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Geometric algebra

The quadrilateral lattice and geometric integrability scheme

The B-(Moutard) and C-(symmetric) quadrilateral lattices



The projective plane axioms
A projective plane is a set, whose elements are called points
and a set of subsets, called lines, satisfying the following four
axioms:
P1 Two distinct points lie on one and exactly one line.
P2 Two distinct lines meet in precisely one point.
P3 There exist three noncollinear points.
P4 Every line contains at least three points.

A

H

= P \ H

In analytic geometry one wants to get results, while in synthetic
geometry one would like to get insight.



P1-P4 ⇒ coordinatization in terms of a ternary ring

A ternary ring (Γ, T ) is a set Γ = {0, 1, a, b, c, . . . } together with
a mapping T : Γ× Γ× Γ → Γ such that:

T1 For all a, m, c ∈ Γ, T (0, m, c) = T (a, 0, c) = c.

T2 For all a ∈ Γ, T (a, 1, 0) = T (1, a, 0) = a.

T3 If m, m′, b, b′ ∈ Γ and m 6= m′, then the equation
T (x , m, b) = T (x , m′, b′) has a unique solution in Γ.

T4 If a, a′, b, b′ ∈ Γ and a 6= a′, then the system of equations
T (a, x , y) = b, T (a′, x , y) = b′ has a unique solution in Γ.

T5 For all a, m, c ∈ Γ, the equation T (a, m, x) = c has a
unique solution in Γ.

addition: a + b = T (a, 1, b)
multiplication: a · b = T (a, b, 0)
Example: A division ring (D,+, ·, 0, 1) is a ternary ring with
T (a, m, b) = a ·m + b.



The Desargues axiom

P5 If two triangles are in perspective from a point then they
are in perspective from a line.
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P1-P5 ⇒ coordinatization in terms of a division ring.
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The Pappus axiom

P5’ If hexagon is inscribed on two lines, then the pairs of
oposite sides meet in three collinear points.

P1-P5’ ⇒ coordinatization in terms of a field (comutative
division ring).
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The projective 3-space axioms

A projective 3-space is a set whose elements are called points,
together with certain subsets called lines, and certain other
subsets called planes, which satisfy the following axioms:

S1 Two distinct points lie on one and only line.

S2 Three noncollinear points lie on a unique plane.

S3 A line meets a plane in at least one point.

S4 Two planes have at least a line in common.

S5 There exist four noncoplanar points, no three of which are
collinear.

S7 Every line has at least three points.

Theorem
Desargues’ "axiom" holds in any projective 3-space, where we
do not necessarily assume that all the points lie in a plane.



Geometric Integrability Scheme

Given generic points x0, x1, x2 and x3

in a projective 3-space, let xij ,
1 ≤ i < j ≤ 3, be generic points of the
planes 〈x0, xi , xj〉.

Then there exists exactly one point
x123 which belongs simultaneously to
the planes 〈x3, x13, x23〉, 〈x2, x12, x23〉
and 〈x1, x12, x13〉.
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Definition
A quadrilateral lattice is a map x : ZN → PM(D), 3 ≤ N ≤ M,
whose all elementary quadrilaterals are planar.
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The discrete Darboux equations (affine version)
In non-homogeneous coordinates x : ZN → DM ∼ P(D) \ H∞,

∆i∆jx = (∆ix )aij + (∆jx )aji , 1 ≤ i < j ≤ N,

aij : ZN → D, i 6= j .

Notation:
x (i)(n1, . . . , ni , . . . , nN) = x (n1, . . . , ni + 1, . . . , nN), ∆x = x (i) − x .

The compatibility condition

∆kaij + aikaij
(k) = aijajk

(i) + aikakj
(i), i 6= j 6= k 6= i .

The j ↔ k symmetry of the RHS implies the existence of
functions hi : ZN → D such that aij = (hi)−1∆jhi , i 6= j .

In terms of

X i = (∆ix )(hi)−1, β ij = (∆ih
j)(hi

(j))
−1, i 6= j ,

we have

∆jX i = X jβ ij , ∆kβ ij = βkjβ ik
(j), i 6= j 6= k 6= i .
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Multidimensional consistency of the quadrilateral
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The vectorial fundamental transformation of Jonas
Given the column-vector solution Y i : ZN → DK of the linear
problem

∆jY i = Y jβ ij , i 6= j ,

and given the row-vector solution Z i : ZN → DK of its adjoint

∆iZ j = β ijZ i
(j), i 6= j ,

they allow to construct the K × K matrix-valued potential
Ω[Y , Z ] defined by

∆iΩ[Y , Z ] = Y iZ i ;

similarly one defines Ω[X , Z ] and Ω[Y , h]. Then

x̃ = x − Ω[X , Z ]Ω[Y , Z ]−1Ω[Y , h]

is a new quadrilateral lattice with the rotation coefficients

β̃ ij = β ij − Z jΩ[Y , Z ]−1
(j) Y i

(j), i 6= j .



The B-quadrilateral lattice
Under hypotheses of the Geometric
Integrability Scheme, assume that D
is commutative and x0, x12, x13 and
x23 are coplanar.

Then the points x1, x2, x3 and x123 are
coplanar as well.
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Definition
A quadrilateral lattice x : ZN → PM(F), is called the
B-quadrilateral lattice if for any triple of different indices
1 ≤ i < j < k ≤ N the points x , x(ij), x(ik) and x(jk) are coplanar.

A. D., 2007
The B-constraint implies existence of a function τB : ZN → F
which satisfies Miwa’s discrete BKP equation

τB τB
(ijk) = τB

(ij)τ
B
(k) − τB

(ik)τ
B
(j) + τB

(jk)τ
B
(i), 1 ≤ i < j < k ≤ N,

T. Miwa, 1982
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The Möbius theorem (1828)
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The C-quadrilateral lattice

Definition
A quadrilateral lattice x : ZN → AM(F) = PM(F) \ H∞, is called
the C-quadrilateral lattice if for any triple of different indices
1 ≤ i < j < k ≤ N the three intersection points of the common
lines of the opposite planes of the corresponding hexahedron
with the hyperplane at infinity are collinear.

3D constraint needs checking its 4D consistency
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The CQL constraint
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The CQL constraint

H



The discrete CKP equation

Algebraic characterization of the C-quadrilateral lattice
A quadrilateral lattice is subject to the C- reduction if and only if
its rotation coefficients satisfy the constraint

β ijβ jkβki = βkjβ ikβ ji , i , j , k distinct.

The symmetric lattice W. K. Schief, A. D. & P. M. Santini, 2000

The discrete CKP system W. K. Schief, 2003

(τ τ(ijk) − τ(i) τ(jk) − τ(j) τ(ik) − τ(k) τ(ij))
2 =

4(τ(i) τ(j) τ(ik) τ(jk) + τ(i) τ(k) τ(ij) τ(jk) + τ(j) τ(k) τ(ik) τ(ij)−
τ(i) τ(j) τ(k) τ(ijk) − τ τ(ij) τ(jk) τ(ik)), i , j , k distinct.
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The Gallucci Theorem
If three skew lines all meet three other skew lines, any
transversal to the first set of three meets any transversal to the
second set.
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Theorem (16 point theorem)
Let P be a 3-dimensional projective space over the division ring
D. Let {g1, g2, g3} and {h1, h2, h3} be sets of skew lines with
the property that each line gi meets each line hj . Then the
following is true: D is commutative (hence a field) if and only if
each transversal g 6∈ {g1, g2, g3} of {h1, h2, h3} intersects each
transversal h 6∈ {h1, h2, h3} of {g1, g2, g3}.
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