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Soliton Equations

I Korteweg-de Vries Equation:

∂u
∂t

+ 6 u
∂u
∂x

+
∂3u
∂x3 = 0 .

has N-soliton solutions.

I What discrete version preserves
the special properties of the
KdV?



The Lattice KdV Equation

I Consider two solutions of the
KdV equation given by u = wx
and ũ = w̃x , related by

BTλ :
(
w̃+w

)
x = 2λ−1

2
(
w̃−w

)2

I Imagine two such
transformations

BTλ : w λ7→ w̃
BTµ : w µ7→ ŵ

I Their compositions give

̂̃w = BTµ ◦ BTλw , ˜̂w = BTλ ◦ BTµw

I Demanding ̂̃w = ˜̂w leads to

( ̂̃w − w
)(

ŵ − w̃
)

= 4(µ− λ)

Evolves on a lattice with coordinates
(n,m), where w = wn,m, ŵ = wn,m+1,
w̃ = wn+1,m.



Discrete Solitons
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I w =
a m+b n+k tanh

(
k x +βm+γ n+ξ

)
a2 − b2 = 4(µ− λ)
β = 1

2 log
(
(a + k)/(a− k)

)
,

γ = 1
2 log

(
(b + k)/(b − k)

)
I The picture shows ∂xw (with a = 1,

b = 2, k = 0.3, x = 0, ξ = −7.5).

I There are also multi-solitons.

I The continuum limit of the dKdV is
ut = uxxx + 3 u2

x , u = wx .

I The consistency condition: ̂̃w = ˜̂w
can be extended to many other
integrable equations.



Multi-dimensional Consistency
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x123 I Start with at x , x1, x2, x3.
I Calculate x12, x13, and x23.
I There are three ways of

calculating x123.
I Demand that these all give the

same value (“Consistency
around a cube”or CAC).



Conditions for Classification
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Consider the base tile to be the red
one, with lattice equation

Q(x , x1, x2, x12;α, β) = 0

I Q is linear in each variable.

I Q is (anti-)symmetric when
(x , x1, x2, x12, α, β) 7→
(x , x2, x1, x12, β, α), and
(x , x1, x2, x12, α, β) 7→
(x1, x , x12, x2, α, β).

I x123 does not depend on x (the
“tetrahedron” property).



Classification Results

Nine canonical classes (equivalent under Möbius transformations)
were obtained by Adler et al (2003). Four of these are

Q1 : α(xn,m − xn,m+1)(xn+1,m − xn+1,m+1)

+β(xn,m − xn+1,m)(xn,m+1 − xn+1,m+1) + γ = 0
Q2 : α(xn,m − xn,m+1)(xn+1,m − xn+1,m+1)

+β(xn,m − xn+1,m)(xn,m+1 − xn+1,m+1)

+γ(xn,m + xn,m+1 + xn+1,m + xn+1,m+1) + δ = 0
Q3 : α(xn,mxn+1,m+1 + xn,m+1xn+1,m)

+β(xn,mxn+1,m + xn,m+1xn+1,m+1)

+γ(xn,mxn,m+1 + xn+1,mxn+1,m+1) + δ = 0
Q4 : snα (xn,mxn+1,m+1 + xn,m+1xn+1,m)

−sn β (xn,mxn+1,m + xn,m+1xn+1,m+1)

−sn(α− β) (xn,mxn,m+1 + xn+1,mxn+1,m+1)

+snα sn β sn(α− β) (1 + k2xn,mxn,m+1xn+1,mxn+1,m+1) = 0



Without the Tetrahedron Property

I Hietarinta (2004) showed that CAC without the tetrahedron
property leads to other equations such as

(xn,m + b)

(xn,m + a)

(xn+1,m+1 + d)

(xn+1,m+1 + c)
=

(xn+1,m + b)

(xn+1,m + c)

(xn,m+1 + d)

(xn,m+1 + a)

I This is linearizable! (Ramani, J., Grammaticos and Tamizhmani, 2006) to

Rn+1,m+1 − ARn,m+1 − Rn+1,m + (A− B)Rn,m = 0

where B = (d − b)/(b − c), A = (d − a)/(a− c), and xn,m is
found by taking

xn,m = − a (c − d)Rn,m + c (a− c)Rn+1,m

(c − d)Rn,m + (a− c)Rn+1,m

I It is now believed that all CAC systems without the tetrahedron
property are linearizable.



Reductions

I Q4 is the generic equation from which all others can be obtained
as limits.

I Impose xn,m+1 = xn+1,m:

(snα− snβ)xn(xn+1 + xn−1)− sn(α− β)(xn+1xn−1 + x2
n )

+snα snβ sn(α− β)(1 + k2x2
n xn+1xn−1) = 0

I This is integrable, because there is a “conserved”quantity

K =
((1 + k2x2

n+1x2
n )snα sn β − x2

n+1 − x2
n )sn(α− β) + 2xn+1xn(snα− sn β)

((1 + k2x2
n+1x2

n )snα sn β + x2
n+1 + x2

n )(snα− sn β) + 2xn+1xnsn(α− β)(k2sn2α sn2β − 1)

where K (xn, xn−1) = −K (xn+1, xn).



First Surprise

I Reductions of integrable systems are usually integrable with
conserved quantities of the form

K (x, y) =
α0y2x2 + β0yx(y + x) + γ0(y2 + x2) + ε0yx + ζ0(y + x) + µ0

α1y2x2 + β1yx(y + x) + γ1(y2 + x2) + ε1yx + ζ1(y + x) + µ1

where K (xn, xn−1) = K (xn+1, xn), called QRT invariants. This
gives the iteration of the difference equation as iteration along an
elliptic curve.

I Instead we have invariant curves that are products of two curves
of QRT-type.



Second Surprise

I The conservation of the Q4 reduction holds even if the system is
of the form

(A− B)xn(xn+1 + xn−1)− C (xn+1xn−1 + x2
n )

+A B C (1 + k2x2
n xn+1xn−1) = 0

where A, B and C do not have to lie on an elliptic curve.

I Recently, Viallet has also found that the algebraic entropy of Q4
is bounded regardless of whether its parameters lie on an elliptic
curve.

I But CAC does not recognize this generality. Why not?



Lax Pairs

I The Lattice modified KdV

LMKdV : xl+1,m+1 = xl,m

(
xl+1,m − r xl,m+1

)(
xl,m+1 − r xl+1,m

)
has a non-autonomous form given by r(l ,m) = µ(m)/λ(l).

I This has Lax pair

v(l + 1,m) = L(l ,m)v(l ,m),
v(l ,m + 1) = M(l ,m)v(l ,m).

where, using the notation v̄ = v(l + 1,m) and v̂ = v(l ,m + 1),

L =

(
x̄/x −λ/(νx)
−λx̄/ν 1

)
,

M =

(
x̂/x −µ/(νx)
−µx̂/ν 1

)
.



Nonautonomous Reductions

I x̂ = ¯̄x reduces the LMKdV equation to qP II

ȳy =
1− ry

y(y − r)
.

where y = ¯̄x/x̄ , and log r = al + b + c(−1)l .

I x̂ = 1/x̄ reduces the LMKdV to qP III

¯̄xx =
βγ l x̄2 − 1
βγ l − x̄2

where r = βγ l

I Many, many other reductions are possible, including cases of
higher-order.



Reduced Lax Pairs

I The above reductions provide 2× 2 Lax pairs for q-Painlevé
equations.

I The Lax pair

L =

( x̄
x − λ

νx
−λx̄
ν 1

)
,

and

N =

(
− 1
ν (λβxx̄ + αx̄

λσx ) βx + α
ν2σx

γ
x + αx

ν2σ
− 1
ν (λγxx̄ + αx

λσx̄ )

)
is the first known 2× 2 Lax pair for

qP III : x ¯̄x =
µ1q l x̄2 + µ2

µ3q l + x̄2



Summary

I A class of two-dimensional lattice equations have been derived
through the property of multidimensional consistency.
Are these complete?

I Reductions of these lead to difference equations with
unexpected properties. These suggest that much more could be
done.
Can Q4 be generalized?

I Reductions of Lax pairs are also possible.
How do such reductions fit into the consistency around a cube
property?



The Continuum Limit

I
( ̂̃w − w

)(
ŵ − w̃

)
= 4(µ− λ) has a continuum limit.

µ− λ = δν
τ = δm
l = n + m
w(n,m) = v(l , τ)
ŵ = v + δ ∂τv + . . .

 ⇒ vτ
(
v − v

)
= 2ν

where v = v(l + 1, τ).

I Now take v(l , τ) = τ + l p + u(l , τ), 2ν = −2 p. Then

p = 1/ε, ε→ 0
2nε+ 2τε2 → x
2nε3/3 + 2τε4 → t

 ⇒ ut = uxxx + 3 u2
x

I The consistency condition: ̂̃w = ˜̂w can be extended to many
other integrable equations.
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