Tau functions, integrable systems random matrices and random processes

J. Harnad[†] (Joint work with A. Yu. Orlov)

ISLAND 3 Algebraic Aspects of Integrable Systems Islay, July 3-7, 2007

Three uses of tau functions

Classical integrable systems 1.

- Canonical generator for commuting flows
- *Determinant* of a projection operator from linear spaces evolving under an abelian group action

2. Random matrices, quantum integrable systems, solvable lattice lattice models

- Partition function, correlation function (under parametric family of deformations in measures)
- Hankel, Toeplitz or Fredholm Determinant
- Boltzmann weight on statistical ensemble

3. Random processes

- Weight on path space
- Generating function for transition probabilities

Sato-Segal-Wilson interpretation of the KP- τ function:

An infinite **Fredholm determinant** of a projection operator on a Hilbert space Grassmannian

$$\tau_{g}(\mathbf{t}) = \det(\pi_{+} : W(\mathbf{t}) \to \mathcal{H}_{+}), \quad \mathbf{t} = (t_{1}, t_{2}, \ldots)$$
$$W(\mathbf{t}) = \gamma(\mathbf{t})(g(\mathcal{H}_{+})) \subset \mathcal{H}$$
$$\mathcal{H} = \mathcal{H}_{-} + \mathcal{H}_{+} \quad (\text{Hilbert space; e.g. } L^{2}(S^{1}))$$
$$e^{\sum_{i=1}^{\infty} t_{i} z^{i}} =: \gamma(\mathbf{t}) : \mathcal{H} \to \mathcal{H}, \quad g \in GL(\mathcal{H})$$

(linearly evolving subspace under an abelian group action)

Fermionic Fock space VEV's (KP τ function)

$$\begin{aligned} \tau_{N,g}(\mathbf{t},\tilde{\mathbf{t}}) &:= \langle N|\gamma(\mathbf{t})g|N \rangle \\ \gamma(\mathbf{t}) &:= e^{\sum_{i=1}^{\infty} t_i H_i} \\ H_i &:= \sum_{j \in \mathbf{Z}} f_i \bar{f}_{j+i}, \quad g = e^{\mathcal{A}}, \quad \mathcal{A} := \sum_{ij} a_{ij} f_i. \end{aligned}$$

2-D Toda τ function

$$\begin{aligned} \tau_{N,g}(\mathbf{t},\tilde{\mathbf{t}}) &:= \langle N|\gamma(\mathbf{t})g\tilde{\gamma}(\tilde{\mathbf{t}})|N \rangle \\ \gamma(\mathbf{t}) &:= e^{\sum_{i=1}^{\infty} t_i H_i}, \quad \tilde{\gamma}(\tilde{\mathbf{t}}) := e^{\sum_{i=1}^{\infty} \tilde{t_i} H_{-i}} \\ H_i &:= \sum_{j \in \mathbf{Z}} f_i \bar{f}_{j+i}, \quad g = e^{\mathcal{A}}, \quad \mathcal{A} := \sum_{ij} a_{ij} f_i. \end{aligned}$$

 $i\overline{f}_j$

 $_i \overline{f}_j$

1. Classical integrable systems:

The τ function determines Hamilton's principle function on Lagrangian leaves

$$S(\mathbf{q}(\mathbf{t}), \mathbf{C}) = \int_{\mathbf{P}=\mathbf{C}} \mathbf{p} \cdot d\mathbf{q}$$
$$= \mathcal{D}(\ln \tau(t_1, t_2, \ldots))$$

 \mathcal{D} = Linear differential operator in the flow parameters $(t_1, t_2, ...)$)

Example: Finite dimensional isospectral quasi-periodic flows: Rational Lax matrix $L(\lambda)$ (λ = "spectral parameter")

$$\frac{dL(\lambda)}{dt} = [A(L,\lambda), L(\lambda)]$$

Lagrangian leaves $(\mathbf{P} = \mathbf{C}) \leftrightarrow \mathbf{spectral\ curve}$

$$det(L(\lambda) - z\mathbf{I}) = 0$$

$$\tau(\mathbf{t}) = \Theta(\mathbf{Q}(\mathbf{t})), \quad \mathbf{Q}(\mathbf{t}) = \mathbf{Q}_0 + (\nabla_{\mathbf{P}}H, \mathbf{t})$$

This is an **infinite** determinant. Degeneration to rational curves with cusp singularities give **solitons**:

$$\tau \sim \det(e^{(\Lambda_{ij}, \mathbf{t}) + \kappa_{\mathbf{ij}}})$$

2. Random Matrices: Two matrix models

Most statistical properties of the spectrum are expressible as expectation values

$$< F >= \frac{1}{\mathbf{Z}_N^{(2)}} \int F(M_1, M_2) d\Omega(M_1, M_2)$$

where the **Partition function** is

$$\mathbf{Z}_N^{(2)} := \int d\Omega(M_1, M_2)$$

For some conjugation invariant F's, unitarily diagonalizable matrices M_1 , M_2 , and certain matrix measures $d\Omega(M_1, M_2)$ this reduces to:

$$\langle F \rangle \propto \prod_{i=1}^{N} \iint_{\kappa\Gamma} d\mu(x_i, y_i) \Delta_N(x) \Delta_N(y) \tilde{F}(x_1, \dots, x_N, y_i)$$

 $y_1,\ldots y_N)$

Example: (Itzykson-Zuber (1980)

$$d\Omega(M_1, M_2) = d\mu_0(M_1)d\mu_0(M_2)e^{\operatorname{Tr}(V_1(M_1) + V_2(M_2) + M_1M_2)}$$

Reduced 2-matrix integrals

$$\mathbf{Z}_{N}^{(2)}(\mathbf{t},\tilde{\mathbf{t}}) := \prod_{i=1}^{N} \iint_{\kappa\Gamma} d\mu(x_{i},y_{i})\gamma(x_{i},\mathbf{t})\tilde{\gamma}(y_{i},\tilde{\mathbf{t}})\Delta_{N}(\mathbf{x})\Delta$$

where $d\mu(x, y)$ is some two-variable measure

General form

$$d\mu(x,y) = d\mu(x)d\tilde{\mu}(y)h(xy)\sum_{a=1}^{k}\sum_{b=1}^{l}z_{ab}\chi_a(x)\tilde{\chi}_b(y)$$

Examples

• Two-matrix partition function:

$$k = l = 1, \quad z_{11} = 1, \quad \chi_1 = \tilde{\chi}_1 = 1$$
$$d\mu(x) = e^{V_1(x)} dx, \quad d\tilde{\mu}(y) = e^{V_2(y)}, \quad h(xy) = e^{xy}$$

• Generating function for (k, l) point correlators (marginal distributions) of eigenvalues

$$\chi_a = \delta(x - X_a), \quad \chi_b = \delta(y - Y_b)$$

• Generating function for gap probabilities

$$\chi_a = \chi_{[\alpha_{2a-1}, \alpha_{2a}]}(x) \quad \tilde{\chi}_b = \chi_{[\beta_{2b-1}, \beta_{2b}]}(x)$$

• Generating function for *Janossy distributions* (Combine the above two.)

Two matrix determinantal correlators:

$$\mathbf{I}_{N}^{(2)} := \left\langle \prod_{a=1}^{N} \frac{\prod_{\alpha=1}^{L_{1}} \det(\xi_{\alpha}\mathbf{I} - M_{1}) \prod_{\beta=1}^{L_{2}} \det(\zeta_{\beta}\mathbf{I} - M_{2})}{\prod_{j=1}^{M_{1}} \det(\eta_{j}\mathbf{I} - M_{1}) \prod_{k=1}^{M_{2}} \det(\mu_{k}\mathbf{I} - M_{2})} \right\rangle \right\rangle$$

For suitable measures, this reduces to Integrals of rational symmetric functions in 2N variables:

$$\mathbf{I}_{N}^{(2)}(\xi,\zeta,\eta,\mu) := \frac{1}{\mathbf{Z}_{N}^{(2)}} \prod_{i=1}^{N} \iint_{\kappa\Gamma} d\mu(x_{i},y_{i}) \Delta_{N}(x) \Delta_{N}(y) \prod_{a=1}^{N} \frac{\prod_{\alpha=1}^{L_{1}} (\xi_{\alpha} - \eta_{\alpha})}{\prod_{j=1}^{M} (\eta_{j} - \eta_{j})} \mathbf{Z}_{N}^{(2)} := \prod_{i=1}^{N} \iint_{\kappa\Gamma} d\mu(x_{i},y_{i}) \Delta_{N}(x) \Delta_{N}(y)$$

 $\frac{-x_a)\prod_{\beta=1}^{L_2}(\zeta_\beta - y_a)}{-x_a)\prod_{k=1}^{M_2}(\mu_k - y_a)}$

Assuming generic conditions on the matrix of **bimoments**:

$$B_{jk} := \iint_{\kappa\Gamma} d\mu(x, y) x^j y^k < \infty, \quad 0, \quad \forall j, k \in \mathbf{M}$$
$$\det(B_{jk})_{0 \le j, k \le N} \neq 0, \quad \forall N \in \mathbf{N}$$

implies the existence of a unique sequence of

Biorthogonal polynomials

$$\iint_{\kappa\Gamma} d\mu(x,y) P_j(x) S_k(y) = \delta_{jk},$$

normalized to have leading coefficients that are equal:

$$P_j(x) = \frac{x^j}{\sqrt{h_j}} + O(x^{j-1}), \qquad S_j(x) = \frac{y^j}{\sqrt{h_j}} + O(y^j)$$

Ν

 $(j^{-1}).$

Also, assume existence of their **Hilbert transforms**

$$\tilde{P}_{j}(\mu) := \iint_{\kappa\Gamma} d\mu(x, y) \frac{P_{j}(x)}{\mu - y},$$
$$\tilde{S}_{j}(\eta) := \iint_{\kappa\Gamma} d\mu(x, y) \frac{S_{j}(x)}{\eta - x}$$

and their **Hilbert transforms**

$$\tilde{P}_{j}(\mu) := \iint_{\kappa\Gamma} d\mu(x, y) \frac{P_{j}(x)}{\mu - y},$$
$$\tilde{S}_{j}(\eta) := \iint_{\kappa\Gamma} d\mu(x, y) \frac{S_{j}(x)}{\eta - x}$$

Determinantal expression for correlator (Assume $N + L_2 - M_2 \ge N + L_1 - M_1 \ge 0$)

$$\mathbf{I}_{N}^{(2)} = \epsilon(L_{1}, L_{2}, M_{2}, M_{2}) \frac{\prod_{n=0}^{N+L_{2}-M_{2}-1} \sqrt{h_{n}} \prod_{n=0}^{N+L_{1}-M_{1}-1} \prod_{n=0}^{M_{1}-1} h_{n}}{\prod_{n=0}^{N-1} h_{n}} \\ \times \frac{\prod_{\alpha=1}^{L_{1}} \prod_{j=1}^{M_{1}} (\xi_{\alpha} - \eta_{j}) \prod_{\beta=1}^{L_{2}} \prod_{k=1}^{M_{2}} (\zeta_{\beta} - \mu_{k})}{\Delta_{L_{1}}(\xi) \Delta_{L_{2}}(\zeta) \Delta_{M_{1}}(\eta) \Delta_{M_{2}}(\mu)} de$$

where

$$\epsilon(L_1, L_2, M_2, M_2) := (-1)^{\frac{1}{2}(M_1 + M_2)(M_1 + M_2 - 1)} (-1)^L$$

and G is the $(L_2 + M_1) \times (L_2 + M_1)$ matrix:

 $\sqrt[n]{h_n}$

$\operatorname{et} G$

 $L_1 M_2$

$$G = \begin{pmatrix} K_{11} & (\xi_{\alpha}, \eta_{j}) & K_{12} & (\xi_{\alpha}, \zeta_{\beta}) \\ K_{11} & (\xi_{\alpha}, \eta_{j}) & K_{12} & (\xi_{\alpha}, \zeta_{\beta}) \\ K_{21} & (\mu_{k}, \eta_{j}) & K_{22} & (\mu_{k}, \zeta_{\beta}) \\ \tilde{S}_{N+L_{1}-M_{1}} & (\eta_{j}) & S_{N+L_{1}-M_{1}} & (\zeta_{\beta}) \\ \vdots & \vdots \\ \tilde{S}_{N+L_{2}-M_{2}-1} & (\eta_{j}) & S_{N+L_{2}-M_{2}-1} & (\zeta_{\beta}) \end{pmatrix}$$

where the kernels $K_{11}^J, K_{11}^J, K_{11}^J, K_{11}^J$ are defined by:

$$\begin{split} & \stackrel{J}{K}_{11}(\xi,\eta) := \sum_{n=0}^{J-1} P_n(\xi) \tilde{S}_n(\eta) + \frac{1}{\xi - \eta}, \\ & \stackrel{J}{K}_{12}(\xi,\zeta) := \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\eta) - \int \!\!\!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) := \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\eta) - \int \!\!\!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) := \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\eta) - \int \!\!\!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) := \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\eta) - \int \!\!\!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) := \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\eta) - \int \!\!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) := \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\eta) - \int \!\!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) := \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\eta) - \int \!\!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) := \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\eta) - \int \!\!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) := \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\eta) - \int \!\!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) := \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\eta) - \int \!\!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) := \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\eta) - \int \!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) := \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\eta) - \int \!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) := \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\eta) - \int \!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) := \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\eta) - \int \!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) := \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\eta) - \int \!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) = \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\eta) - \int \!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) = \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\eta) - \int \!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) = \sum_{n=0}^{J-1} \tilde{P}_n(\mu) \tilde{S}_n(\mu) - \int \!\!\int_{\kappa\Gamma} \frac{d\mu(x,y)}{(\eta - x)(\mu - y)}, \quad \stackrel{J}{K}_{22}(\mu,\zeta) = \sum_{n=0}^{J-1} \tilde{P}_n(\mu) + \sum_{n=0}^{J-1} \tilde{P}_n(\mu) + \sum_{n=0}^{J-1} \tilde{P}_n(\mu) + \sum_{n=0}^{J-1} \tilde{P}_n(\mu) = \sum_{n=0}^{J-1} \tilde{P}_n(\mu) + \sum_{n=0}^{J-1} \tilde{P}_n(\mu) + \sum_{n=0}^{J-1} \tilde{P}$$

 $\sum_{n=0}^{J-1} P_n(\xi) S_n(\zeta),$ $\sum_{n=0}^{J-1} \tilde{P}_n(\mu) S_n(\zeta) + \frac{1}{\zeta - \mu}$

Two methods of derivation.

Direct method: J. Harnad and A. Yu. Orlov, "Integrals of rational symmetric functions, two-matrix models and biorthogonal polynomials", J. Math. Phys. 48 (in press, Sept. 2007)

Fermionic vacuum state expectation values: evaluation of integrals of rational symmetric functions", arXiv:0704.1150)

Previous work.

Rational symmetric integrals; polynomial case: G. Akemann and G. Vernizzi, "Characteristic polynomials of complex random matrix models", Nucl. Phys. **B** 660, 532–556 (2003).

Complex matrix model; rational case: M. Bergère (hep-th/0404126)

Analogous results for one-matrix models: V.B. Uvarov, (1969) (general case), E. Brezin and S. Hikami, (2000), (polynomial integrals), Y.V. Fyodorov and E. Strahov (2003) ($N \ge M$), J. Baik, P. Deift and E. Strahov, (2003) ($N \ge M$), A. Borodin and E. Strahov (2006))

J. Harnad and A.Yu. Orlov, "Fermionic approach to the

Relation to integrable systems:

Deform the measure

$$d\Omega(M_1, M_2) \rightarrow d\Omega(M_1, M_2) e^{\operatorname{tr}(\sum_{j=0}^{\infty} (t_j M_1^j + \tilde{t}_j M_2^j))}$$

:= $d\Omega(M_1, M_2, \mathbf{t}, \mathbf{\tilde{t}})$

The deformed partition function

$$\mathbf{Z}_N^{(2)}(\mathbf{t}, \mathbf{\tilde{t}}) := \int d\Omega(M_1, M_2, \mathbf{t}, \mathbf{\tilde{t}})$$

is a 2-Toda τ function. The biorthogonal polynomials and the Hilbert transforms

$$\{P_j(x,\mathbf{t},\tilde{\mathbf{t}}), \tilde{P}_j(y,\mathbf{t},\tilde{\mathbf{t}})\}, \{\tilde{S}_j(x,\mathbf{t},\tilde{\mathbf{t}}), S_j(y,\mathbf{t},\tilde{\mathbf{t}})\}_{j\in\mathbb{N}}\}$$

are **Baker-Akhiezer** and **dual Baker-Akhiezer functions**.

Second result: Double Schur function perturbation expansion

$$\mathbf{Z}_{N}^{(2)}(\mathbf{t},\tilde{\mathbf{t}}) = N! \sum_{\lambda,\mu} B_{\lambda\mu} s_{\lambda}(\mathbf{t}) s_{\mu}(\tilde{\mathbf{t}})$$

where $s_{\lambda}(\mathbf{t}), s_{\mu}(\tilde{\mathbf{t}})$ are Schur functions corresponding to partitions $\lambda := (\lambda_1, \dots, \lambda_{\ell(\lambda)}), \mu := (\mu_1, \dots, \mu_{\ell(\mu)})$ of lengths $\ell(\lambda), \ell(\mu) \leq N$, and

$$B_{\lambda,\mu} = \det(B_{\lambda_i - i + N, \mu_j - j + N})|_{i,j=1,\dots,N},$$

Two methods of derivation.

Direct method:

J. Harnad and A.Yu. Orlov, "Scalar products of symmetric functions and matrix integrals", *Theor. Math. Phys.* **137**, 1676–1690 (2003). J. Harnad and A. Yu. Orlov, "Matrix integrals as Borel sums of Schur function expansions", In: Symmetries and Perturbation

J. Harnad and A. Yu. Orlov, "Matrix integrals as Borel sums of Schur function expansions" theory SPT2002, eds. S. Abenda and G. Gaeta, World Scientific, Singapore, (2003).

Fermionic vacuum state expectation values:

J. Harnad and A. Yu. Orlov, "Fermionic construction of partition functions for two-matrix models and double Schur function expansions", J. Phys. A **39**, 8783–8809 (July 2006) math-phys/0512056

Early work:

V. A. Kazakov, M. Staudacher and T. Wynter "Character Expansion Methods for Matrix Models of Dually Weighted Graphs", Commun. Math. Phys. 177, 451-468 (1996) Direct method.

The key tools for the Schur function expansion are:

1. Cauchy Littlewood identity

$$e^{\sum_{i=1}^{\infty} it_i \tilde{t}_i} = \sum_{\lambda} s_{\lambda}(\mathbf{t}) s_{\lambda}(\tilde{\mathbf{t}})$$

2. Andreief identity

$$\prod_{a=1}^{N} \iint d\mu(x_{a}, y_{a}) \det \phi_{i}(x_{j}) \det \psi_{k}(y_{l})$$
$$= N! \det \left(\iint \int d\mu(x, y) \phi_{i}(x) \psi_{j}(y) \right)$$
$$(1 \le i, j, k, l \le N)$$

For the integrals of rational symmetric functions:

3. Multivariable partial fraction expansions For $N \ge M$:

$$\frac{\Delta_N(x)\Delta_M(\eta)}{\prod_{a=1}^N \prod_{j=1}^M (\eta_j - x_a)} =$$

$$(-1)^{MN} \sum_{\sigma \in S_M} \operatorname{sgn}(\sigma) \sum_{a_1 < \dots < a_M}^N (-1)^{\sum_{j=1}^M a_j} \frac{\Delta_{N-M}(x[a_j - x_j])}{\prod_{j=1}^M (\eta_{\sigma_j} - x_j]}$$

For $N \leq M$:

$$\frac{\Delta_N(x)\Delta_M(\eta)}{\prod_{a=1}^N \prod_{j=1}^M (\eta_j - x_a)} = \frac{(-1)^{\frac{1}{2}N(N-1)}}{(M-N)!} \sum_{\sigma \in S_M} \operatorname{sgn}(\sigma) \frac{\Delta_{M-N}(\eta_{\sigma_{N+1}}, \dots, \eta_{\sigma_M})}{\prod_{a=1}^N (\eta_{\sigma_a} - x_a)}$$

4. Cauchy-Binet identity

If V is an oriented Euclidean vector space with volume form Ω and (P^1, \ldots, P^L) , (S^1, \ldots, S^L) are two sets of L vectors, then the scalar product of their exterior products $(\wedge_{\alpha=1}^{L}P^{\alpha}, \wedge_{\beta=1}^{L}S^{\beta})$ is equal to the determinant of the matrix formed from the scalar products:

$$(\wedge_{\alpha=1}^{L} P^{\alpha}, \wedge_{\beta=1}^{L} S^{\beta}) = \det G$$
$$G^{\alpha\beta} := (P^{\alpha}, S^{\beta}), \quad 1 \le i, j \le L$$

Remark: In the fermionic approach, this is just the **Wick theorem**

Fermionic approach: vacuum state expectation values (VEV)

Two-component fermions.

$$[f_n^{(\alpha)}, f_m^{(\beta)}]_+ = [\bar{f}_n^{(\alpha)}, \bar{f}_m^{(\beta)}]_+ = 0, \quad [f_n^{(\alpha)}, \bar{f}_m^{(\beta)}]_+ = \delta_{\alpha,\beta}\delta_{nm},$$

Fermionic fields.

$$f^{(\alpha)}(z) := \sum_{k=-\infty}^{+\infty} z^k f_k^{(\alpha)} , \quad \bar{f}^{(\alpha)}(z) := \sum_{k=-\infty}^{+\infty} z^{-k-1} \bar{f}_k^{(\alpha)}$$

Right and left vacuum vectors. $|0,0\rangle$, $\langle 0,0|$

$$f_m^{(\alpha)}|0,0\rangle = 0 \qquad (m < 0), \qquad \bar{f}_m^{(\alpha)}|0,0\rangle = 0 \qquad (m \ge 0)$$
$$\langle 0,0|f_m^{(\alpha)} = 0 \qquad (m \ge 0), \qquad \langle 0,0|\bar{f}_m^{(\alpha)} = 0 \qquad (m < 0)$$

Wick's theorem implies, for linear elements of the Clifford algebra

$$\langle 0, 0 | w_1 \cdots w_N \bar{w}_N \cdots \bar{w}_1 | 0, 0 \rangle = \det \left(\langle 0, 0 | w_i \bar{w}_j | 0, 0 \rangle \right) |_{i,j}$$

$$\alpha = 1, 2$$

$$lpha (lpha) \ k$$

 ≥ 0),

i = 1, ..., N

Charged vacuum states

$$|n^{(1)}, n^{(2)}\rangle := \bar{C}_{n^{(2)}}\bar{C}_{n^{(1)}}|0, 0\rangle$$

where

$$\bar{C}_{n^{(\alpha)}} := f_{n^{(\alpha)}-1}^{(\alpha)} \cdots f_{0}^{(\alpha)} \quad \text{if} \quad n^{(\alpha)} > 0$$

$$\bar{C}_{n^{(\alpha)}} := \bar{f}_{n^{(\alpha)}}^{(\alpha)} \cdots \bar{f}_{-1}^{(\alpha)} \quad \text{if} \quad n^{(\alpha)} < 0, \quad \bar{C}_{0} := 1$$

 $gl(\infty)$ operators

$$\mathcal{A} := \int \int f^{(1)}(x) \bar{f}^{(2)}(y) d\mu(x,y), \qquad H(\mathbf{t},\tilde{\mathbf{t}}) := \sum_{k=1}^{\infty} H_k^{(1)} t_k - K_k^{(1)} = \sum_{k=1}^{\infty} H_k^{(1)} t_k - K_k^{(1)} = K_k^{(1)} + K$$

where

$$H_k^{(\alpha)} := \sum_{n=-\infty}^{+\infty} f_n^{(\alpha)} \bar{f}_{n+k}^{(\alpha)}, \quad k \neq 0, \quad \alpha = 1, 2.$$

are two sequences of commuting operators.

$$\begin{aligned} \mathbf{Z}_{N}^{(2)}(\mathbf{t},\tilde{\mathbf{t}}) \text{ is a 2-Toda } \tau \text{ function (VEV)} \\ \tau_{N}(\mathbf{t},\tilde{\mathbf{t}}) &:= \langle N, -N | e^{H(\mathbf{t},\tilde{\mathbf{t}})} e^{A} | 0, 0 \rangle \\ &= \frac{1}{N!} (-1)^{\frac{1}{2}N(N+1)} \mathbf{Z}_{N}^{(2)}(\mathbf{t},\tilde{\mathbf{t}}) \end{aligned}$$

To prove this, we use:

$$\langle N, -N | \prod_{i=1}^{N} f^{(1)}(x_i) \bar{f}^{(2)}(y_i) | 0, 0 \rangle = (-1)^{\frac{1}{2}N(N+1)} \Delta_N(x) \Delta_N(y)$$

$$\langle N, -N | \prod_{i=1}^{k} f^{(1)}(x_i) \bar{f}^{(2)}(y_i) | 0, 0 \rangle = 0 \quad \text{if } k \neq N, \qquad \langle N, -N | A^k | 0, 0 \rangle$$

and

$$\langle N, -N | e^{H(\mathbf{t}, \tilde{\mathbf{t}})} f_{h_1}^{(1)} \bar{f}_{-h_1'-1}^{(2)} \cdots f_{h_N}^{(1)} \bar{f}_{-h_N'-1}^{(2)} | 0, 0 \rangle = (-1)^{\frac{1}{2}N(N+1)} h_i := \lambda_i - i + N, \quad h_j' := \mu_j - j + N$$

$0\rangle = 0$ if $k \neq N$

 $^{(1)}s_{\lambda}(\mathbf{t})\mathbf{s}_{\mu}(\mathbf{ ilde{t}})$

3. Random Processes (J. H. and A. Yu. Orlov, "Fermionic construction of tau functions and random processes", arXiv:0704.1157)

3.1. Maya diagrams as basis for Fock space $\mathcal{F} := \Lambda \mathcal{H}$.

Choose a basis $\{e_i\}_{i \in \mathbb{Z}}$ for \mathcal{H} , dual basis $\{\tilde{e}_i\}_{i \in \mathbb{Z}}$ and represent f_i (creation) and \bar{f}_i (annihilation) operators on \mathcal{F} by:

$$f_j := i(\tilde{e}_j), \quad \bar{f}_j := e_j \wedge$$

For each integer N, and partition λ of length $\ell(\lambda)$

$$\lambda := \lambda_1 \ge \lambda_2 \ge \dots \quad \lambda_i \in \mathbf{N} \qquad \lambda_{\ell(\lambda)} \ne 0, \quad \lambda_i = \forall i > 0$$

define **particle positions** (levels): $l_i := \lambda_i - i + N$ to form a "Maya Diagram" and a **basis vector**: $|\lambda, N\rangle = e_{-l_1-1} \wedge e_{-l_2-1} \wedge \cdots, \qquad |N\rangle := |0, N\rangle \quad (N \text{ charge vacuum})$

 $> \ell(\lambda)$

Fig.1 Maya diagram for |(2,1); N > Fig.2 Dirac sea of level N. |0; N >

 $gl(\infty)$ action on ${\cal F}$

$$gl(\infty) : \mathcal{F} \to \mathcal{F}$$

 $gl(\infty) = \operatorname{span}\{E_{ij} := f_i \bar{f}_j\}_{i,j \in \mathbf{Z}}$

This determines weighted actions on Maya diagrams

$$\mathcal{A} := \sum_{ij} a_{ij} f_i \bar{f}_j$$
$$\mathcal{A} : |\lambda; N \rangle \to \sum_{ij} a_{ij} f_i \bar{f}_j |\lambda; N \rangle = \sum_{N',\mu} C_{\mu\lambda}^{N'N} |\mu, N'$$

For positive coefficients a_{ij} , we can view

$$<\lambda, N'|\mathcal{A}^k|\mu, N>$$

as an (unnormalized) transition rate in k (discrete) time steps.

>

1. Elimination of Maya diagrams 2. Nontrivial action

1. Upward/downward hop of a particle on a Maya diagram 2. Adding/removing boxes on a Young diagram

3.2 The τ function as a generating function for transition probabilities Recall $N_{\alpha}(\mathbf{t}, \tilde{\mathbf{t}}) := \langle N_{\alpha}(\mathbf{t}) \rangle_{\alpha} \mathcal{A} \simeq \tilde{\mathcal{A}}$ au_l

$$\begin{split} & \tau_{N,g}(\mathbf{t},\mathbf{t}) := \langle N|\gamma(\mathbf{t})e^{\mathcal{A}}\tilde{\gamma}(\mathbf{t})|N \rangle \\ & \gamma(\mathbf{t}) := e^{\sum_{i=1}^{\infty} t_i H_i}, \quad \tilde{\gamma}(\tilde{\mathbf{t}}) := e^{\sum_{i=1}^{\infty} \tilde{t_i} H_{-i}} \\ & H_i := \sum_{j \in \mathbf{Z}} f_i \bar{f}_{j+i}, \quad \mathcal{A} := \sum_{ij} a_{ij} f_i \bar{f}_j \end{split}$$

Assuming \mathcal{A} preserves N, and use

$$< N|\tilde{\gamma}(\tilde{\mathbf{t}})|\mu, N > = s_{\mu}(\tilde{\mathbf{t}}) \quad < \lambda, N|\gamma(\mathbf{t})|N > = s_{\lambda}(\mathbf{t})$$

The τ function may be expanded:

$$\tau_{N,g}(\mathbf{t},\tilde{\mathbf{t}}) = \sum_{k=0}^{\infty} \frac{1}{k!} < \lambda, N |\mathcal{A}^k| \mu, N > s_{\mu}(\mathbf{t}) s_{\lambda}(\tilde{\mathbf{t}})$$
$$< \lambda, N |\mathcal{A}^k| \mu, N > := \frac{1}{k!} < \lambda, N |\mathcal{A}^k_+ + \mathcal{A}^k_-| \mu, N > \qquad (\pm \text{ period})$$

Transition probability in k time steps:

$$P_k((\mu, N) \to (\lambda, N)) = \frac{W_{N,g}^k(\lambda, \mu)}{\sum_{\nu} W_{N,g}^k(\nu, \mu)},$$
$$W_{N,g}^k(\nu, \mu) := <\lambda, N |\mathcal{A}_+^k| \mu, N > - <\lambda, N |\mathcal{A}_-^k|$$

Example. Random turn non-intersecting walkers

$$\mathcal{A} := \sum_{i \in \mathbf{Z}} (p_l f_{i-1} \overline{f}_i + p_r f_{i+1} \overline{f}_i), \qquad p_l, p_r \ge 0, \quad p_l + p_l$$

ermutations)

 $|\mu, N>$

 $p_r = 1$

Random turn non-intersecting walkers.

 $\mathcal{A} = \sum_{i} (p_l f_{i-1} \bar{f}_i + p_r f_{i+1} \bar{f}_i)$

Asymmetric Exclusion Process (ASEP)

Recent results of **Tracy and Widom** (ArXiv0704.2633v2 [math.PR]): Continuous time limit (ASEP) for a finite number of particles. Particle positions:

$$X = (x_1, \dots x_n), \qquad Y = (y_1, \dots y_n)$$

Let $u_Y(X;t) :=$ probability of being in state X at time t, given they are in state Y at t = 0. Master equation of ASEP

$$\frac{du_Y}{dt} = \sum_{i=1}^n \left(p_r u_Y(X_i^-; t) + p_l u_Y(X_i^+; t) - u(X; t) \right)$$
$$X_i^- := (x_1, \dots, x_{i-1}, x_i - 1, \dots, x_n), \quad X_i^+ := (x_1, \dots, x_{i-1}, x_i)$$

Initial condition and **boundary** conditions

$$u_Y(X;0) = \delta_{X,Y}$$

 $u_Y((x_1, \dots, x_i, x_i + 1, \dots, x_n); t) = p_r u_Y((x_1, \dots, x_i, x_i, \dots, x_n); t) + p_l u_Y((x_1, \dots, x_i + 1, x_i + 1, \dots, x_n); t)$

 $+1,\ldots,x_n$

Bethe ansatz solution:

$$u_{Y}(X;t) = \sum_{\sigma \in S_{n}} \left(\frac{1}{2\pi i}\right)^{n} \oint_{\xi 1=0} \dots \oint_{\xi_{n}=0} A_{\sigma} \prod_{i=1}^{n} \xi_{\sigma(i)}^{x_{i}-y_{\sigma(i)}-1} e^{\sum_{i=1}^{n} A_{\sigma}} = \prod_{\sigma | \text{inversion}} \prod_{(\alpha,\beta)\in\sigma} \left(-\frac{p_{r}+p_{l}\xi_{\alpha}\xi_{\beta}-\xi_{\alpha}}{p_{r}+p_{l}\xi_{\alpha}\xi_{\beta}-\xi_{\beta}}\right)$$
$$\epsilon(\xi) := p\xi^{-1}+q\xi-1$$

 $\sum_{i=1}^{n} \epsilon(\xi_i) t d\xi_i$

Other relations of random processes to integrable systems and τ functions

Bethe ansatz solution of ASEP using equivalence with spin models

K-H Gwa and H. Spohn, "Six-vertex model, roughened surfaces and an asymmetric spin hamiltonian", *Phys. Rev. Let.* **68**, 725 - 728 (1992); K-H Gwa and H. Spohn, "Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation", *Phys. Rev.* **A 46**, 844-854 (1992)

Tau functions as weights on 2-D partitions (path space weight for 1-D partitions

A. Okounkov, N. Reshetikhin, "Correlation function of Schur process with application to local geometry of a random 3dimensional Young diagram "J. Amer. Math. Soc. 16 581-603 (2003);, "Random skew plane partitions and the Pearcey process " Commun. Math. Phys. 269, (2007);

Asymptotics of random partitions, growth problems, limiting shapes

A. Borodin and G. Olshanski "Z-measures on partitions and their scaling limits "*Eyr. J. Comb.* 26, 795-834 (2005); A. Borodin and G. Olshanski Random partitions and the gamma kernel *Adv. Math.* 194, 141-202 (2005)
R. Kenyon R, A. Okounkov and S. Sheffield, "Dimers and amoebae "*Ann. Math.* 163, 1019-1056 (2006)