ZH)-bi-module.
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4.2 The FHT property for M

From (4) and (8) we obtain the embedding

µ = id⊗ µ⊗ id : ZM ⊗ZH Rel(b)(Q)⊗ZH ZM −→
⊕

b∈b

ZM · eb · ZM.

Also, we have the embedding (see (1))

ρ : π(b)(M) → Φ⊕

(

⊕

b∈b

ZM · eb · ZM

)

⊕

(

⊕

b∈b

ZM · eb−1 · ZM

)

,

where Φ is the free (ZM,ZM)-bi-module with basis in one-to-one correspondence with the
rewriting rules of P̂ and ebε corresponds to the rewriting rule Tb,ε of M (b ∈ b, ε = ±1).
Then

ρ(ζD) ∈ Φ (D ∈ d),

and for b ∈ b, ε = ±1,

ρ(ζKb,ε) = ebε + [bε] · eb−ε · [bε] + κb,ε,

ρ(ζQbεb−ε ) = ebε · [b−ε] + [bε] · eb−ε + κ′b,ε,

where κb,ε, κ′b,ε ∈ Φ. Also for V ∈ v, say V = bε1
1 bε2

2 . . . bεr
r (bi ∈ b, εi = ±1, i = 1, . . . , r),

ρ(ζQV ) = αV +
r

∑

i=1

[bε1
1 . . . bεi−1

i−1 ] · ebεi
i
· [bεi+1

i+1 . . . bεr
r ],

where αV ∈ Φ.

The homomorphism

Φ⊕

(

⊕

b∈b

ZM · eb · ZM

)

⊕

(

⊕

b∈b

ZM · eb−1 · ZM

)

−→
⊕

b∈b

ZM · eb · ZM

Φ → 0, eb 7→ eb, eb−1 7→ −[b−1] · eb · [b−1] (b ∈ b),

maps ρ(B) to 0 and maps ρ(ζQV ) to ∂V
∂b (V ∈ v), so we obtain an induced bi-module

homomorphism

ρ∗ :
π(b)(M)

B
−→

⊕

b∈b

ZM · eb · ZM, ζQV
7→ ∂V

∂b
(V ∈ v).

This mapping, and the embedding µ, have the same image. Thus,

µ−1ρ∗ : π(b)(M)
B −→ ZM ⊗ZH Rel(b)(Q)⊗ZH ZM

ζQV
7→ 1⊗ ((〈V 〉 − 1) + J2)⊗ 1 (V ∈ v) (9)

is a surjective bi-module homomorphism. Below we will derive the following result.

Proposition 12 The mapping µ−1ρ∗ is an isomorphism.

For this we will need the following technical results.
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Lemma 13

(i) If [U0] = [U1] = [U2] for some U0, U1, U2 ∈ (b ∪ b−1)∗, then ζQU0,U1
− ζQU0,U2

=
ζQU2,U1

.

(ii) If Z,U, U ′ ∈ (b ∪ b−1)∗ and [U ] = [U ′], then

[Z] · ζQU,U′
= ζQZU,ZU′

and ζQU,U′
· [Z] = ζQUZ,U′Z

.

Proof. (i) We may take PU2,U1 to be P−1
U0,U2

PU0,U1 . Then the 1-cycle arising from the
outer circuit in the diagram in Figure 6 represents ζQU2,U1

. The diagram shows that this
1-cycle is the sum of two 1-cycles arising from the smaller circuits representing ζQU0,U1

and −ζQU0,U2
, respectively.

Figure 6: QU2,U1

(ii) We only prove the first equality, as the second follows by symmetry. By definition,
[Z] · ζQU,U′

= ζZ·QU,U′
. Now we may take PZU,ZU ′ to be Z · PU,U ′ . Then in the diagram

in Figure 7 the 1-cycle arising from the outer circuit represents ζQZU,ZU′
, and the smaller

righthand circuit represents [Z] · ζQU,U′
. The smaller lefthand circuit is [BZ ,PU,U ′ ], which

is null-homotopic (and therefore null-homologous) in D(M) (see Subsection 2.2).
�

Figure 7: QZU,ZU ′

Proof of Proposition 12. The elements of H are congruence classes of words on b∪b−1.
We choose a fixed but arbitrary representative from each congruence class, subject to the
proviso that we choose the empty word as the representative of the identity of H. For
U ∈ (b ∪ b−1)∗, the representative of [U ] will be denoted by U . Then, as an abelian
group, J is free abelian on the set of elements

〈U〉 − 〈U〉 (U ∈ (b ∪ b−1)∗, 〈U〉 6= 〈U〉).

We can therefore define an abelian group homomorphism

ψ : J → π(b)(M)
B

by
〈U〉 − 〈U〉 7→ ζQU,U

.

This is well-defined (that is, it does not depend on the choice of representative of the free
equivalence class 〈U〉) by Lemma 8. If [U1] = [U2], then U1 = U2 = U0, say, and we have

ψ(〈U1〉 − 〈U2〉) = ψ(〈U1〉 − 〈U0〉)− ψ(〈U2〉 − 〈U0〉)

= ζQU0,U1
− ζQU0,U2

(by definition of ψ)

= ζQU2,U1
(by Lemma 13 (i)).
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Now J2 ⊆ Ker ψ. For, as an abelian group, J2 is generated by the elements

(〈Z1〉 − 〈Z2〉)(〈U1〉 − 〈U2〉), where [Z1] = [Z2] and [U1] = [U2],

and we have

ψ((〈Z1〉 − 〈Z2〉)(〈U1〉 − 〈U2〉)) = ψ(〈Z1U1〉 − 〈Z1U2〉)− ψ(〈Z2U1〉 − 〈Z2U2〉)

= ζQZ1U2,Z1U1
− ζQZ2U2,Z2U1

( from above )

= [Z1] · ζQU2,U1
− [Z2] · ζQU2,U1

( by Lemma 13 (ii) )

= 0.

We therefore get an induced mapping

ψ∗ : Rel(b)(Q) → π(b)(M)
B

,

which by Lemma 13 (ii) is actually a (ZH,ZH)-bi-module homomorphism. This in turn
gives us an induced (ZM,ZM)-bi-module homomorphism

ψ∗ := id⊗ψ∗⊗id : ZM⊗ZH Rel(b)(Q)⊗ZHZM −→ ZM⊗ZH
π(b)(M)

B
⊗ZHZM ∼=

π(b)(M)
B

.

Applying this to the righthand side of (9) gives ζQ1,V
= ζQV

. So ψ∗ is the inverse of µ−1ρ∗.
This completes the proof of Proposition 12. �

We now prove part (ii) of our Main Theorem.

If G is not FHT (⇔ FDT), then neither is M , since G is a retract of M . So we can
assume that G is FHT, and therefore FDT, which means we can choose d to be finite.
Then the submodule B of π(b)(M) is finitely generated. Thus, we have the following
sequence of equivalent statements:

π(b)(M) is finitely generated, that is, M is FHT
⇔ π(b)(M)/B is finitely generated (as B is finitely generated)

⇔ ZM ⊗ZH Rel(b)(Q)⊗ZH ZM is finitely generated (using Proposition 12)
⇔ H is of type FP2 (by Lemma 11).

5 The word problem for M

The generalized word problem for the subgroup H of G is the problem of deciding, given
a word W ∈ (a ∪ a−1)∗, whether [W ] belongs to the subgroup H. In the monoid M ,
we have [tW ] = [Wt] if and only if [W ] belongs to the subgroup H. Thus, the word
problem for M will be undecidable, if the generalized word problem for H is undecidable.
If G is the direct product of two copies of a free group of rank at least 2, then the word
problem for G is easily solved, but G contains a finitely generated subgroup H such that
the generalized word problem for H in G is undecidable [Mih] (see, e.g., [Mil]). Thus,
in general the word problem for the monoid M will be undecidable, even if the word
problem for the group G is decidable.

Suppose now that H is the kernel of an epimorphism from the group G onto the
additive group Z of integers. Choose an element g ∈ G such that the image of g in Z is
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1. Then { gr | r ∈ Z } is a transversal for H in G, and the corresponding unique normal
forms (2) for the elements of M are

gr0tgr1t . . . tgrnh (n ≥ 0, r0, r1, . . . , rn ∈ Z, h ∈ H).

If G is given by means of a presentation 〈a;u〉, then an epimorphism onto Z will arise
from a function

φ : a ∪ a−1 → Z satisfying φ(a−1) = −φ(a) (a ∈ a),

such that the induced monoid homomorphism (also denoted φ)

(a ∪ a−1)∗ → Z

is surjective, and maps each U ∈ u to 0. Then if

W = W0tW1t . . . tWn (n ≥ 0,W0,W1, . . . , Wn ∈ (a ∪ a−1)∗)

is a word in the alphabet of M , the corresponding normal form is

gφ(W0)tgφ(W1)t . . . tgφ(Wn)(g−(φ(W0)+...+φ(Wn))[W0W1 . . . Wn]).

It follows that if
W ′ = W ′

0tW
′
1t . . . tW ′

m

is another such word, then [W ] = [W ′] in M if and only if

(a) m = n,

(b) φ(W ′
i ) = φ(Wi) (0 ≤ i ≤ n),

(c) [W ′
0W

′
1 . . . W ′

n] = [W0W1 . . . Wn] in G.

Since (a) and (b) can be checked in linear time, it follows that the time complexity of the
word problem for M is the same as that for G (up to linear time). Thus, in general the
word problem for M will still be undecidable.

In the case of the Bestvina and Brady example, however, G is a right-angled Coxeter
group, and therefore has word problem solvable in quadratic time [Va, ECH+], and H is
the kernel of the epimorphism from G onto Z that maps each generator a ∈ a to 1. Thus,
from the above discussion we see that the word problem for our example monoid M is
also decidable in quadratic time.

6 The properties FDT2, FHT2

We briefly discuss work of McGlashan [McG01], [McG02] on higher dimensional properties
FDT2, FHT2 of rewriting systems.

Given a rewriting system R = [x; r] and a set p of closed paths in D = D(R),
McGlashan constructs a 3-complex (D,p) as follows1. The 2-skeleton is (the geometric
realization of) Dp, and for each 1-cell E in D and each 2-cell C in Dp, there is a 3-cell
[E,C]. This 3-cell is attached to the 2-skeleton by a “drum,” where the top is mapped to
ιE·C, the bottom to τE·C, and the side panels are mapped to 2-cells arising from defining
paths [E,Ei] (1 ≤ i ≤ n), where E1E2 . . .En is the attaching path of C (see Figure 8).
The free monoid x∗ acts on these 3-cells by U · [E,C] · V = [U · E,C · V ] (U, V ∈ x∗).
Analogously, 3-cells [C,E] are attached.

1Our treatment is slightly different from McGlashan’s, but equivalent to it.
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Figure 8: The 3-cell [E,C]

Roughly speaking, the rewriting system is said to be FDT2 (respectively, FHT2) if it
is FDT (respectively, FHT) and for some finite homotopy (respectively, homology) triv-
ializer p, the 3-complex (D,p) has finitely based second homotopy (respectively, second
homology). It is shown in [McG01] that these properties are monoid invariants, and that
they are invariant under retractions. Moreover, the two properties are equivalent for
groups.

It turns out in fact (due to the Hurewicz Isomorphism Theorem) that, if a partic-
ular monoid is FDT, then for this monoid the properties FDT2, FHT2 are equivalent.
Consequently, the fact that we have shown that in general FDT and FHT are not equiv-
alent is important for McGlashan’s theory, because it means that the higher dimensional
properties are not necessarily equivalent.

There are examples known of monoids (in fact, groups) which are FDT but not FDT2

(a group of type FP3 but not of type FP4 is such an example). However, there are no
known examples of monoids which are FHT (but not FDT!) which fail to be FHT2. It
is reasonable to suppose that taking H in our construction to be of type FP2 but not of
type F2 and also not of type FP3, would yield such an example.
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