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On differential equations of von Gehlen-Roan and Roan

Etsuro Date ( Osaka University)



1 Introduction

Papers by von Gehlen-Roan and Roan.

Their motivation: study of zeroes of polynomials appearting in the study of Bethe
Ansatz for the N-state superintegrable chiral Potts spin chain by using differential
equations.

G. von Gehlen and S. S. Roan, The superintegrable chiral Potts quantum chain and
generalized Chebyshev polynomials, in S. Pakuliak, G. von Gehlen (Eds.), Integrable
Structure of Exactly Solvable Two-Dimensional Models of Quantum Field Theory,
NATO Science Series Il, vol. 35, Kluwer Academic Publisher, Dordrecht, 2001, pp.
155-172.

S. S. Roan, Structure of certain Chebyshev-type polynomials in Onsager’'s algebra
representation, Journal of Computaional and Applied Mathematics, vol. 202 (2007),

38-1-4.



2 superintegrable chiral Potts hamiltonian

N > 2, w=-exp(2mi/N),

X,Z €End(CY),ZX =wXZ, XN = 7N =id.
L: integer.
Consider on (CY)®L the following operator

L N-1 9
H) == Y +—— X'+ K21 Z[5")

=1 n=1

where k£’ is a real parameter and X is the operator acting on the [-th component as
X and for other components as identity.
If we write

H(k') = Ag + k' Aq,

Ay and A; satisfy the Dolan-Grady relation and give a representation of the Onsager
algebra.



3 Polynomials

Define polynomials F};(s) by the relation.

NN T
( t—1 ) =Y PFa(s), s=t".
j=0

By the Bethe Ansatz eigenvalues are expressed in terms of zeroes of Fj.

In order to study these polynomials von-Gehlen-Roan derived a system of first order

differential equations for
F(S) :t(F17F27"'7FN)‘



dF

Ns(s—l)E:BF,
(do —Ls - —Ls\
p_| L d E
: . —Ls |
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di =L(N —1)s—j(s—1).

When N = 2 (the Ising case) each of polynomials satisfy GauB hypergeometric

differential equation. They also derive 3rd order differential equations for the case
N = 3.

Eg.

2752(s — 1)2F, —27s(s — 1)((2L — 4)s + 2)F}
+3(3L%s(4s — 1) — 3Ls(10s — 7) 4+ 2(s — 1)(10s — 1)) F}
—(L —1)(L(L(8s + 1) — 4(s — 1)) Fy = 0.
These systems have regular singular points only at s =0, 1, c0.

von Gehlen-Roan and Roan conjectured that each of F); satisfies an N-th order
ordinary differential equations of the form



Conjecture 1

dV F;
NN N-1( _ 1 )N-1 j
S (s ) TN
N—1 dkF
+ Z N*sF=1(s — 1)*1Djp(s) dskj + D,oF; =0
k=1

where D;;, are polynomials.

Among known Fuchsian differential equations of higher order there is a class called
generalized hypergeometric differential equations.

After some calculation with small n, we find that defining G by
G(s) = (s — 1)L F(s) the differential equations for G; become a special kind of
generalized hypergeometric differential equations.



4 A normal form of differential equations

The differential equations for GG takes the following form

N§=<— L A1+1AO>G7
ds s—1 S
Lo (00 0
A= . |, Ao= L __1 N |
e 0
: : \L - L -N+1)

(In the original form the diagonal entries are 1 — N.)
Look for a N-th order matrix P and numbers a;, b; which satisfy the following
relations.



(O 1 0 e 0 \
%PAO - . |
0 0 1
\O —by —bn_2 _bN—1)

If we can find such nonsingular matrix P, (PG); is annihilated by a generalized

hypergeometric differential operator determined by a;, b;:

N | N | d
S Zaﬂ?] —ijﬁj, ﬂzsg, ay =1, by = 1. (1)
7=0 71=1
Factorize as

N | N
ZCLJW = H (¥ + a;)
7=0 71=1
N | N—-1
Yoo =9 [[ 0+8,-1), (2)
j=1 j=1

the usual generalized hypergeometric differential operator.



5 Transformation Matrix (guess)

To find the matrices we made computation using the computer algebra system

(") that satisfy the following relations.

maxima. n-th order matrix (), with entries g;;

Lo () 0
1 ... 1 . .
T
e N 0 | @
- 0 o0 1
KZC T n—1) \0 fo e foy fn)

where x is a parameter. By a computation for small n we may set
n n—1 i—1 n i—1
ap’ = ()" =2)"" g = (n-1)

without loss of generality.



The cases n = 3, 4, 5 look as follows:

1 —2 1

Qs=| -z -2 2|,
2 3r—2 4
—1 3 —3 1

B x —2x + 3 r—6 3

Qs = —z2 2°—-5x+3 bHr—12 6|’

3 6x°—8x+3 19z —24 9
( 1 —4 6 —4 1\

—X 3r — 4 —3x—|—12 r— 12

Qs = | z° —2z% + 7z — 9 2 — 142 + 24 7x — 36 16

3 — 922 4+ 11x — 4 9x? — 48x + 48 37x — 108

\ r*  10x® — 202% + 152 — 4 5522 — 140x + 96 175z — 324 256)

At the same time we can guess that
ci=r(n,i—1,z)—s(n,i—1), fi=-—s(n,1—1)

where r(n, i, x) is defined by

n

Zr(n,z,x ﬁ (t+x—7+1)
71=1

1=0



and s(n, 1) denotes the Stirling number of the first kind.
n-th order matrices Q[k,n| with entries

k
qlk,nlli, j] = ()(nJrk).
1=0

The original matrix @, is Q[0, n].



From the results we immediately see that

qlk,n][i,l] =0, [= 1,k
qlk,nlli, k+ 1] = (—l)n_l(k B :17)1_1

hold.
With this information we guessed the formula for ¢k, n, 7, k + j] for j = 2, 3.

dihonllik+2) = (-1 31y (““ t1y (n ks ) ( s 1>

S
s=0

N O (o ) E



s=0

+((s—k+1)(k+2) (k+1)s+1)(n—i41rs—1)<z‘—1>

s+ 1
i — 1\ « s+ 1
9 4 $ott2 Js—2—t
+(8+1) 2 )(t+3)

1= 1\ ¢ s+ 2 .
E t 4+ 3)(1 + 2ttt ps—2-t | pi—s—1
+(3—|—2>t0( +3)(1 + )(t—|—4> >a:

Rewriting these expressions we arrived at the following conjectural form

2 () (Pt

We checked this formula for the results we have.

» o+
o O

—_

']_

qlk,nlli, k + 7] =

NM



6 Transformation matrix (check)

We set

j—1
(n) et r+n—1
= (=1 g

s=0

Jis—ay

(1)

and consider the square matrix @,, of order n with its (i, j)-entries ¢’ .

Proposition 1 The matrix (),, satisfies

1 1 (_)

TQn | — :
1 1 %
C1

(O 0 0 \ /O :
o, | * . f _
0
\x X n—l) 0

Proof.

0
fn—l

¥

1

fo)

Qn- (4)



The (7, 7) component of the left hand side is

)3 (x L 1) <j - s) oo

7j=1s=0

After some calculation we get

i G j1<1>l (" )

— (T 1)2 (o D=y
x nzl(w (” , 1) (n—1-0F

The inner sum is (n — 1)!S(k,n — 1) where S(n, k) denotes the Stirling number of the
second kind.
The sum is O if + <n and when ¢ = n the sum is equal to

n—1

H(.rJrj).

g=1



The right hand side. If ¢ < n the result is obviously 0. When ¢ = n the term consists
of two parts. After some calculation using the definition of r(n, k, x), we get

o102 ()57
g

above sum is equal to 1. Thus we proved the first equation. The second equation (4)
is proved in a similar way. Here we use the relation

Zq(n) — 0

which is already contained in the first equation.

By the identity



{ __|Inverse matrix

By calculating the inverses of ¢(™) for severals ns, we can guess the answer.
Define q( )( ) by the relation

1—2 n—1

Zq§j;>+1 Wo=T[t+z—k) ]t k.

k=0 k=1

—(n)

The matrix Q,, with entries q;;~ satisty the relation

n

k=1

I,,: the identity matrix of order n.



8 Scalar differential operator

N =n, x = —L. Multiply the diagonal matrix of order N with the :-th component
(—N)~*"1 from the left. Assume L > N.

bj = (~1)V NV TS(N, 1),
a; = (—)NTIN NI (N j—1,—L).

The corresponding N-th order differential operator (1) is

H( L+k—1>_ﬂ(ﬁ+kN1>.

Defining H = PG, we see that the function H; is annihilated by the above operator.

1—2 nl

=D ] N19+L+k)H(Nz9+k)H
k=0 k=1



Defining

n

Li=s|[(NM0+L+it+k—2)— ][ (N9+i-k)

k=1 k=1
and using
vs = s(¥+ 1),
we have
Theorem 1
L;G; = 0.

Rewriting these differential equations those for F; and assuming that L is a positive
integer, we proved the conjecture of von Gehlen-Roan, Roan.



9 Power series solutions at s = 0

Here we assume that L is a positive integer. Generalized hypergeometric series

ar, g, e, ap
s (617 527 T /Bn—la 1 ‘S)
o (e)e(ag)g - (an)e 4
B Z (B1)x(B2)k - - (5n—1)kk!8 ’

“alat 1) (atk-1)

k=
(@)K

where aq,. .., an, B1, ..., Bn_1 are parameters. The symbols (), are sometimes
called Pochhammer symbol.
As is known solutions of generalized hypergeometric differential equation (1) aroud

O{l &2 o o o a{n
I ) ) ) s) .
(517 ﬁ27 T ﬁn—h 1‘ )

with aq, ..., an, B1, ..., Bv_1 defined by the relations (2) and also

s = 0 are given by

A-sp(ltoar=0, - 1daj1 =0, l+a; =0, 1+ajm—05,
1‘|‘61_ﬁ]7 T 1"‘6]—1_637 2_537 1‘|‘ﬁj+1_ﬁja

..,

1+
14,



fory=1,..., N — 1. The power series solutions of L;f = 0 are given by

L+i—1 L+i . L+N—-1  L+i+N-2
F N N ’ N Y ) N |S
K i+l 1 i+ N—1
N’ N ) ) y N

The Pochhammer symbols in the coefficietns are simplified. We have the following

series -
Z (L—I—i— l)kNSk
= (D |

We see that these are essentially a sum of binominal series

N

1 :

NE fi(WstN), w = exp(2mi/N)
7=0

o0

n=0 <Z>n

_ (_1L) <x1i(1 —z)E gt f (_kL) (—:c)k> .

1—1 k=0

Recalling the transformation we took, the analysis of power series solutions of
generalized hypergeometric differential equations at s = 0 recovered our starting point.



