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This talk is about

•Matrix KP equations (hierarchies) (Zakharov & Kuznetsov ‘86,
Athorne & Fordy ‘87, ...). Some of its uses:

– (complicated) solutions of thescalar KP hierarchy (and other
integrable equations) arise from (simple) solutions of a ma-
trix (or operator) version (Marchenko ‘88, Carl, Schiebold)

– bridge to sdYM:dispersionless limit of matrix potential KP
equation is pseudo-dual chiral model (dual to Ward’s chiral
model) (Dimakis & M-H ‘07)

•More generally: KP with dependent variable in any associative
algebra (see alsoOlver & Sokolov ‘98, Kupershmidt ‘00).
This point of view takes us away from the multi-component KP
framework (Sato ‘81) which also covers matrix KP.

• Relation with a special type ofnonassociative algebras.
Older work on relations between nonassociative algebras and
integrable systems:Svinolupov, Sokolov, ....
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I. From nonassociativity ...
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Look for commuting derivations:
δ1( f ) := f 2

δ2( f ) := α f f 2 + β f 2 f
...

[δ1, δ2] = 0 ⇐⇒
(α − β) ( f , f 2, f )
= (α + β) f 2 f 2

y
(a, bc, d) = 0 ∀a, b, c, d ∈ A

WeakNonAssociativity



... to KP

δ1( f ) = f 2

δ2( f ) = f f 2 − f 2 f
δ3( f ) = f ( f f 2) − f f 2 f − f 2 f 2 + ( f 2 f ) f

⇒ δ1
(

4δ3( f ) − δ31( f ) + 6δ1( f )2
)

− 3δ22( f ) ≡ 6 [δ1( f ), δ2( f )]

This identity formally corresponds topotential KP equation via

δn 7→ ∂tn

This relation extends to the whole KP hierarchy !
Building law for the commuting derivations:

δn( f ) := f ◦n f

wherea ◦1 b := a b and

a ◦n+1 b := a ( f ◦n b) − (a f ) ◦n b

Consequence: (true forany WNA algebra)

∂tn( f ) = f ◦n f n = 1,2, . . .

=⇒ u := −∂t1( f ) ∈ A
′ solvesKP hierarchy



II. What are WNA algebras ?

A WNA algebra.Associative subalgebraand ideal:

A
′ := {b ∈ A | (a, b, c) = 0 ∀a, c ∈ A}

Construction of special WNA algebras:

• A associative algebra (over commutative ring)

• g ∈ A fixed

• linear mapsL,R : A → A such that

[L,R] = 0 , L(a b) = L(a) b , R(a b) = a R(b)

AugmentA by an elementf such that

f f = g , f a = L(a) , a f = R(a)

=⇒WNA algebraA with dim(A/A′) = 1 andA
′ = A.

Generalization: Li,Ri, [Li,R j] = 0 y dim(A/A′) = N

Any WNA algebra with dim(A/A′) = N is isomorphic to one of these!



Example: free WNA algebra (with dim(A/A′) = 1)

Afreeassociativealgebra freely generated bycm,n, m, n = 0,1,2, . . ..
Define

L(cm,n) := cm+1,n , R(cm,n) := cm,n+1

AugmentAfree with an elementf such that

f 2 := c0,0 , f a := L(a) , a f := R(a) ∀a ∈ Afree

Writing L f (a) := f a, R f (a) := a f , we have

cm,n = Lm
f Rn

f ( f 2)

=⇒WNA algebraA( f )free freely generated by f

=⇒ derivationsδn are defined by action onf and derivation rule
e.g. δ3( f ) = c2,0 − c1,1 + c0,2 − c0,0

2 (nonlinearity !)

=⇒ ‘KP hierarchy identities’



Example: Algebra of quasisymmetric functions
... in (commuting) variablesp1, p2, . . . is spanned by elements

∑

i1<i2<...<ir

pn1
i1
· · · pnr

ir

Examples of quasisymmetric polynomials in three variables:

p1p2
2 + p1p2

3 + p2p2
3 , p3

1p2
2 + p3

1p2
3 + p3

2p2
3

LetA = Z[[ p1, p2, . . .]]. For a monomiala = pi1 · · · pir define

m(a) := min{i1, . . . , ir} , M(a) := max{i1, . . . , ir}

Introduce the new product a ◦1 b = a b
∑

M(a)<i≤m(b) pi
Augment with f such that

f ◦1 f :=
∑

i

pi , f ◦1 a := a
∑

i≤m(a)

pi , a ◦1 f := a
∑

M(a)<i

pi

=⇒WNA algebra freely generated byf

=⇒ derivationsδn exist=⇒ KP identities
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Such identities show up if one tries to solve the (potential) KP with
a (formal) power series ansatz (Okhuma & Wadati ‘83)
See also:Dimakis & M-H, J. Phys. A38 (2005) 5453



III. The hierarchy of ODEs on a WNA algebra A

∂tn( f ) = f ◦n f n = 1,2, . . .

Recall:

• A is WNA if (a, bc, d) = 0, i.e.A2 ⊂ A
′

A
′ = {b ∈ A | (a, b, c) = 0 ∀a, c ∈ A}

• a ◦1 b := ab, a ◦n+1 b := a ( f ◦n b) − (a f ) ◦n b
Note:◦n only depends on [f ] ∈ A/A′

• If f solves the above hierarchy of ODEs, thenu = −∂t1( f )
solves the KP hierarchy inA′

If there is aconstantelementν ∈ A, ν < A
′, with [ν] = [ f ], then

φ := ν − f ∈ A
′

and it solves thepotential KP hierarchy .
The above hierarchy of ODEs then becomes

∂tn(φ) = −ν ◦n ν + ν ◦n φ + φ ◦n ν − φ ◦n φ



IV. A class of exact solutions

A = algebra of (complex)N × M matrices with product

A ◦ B := AQB Q constantM × N matrix

To turn it into a WNA algebra, augment byν such that

ν ◦ ν = −S , ν ◦ A = L A , A ◦ ν = −A R

with constant matricesS , L,R. Set

H :=

(

R Q
S L

)

, Hn =:

(

Rn Qn
S n Ln

)

The hierarchy of ODEs becomes thematrix Riccati system

=⇒ φtn = S n + Ln φ − φRn − φQn φ n = 1,2, . . .

which is solved in the Grassmannian way:

y Ztn = HnZ , Z =

(

X
Y

)

, φ = YX−1

=⇒ Z = eξ(t,H) Z0 where ξ(t,H) =
∑

n≥1 tn Hn
y φ



Some cases in whichφ can be computed explicitly

1. Let S = 0, Q = RK − KL with a matrixK

φ = eξ(t,L)φ0 (IN + Kφ0 − e−ξ(t,R)Keξ(t,L)φ0)−1e−ξ(t,R)

If rank(Q) = 1 (and using the ‘trace method’ trick):

ϕ := tr(Qφ) = (logτ)t1

yields in particular scalar KP-II multi-solitons and resonances.
If rank(Q) = m , solutions of the m × m matrix KP hierarchy are
obtained viaϕ := UTφV whereQ = VUT .

2. M = N, S = 0, R = L, Q = IN + [L,K]

=⇒ φ = eξ(t,L)φ0 (IN + Kφ0 + F)−1e−ξ(t,L)

where

F := (
∑

n≥1

n tn Ln−1 − e−ξ(t,L)Keξ(t,L)) φ0

If rank(Q) = 1 one easily recovers a tau function associated with
Calogero-Moser systems (Shiota ‘94), and KP-I lump solutions.



V. From WNA to Gelfand-Dickey-Sato

L = ∂ + u2∂
−1 + u3∂

−2 + . . .

U := algebra of polynomials inu(m)
n = ∂m(un), m = 0,1, . . .

with unit elementI. Assume:{u(m)
n } algebraically independent.

On the algebra ofΨDOs V =
∑

i≪∞wi ∂
i with wi ∈ U, define

S (V) := LV , π+ := projection to diff. operator part,

andπ− := id − π+. Furthermore,

O := span{S , S π±S π± · · · π±S } product:A • B = Aπ+S π−B
A := {w ∈ U |w = res(A(I)) , A ∈ O }

Then: (O, •) � A
AugmentA with f such that f f := −res(L) and

f res(A(I)) := res(Lπ−(A(I))) , res(A(I)) f := −res(π−(A(I)) L)

y WNA . Then ftn = f ◦n f = −res(Ln) has integrability condition

res(Lm)tn = res([π+(L
n),Lm]) y Ltn = [π+(Ln),L]



VI. Conclusions

The WNA framework constitutes a considerableabstraction from
the usual KP setting. This allows to establish relations between
seemingly unrelated structures.

• If the WNA subalgebra generated byf ∈ A admitsderivations
s.t. δn( f ) := f ◦n f , then there are‘KP identities’
Example:quasisymmetric functions
These actually appear in the Okhuma-Wadati method !

• Let A be WNA and f a solution of ∂tn( f ) = f ◦n f . Then
−∂t1( f ) solves the KP hierarchy inA′

(Instead of PDEs, we only have to solve ODEs.)

• Other realizations of WNA algebras and theδn ?

Needs clarification:

• (Further) relations with Grassmannians (and Sato theory)

•What aboutother hierarchies ?
y look for commuting derivations on other nonass. algebras



Thank you for your attention !


