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Kernel function

Consider two sets of variables © = (z1,...,2,) and ¥y = (y1, ..., Yn),
and two operators A, and B, which act on functions in the z variables and
the y variables, respectively. Then a function ®(z;y) in m + n variables
(x;y) is called a kernel function associated with the pair of operators
(Ag, By) if it satisfies the functional equation

Ay O(x3y) = B, (23 v).

Koornwinder’s g-difference operator

Koornwinder’s ¢-difference operator D, = D,(a,b, ¢, d|q,t) in m vari-
ables x = (x1,...,x,,) is defined by

m

D, =3 ATy 1)+ Y Al )T~ 1)

1=1

(1 —az;)(1 —bx;)(1 — cx;)(1 — day) yp (tr; — x)(1 — ta;x;)
- (1—a7)(1 - gz7) JI;IZ (2 — 2)(1 — @izy)

The Koornwinder polynomials Py(x) = P\(x;a,b,c,d|q,t) (parametrized
by partitions \) are characterized as such eigenfunctions of D, that are
invariant Laurent polynomials under the action of the hyperoctahedral
group of degree n.

Summary of the talk

We introduce some kernel functions which intertwine Koornwinder’s
g-difference operators in different sets of variables. As an application we
derive explicit formulas for those Koornwinder polynomials attached to
single columns and single rows. This talk is based on discussion with
Jun’ichi Shiraishi (Tokyo) and Yasushi Komori (Nagoya).




General remarks: Why kernel functions?

Consider two sets of variables © = (x1,...,2,) and y = (y1,...,Yn).
A function ®(z;y) in (z;y) is called a kernel function associated with a
pair of operators (A, B,) if it satisfies

A ®(z5y) = B, (23 9).

1. Expansion of a kernel function in terms of eigenfunctions

Suppose that there exists a family ¢ (y) (kK = 1,2, ...) of eigenfunctions
of B, with distinct eigenvalues,

Byor(y) = orly)  (k=1,2,...),

and that the kernel function ®(x;y) has an expansion by the eigenfunc-
tions ¢(y) in the form

O(ziy) = > frlx) piy)

with nonzero functions fi(z) in z. Then each coefficient fi(z) must be
an eigenfunction of the operator A, with the same eigenvalue \; as that

of @i (y):
k .Ay fk(flj) = >\l<: fk<33) (]{3 = 1, 2, .. )

2. Integral transformations defined by a kernel function

Consider a measure dju(y) on the affine space C"” with canonical coor-
diates y = (y1,-..,y), and suppose that in an appropriate function space
the operator BB, has an adjoint operator 53, with respect to du(y):

[Bew) vint) = [ o) 8,00 duty)

Then the integral transformation

ﬂw=/@@wwwW@

defined by the kernel ®(z;y) transforms each eigenfunction ¢(y) of the
adjoint operator B, into an eigenfunction f(z) of A,:

A, f(z) = /Am@(x; y)e(y) duly)
:/ﬁpmmwwww
:/cb(a:;y) B, o(y) duly).



Macdonald’s g-difference operator (of type A,,_1)

Macdonald’s ¢-difference operator (of first order) in m variables x =
(1, ..., xy) is defined by

p.=Ditg) =Y [[=21,.,

=1 j#i

The Macdonald polynomials Py(z|q,t) are symmetric polynomials, pa-
rameterized by partitions A = (A,..., \p) € Z™, (A > -+ > A\ > 0),
such that

m

DJC P/\(x‘Q7t) = d/\ P/\(x‘Q7t>7 d)\ = Ztm_iq)\i'

i=1
In the case of Macdonald operators there are two types of known kernel
functions (as already described in Macdonald’s book).

Kernel function of type I
(tzjy;
IHIxM = 3 baa.t) Plelet) Pula 1),
J=1li=1 jyl’ I(N)<mAn

where |q| < 1 and (z;9) = [[;2o(1 — ¢'z). This kernel function inter-
twines two Macdonald operators in x variables and y variables:

1 1
t™" | D, — S(x;y)=t" (D, — D(x;y).
(0. =) wtwn =0 (D, - 557 ) @t

Kernel function of type II

IHI )= > (DN Py(alg,t) P (ylt,q).

j=1i=1 AC(n™)

where the summation is taken over all partition A contained in the m xn
rectangle, and \* = (m—\, ,m—\,_, ..., m—\]) stands for the partition
complementary to X in (n™). This function W (zx;y) satisfies the functional
equation

(t—1)D, ¥ (x;y) + (¢ — 1) Dy (z;y) = (t"q" — 1)¥(z;y),
where Ey = Dy(t,q).



The case of Schur functions (t = q)

The Schur functions are recovered from the Macdoanld polynomials as
the special case t = ¢:

sx(z) = Px(z;q,q).

Kernel function of type I

-1

1—x
i=11=1 Jyl

Z sx() sx(y).

I(A)<mAn
This formula follows from Cauchy’s lemma

1 ]N _ i — 2 (i —y;).

L=y ]; ngzl(l — iy;)

Kernel function of type II

- HH( — ) Z ) sx-(y).

j=11=1 AC(n™)

det [

This formula is equivalent to Vandermonde’s determinant formula

ot (i=1,...,m) 7"
det
y;ml(i—m+1 m+mn) |,
m n
= H (l“j — ;) H (1 — yn H —[(yl - xj)-
1<i<j<m 1<k<iI<n j=1li=1
e Partition \*=(m — X, ,m—X ..., m—X\)

complementary to A in the m X n rectangle (n™).




Koornwinder’s g-difference operator (of type BC,,)

Koornwinder’s g-difference operator D, = D,(a,b, c,d|q,t) in m vari-
ables x = (x1,...,x,,) is defined by

m

D= 3 Ai@) (T, = 1)+ 3 Aila™ )Tz = 1)

1=1

1 —ax;)(1 —bx;)(1 — cx;)(1 — da;) yp (twi — x)(1 — taz;)
(1 —27)(1 — gz7) ]I;IZ (@i = 2;) (1 — i)

For generic values of the parameters, the Koornwinder polynomial Py(x) =
P\(z;a,b,c,d|q,t) associated with a partition A is characterized as a
unique eigenfunction of D, in the ring of W,,-invariant Laurent poly-
nomials, W,,, = {£1}" x &,,, being the Weyl group, in the form

Py(z) = 2* 4 (lower order terms).

We use the following notations:
the set of partitions with length < m
P+:{)\:()\1,...,>\m> e zZm | /\122/\7”20},
the dominace ordering < in P* defined by
p=3A = -+ <M+ + N (=1,...,m),
the orbit sum my(x) =3 oy, \ " attached to A € P*.

Theorem [Koornwinder, 1992, Contemp. Math. 138]
For each A € PT, there exists a unique W,,-invariant Laurent polynomial

Py\(z) € K[z=1Wm, K = C(a,b,c,d, q,t),
such that

1) Pa) =ma(e) + Y anmu(e) (an € K).

(2) D, P\(x)=dy\P\(xr) forsome deK.

The eigenvalue dy of Py\(zx) is given by
dy =Y abedg 2L (gh — 1)+ H (g = 1),
i=1

1=1




Kernel function of type II for Koornwinder’s D,

Take two sets of variables x = (x1,...,2,) and y = (y1,...,y,) and
define .
U(z;y) = HH (j+2; = —y )
j=11=1

Theorem |[Mimachi, 2001, Duke Math. J. 107]
(1) The function ¥(x;y) defined as above satisfies the functional equation

t=(t — 1)D,V(z;y) + ¢ "(q — 1)D,¥(z;y)
=t"g (" — 1)(¢" — 1)(abedt™ "t = 1)U (z3y),

where ﬁy =Dy(a,b,c,d|t,q).
(2) The kernel function W(z;y) has the following eigenfunction expansion:

U(ziy) = Y (=D Py(x) P(y)
_ AC(n™)
where Py\(y) = P\(y;a,b,c,d|t, q).

In particular the Koorwinder polynomial F,m(x) of m variables x =
(1, ...,Zn), attached to the m x n rectangle for n = 0,1,2,..., has an
integral representation of Selberg type if max{|al|, |b|, |c|, |d|, |q], |t|} < 1:

9

dyy - - - dy,,
Pumy(z) = const./ U(z;y) w(y) -
n yl .« . yn

where w(y) is the weight function

+1.

w(y) :H (yk ;t>00 il.t) H (yk Y )OO

+1 +1 +1 +1 +1. :
kzl(ayk ;byk y CYy, dek; oolgk<l§n(qyk Y 7t)oo

What about kernel functions of type I?



Comments on known results concerning the BC),,, case

e Many things are known in the one variable case.
= Askey-Wilson polynomials

e Question of integrability [van Diejen]:
There are sufficiently many independent ¢-difference operators
commuting with D,.

e Relation to affine Hecke algerbras [Macdonald, Noumi, Sahi, Stokman]:
The commuting family of ¢-difference operators arise from
representations of affine Hecke algebras.

= ¢-Dunkl operators, duality, scalar products, nonsymmetric
Koornwinder polynomials . ..

e Elliptic setting [Ruijsenaars, van Diejen, Komori, Hikami, ...]
In spite of those progresses, however, no one seems to have seen (explicitly written down)

the Koorwinder polynomials P,(x) themselves during the fifteen years after Koorn-

winder’s 1992 paper, even those attached to single columns and single rows ?!



Kernel functions of type I for Koornwinder’s D,

We take the two sets of variables

r=(r1,...,2n) and y= (y1,---,Yn)
as before, and consider x and y as canonical coordinates of the algebraic
tori T}' = (C*)™ and T}, = (C*)", respectively.

Consider the the following system of g-difference equations of rank one
for a holomorphic function ®(x;y) on T}' x T} (or its universal covering):

( Car) — 47 - (1—\/%%%)(1—\/?/2?%/%) .
Tui®(o0) = | e = vatagay 2@

() = th —Va/tyr ;) (1—+/a/tye/z;) B
| AT
fori=1,...,mand k = 1, ...,n. It is directly checked that (x) satisfies

the compatiblity condition.
Assuming that |¢| < 1, we define a function ®(z;y) in m+n variables

(z;y) by

O )P Vat Ty Qo (Vat T /Y 4o
o(#39) = (w1 HH ,
j=1i= 1 txjyl’q)oo(\/ q/t i/ @)oo

where t = ¢°. Then it turns out that:

() 4
T,

qyk

T y)

o Oy(x;y) satisfies the system of g-difference equations (x).
e Any solution ®(z;y) of (x) is a multiple of ®¢(z;y) by some function
on T3' x T} which is g-periodic with respect to all z; and yy:

(z;y) = flz;y) Po(w;y),
where T, ,.f = f (i=1,...,m),and T, f = f (k=1,...,n).

By choosing such g-periodic factors appropriately, one can produce many
solutions of (%) with different analytic properties.

Theorem Suppose that a holomorphic function ®(x;y) on ’f‘? X ﬁ"yl sat-
isfies the g-difference system (x) above. Then ®(x;y) is a kernel function
for the pair of Koornwinder’s g-difference operators

D, =D,(a,b,c,d|q,t) and

D, = D,(vVat/a, /al /b, \/at /e, /il /d]| 4. t).




Kernel functions of type I (continued)

Suppose that a holomorphic function ®(x;y) on ’ﬁ‘xm X ﬁ‘g is a solution
to the following ¢-difference system of rank one:

( ) — 47 - (1_\/9715951'91)(1—\/9715%/91) _
Tt =1 G =ty )
(1=1,...,m),
) .
. _m (1_\/9715%37])(1_\/9775%/%) .
T = e i Vet Y
. (k=1,...,n).

Then ®(x; y) satisfies the following functional equation of a kernel function
for a pair of Koornwinder’s ¢-difference operators:

() (1—-0)D, d(z;y) — (1 — t)abcdq_ltm_”_lﬁy O(x;y)

= —(1 —t™)(1 —t")(1 — abedg 1t 1)tm=n=1 @(a; y),

where
D:c — Dx(a7 b7 C, d | q, t)7

ﬁy = Dy(Vat/a,v/qt/b,\/at/c,\/qt/d | q,t).

D.(a,b,c,d|q,t) = ZAi(x)(Tq,xi -1+ ZAi(x_l)(Tqu}i —1),
i=1 i=1

(1 — az)(1 — ba;)(1 — ca)(1 — day) H(mi ~2)(1 — tzix))

Ai(x) = (1—a7)(1 — qz7) (2 = xj) (1 — wizy)

JFi




Some special cases:

In the following two cases, we obtain rational kernel functions.

(1) For t = ¢* (k=0,1,2,...),

M (z;y) =

(2) Fort=q¢ % (k=0,1,2,...),

U () = (21 xm)_k”HH (2" Majy; 1), (2" May/y; q),
j=11=1

The last kernel function with ¢ = ¢=* will be used to determine Koorn-
winder polynomials Pyy(z) I =0,1,2,... attached to single rows.

Application to explicit formulas

e Kernel function of type I
= Explicit formulas for Koornwinder polynomials P)(z)
attached to single rows (I =0,1,2,...)

e Kernel function of type II
—> Explicit formulas for Koornwinder polynomials P ()
attached to single columns (r =0,1,...,m)

For comparison recall the case of type A,, 1:

e Macdonald polynomials P(fll)(sc) for single rows ( =0,1,2,...):

e Macdonald polynomials P(A,.)(::r;) for single columns (r =1,2,...,m):

1<ii <<, <m



Remarks on fundamental invariants of type BC,,

The ring of invariant Laurent polynomials

1 [ vl LD Wy ={£1}" x &,

m

is generated by the orbit sums mgr(x) (r =1,...,m):
mar(z) = e (x+a)

_ ) -1 ) -1
= E ($21+$¢1)"'(fﬂzr+xir)
1< <<, <m
- 224
1<i1 <<, <m €1,...,6,=

The orbit sums m;- (), however, do not seem to be the right polynomials
by which Koorwinder polynomials should be expanded.

We modify the expansion formula

m m

[Hy+y ' '—zj—2h) =D (~De(a+a ) y+y )",

J=1 r=0
by replacing (y + y~1)" with the g-shifted product
(y+y '—a—ay+y '—ga—qg'a”") - (n factors)
with base point a.

We define a set of fundamental invariants E,.(x;alq) (r =1
the expansion coefficients in

,..., M) as

m

H y7x] Z —1)TET(I';CL|C]) <y;a>m—r7

r=0
where
(y;2) =y+y'—z—a = -z (1—a2y)(1 - z/y),
(W a)n = (y;0)(y; qa) - (y; ¢"'a) = (=1)"q" (2) a~"(ay; @)n(a/y; @n

These F,(x;alq) are determined explicitly as

E(zalg) = > (g a) (@i ) (g a)

1<d <ig <<, <m

(They are W,,-invariant despite of the appearance).



Koornwinder polynomials attached to single columns

For each r = 0,1,...,m, the Koornwinder polynomial P~ (x) =
Par(x1,. .., 2y) attached a single column (1) is expressed in the form

(L AT b T ac, 7 ad)

Fun (@) = ZZ_O: (t, 2" abed), Eri(@)

where

Bw)= 3 (ot e te %) (w6 a)
1<y <-<ip<m
=e(r+ar ) +e,ae1(z+z )+ +ol
Here we have used the notations
1

(r;a) =z +ax ' —a—al, {(a)=a2—a 2,
<a>t,n = (a)(ta) - - <tn_1a>v (ag, - 7ar>t,n = <a1>t7n T <a7’>t,n-

For example, the first nontrivial Koornwinder polynomial is given by

— (I—t™)(A—t""'ab)(1—t™"'ac)(1-t""'ad)
P(l)(x) - El(x) + at™=1(1—t)(1—abcdt2(m=1))

_ -1 (1—t™)(A+a?t™ 1) | (A=t™) (A=t ab)(1—t"'ac)(1—t™ 'ad)
_Z($J+xj ) = =g T at™=1(1—t)(1—abedt2(m—1)) .

m
j=1

The explicit formula above is derived from

Mimachi’s kernel function (of type II) (n =1)
[Tz =T[w+y "' —aj—2;") =D (1) Pary(@)pm—r(ylt),

r=0

—_

Jj=1

<

where p;(y|t) = pi(y; a,b,c,d|t) are the Askey-Wilson polynomials with
base t.



Kernel fuction of type I =—> P(;r)(x) (single columns)

Goal:

To expand the kernel function by Askey-Wilson polynomials with base ¢:
[Twz) =D (=17 Prory(@) pr(ylt)
j=1 r=0

(1) Expand the kernel function in terms of (y; a):; = (y; a)(y; ta) - - - (y; t'~La)
and Ei(x) = Ej(z;alt) (1=0,1,...,m):

H(yé ;) = > (1) " Eun(@) (y; a)u

(2) Express (y; a);; in terms of Askey-Wilson polynomials p,(y|t):

l (T T ab, trac, trad)

(s a)es = Do () S )

r=0

(3) By substituting (2) into (1), we obtain

& S (" trab, t"ac, t"ad);

Y, T;) = —1 FEom-n(x ! pTyt_
M= 2 O B0 g e
This implies
SNt trab, trac, tad)
(t, abcdt® ),

P(lmfr) (.T)) — Em—l(x)7

l=r

L {gmrHL gmerah T ac, " ady g
(t, abedt2(m=")),

El(:c)
=0



Koornwinder polynomials attached to single rows

The Koornwinder polynomial Py(x) = Pyy(z1,...,,) attached a
single row (r) (r =0,1,2,...) is given by

t . m tmfl b tmfl tmfl d .
0 Pty = L oo t7ad)
<q>r <q7 t2(m—r)abcdqr—1>r
r —1)! _T,tQ(m_l)CLde r—1
S L )
— (tm tm=lab, tmlac, tmlad),
where
<t>ul' (T vV, -1
Hi(x) = (x5 a)y, (T tq ), - (Tt TG,
|l/|:l <q>V1. ) .<q>l/m
1 1
(@) =a? — a2, (v50) = (za){z/a) =2+ 2 —a—a,
(a)n = (a){qa)---(¢""a), (via)n = (z;0)(z;qa) - (2;¢" a).

Compare this formula with
Askey-Wilson case (BCh):

_ (ab,ac,ad;q), q ", abedq" 1 ax,a/z.
prie) = a”(abedq™ 1 q), 103 ab, ac, ad 44
_ {ab, ac, ad), (=1)q", abedq’ ),
~ (abedg ),

=0 <CI7 ab, ac, ad>l <£IS’, a’>l7

Macdonald case (A;,—1):

B ) = Qo) = S il

(¢ 9)1

The explicit formula above is derived from our
Kernel function of type I
for v = (21,...,2,) and y (n=1) with t = ¢* (k=0,1,2,...):

M (a;y) = [ [y (2" "Pasityiq), =T [wa
j=1 j=1

[N
N|—
N e

75 q), (4 =Rz .



Kernel fuction of type I =— P (x) (single rows)

Expand the kernel function in the form

0 =T

Jj=1

km

1k$]k—ZG pkmr )

[\JlH

in terms of Askey-Wilson polynomials

pr(y) = pe(y; Vat/a,/at /b, \/qt /e, \/qt/d|q).

From the property of the kernel function, it follows that the coefficients
G, (z) are eigenfunctions of Koornwinder’s ¢-difference operator D, with

t = cf’€
D, Gy(x) = diGi(x), dipy = q (1 —¢")(1 = abedg” " Y).

If one can find an explicit formula for G, (z) such that the coefficients are
rational in t = ¢* and that is valid for all k =0, 1,2, ..., then it gives an
explicit formula for a multiple of Fp,y(x).

Expand the kernel function in the form
m 1 km
[T 2" Paie = > Hi) (v; Vat/ahum
J=1 1=0

with base point /qt/a. Then the coefficients are given by

. <t>u1"'<t>vm 1 a 2o td a T m—1_vi+-+vpy_ 1q
Hy(x) —|;_l<q>w_.<q>ym< 13 @)y, (123 10" @)y, - (s g i

After that, expand (y;/qt/a)rm—; in terms of the Askey-Wilson polyno-
mials Prm—r(y) as in the case of single columns, so as to obtain explicit
formulas for G, (z).



Elliptic difference operators of Ruijsenaars

A,-1 (GL,, form)

The Ruijsenaars operator in the variables x = (x1,...,z,,) of type A1
is defined by
— xj + K]
3 H T,
=1 j#i a xj]
where [z] = o(z;2) denotes the Weierstrass sigma function with the

period lattice Q = Zw, & Zwy, and T gfi stands for the shift operator
x; — x; + . We fix an elliptic gamma function G(z;6) such that

G(z + 6;9) = [2] G(2;9).
We consider two sets of variables x = (z1,...,2,) and ¥y = (Y1, .., Yn)-

Kernel function of type I (Ruijsenaars):
When m = n, the function

HH .Z'j‘f'yl"‘u—lﬂlé)
Py G(x; +y + u;0)

(or its multiple by any d-periodic fuction) satisfies the kernel relation

DUR () = D(<S P (2 7).

Kernel function of type II:
Under the balancing condition mk + nd = 0, the function

= HH [y — xj]

j=11=1

satisfiles the kernel relation

(k] DY (25 y) + [6] DO (23 ) = 0.

Remark: In the trigonometric and the rational cases, one need not im-
pose the balancing condition. When [z] = z or [z] = sin(7z/w), one can

prove
D(‘S“)CI)(.I y) — D(5 )(I)(x;y) = [(m — n)K|®(z;y)

for the kernel of type I, and
(6] DO (a5 y) + [6] DY (;y) = [mm + nd]W(w; y)
for the kernel of type II.



Ruijsenaars operator of type BC,,

We consider the Ruijsenaars operator D\

ables x = (x1, ..., ;) with 248 parameters

(57 R; &, B) - (67 R; 0, g, A3, Oy, 517 ﬁ?a 537 64)

The parameters «,., 3, correspond to the half periods %wr (r=1,2,3,4),
where Q = Zwi @ Zws, w3 = —wi — woy, wy = 0. For each r = 1,2, 3,4, we
define the constant A, by

of type BC), in the vari-

o(z +w Q) = +e(\(z + %)) o(2Q), e(2) = exp(2mV/—12).

With the abbreviated notation [z] = o(2;€2), set

D(5 K, )
Zm: 2xl+"{ H[xl 6 wr)—i_ar] [$z+ K— Wr +5r H 5171 :|:£U] + Iﬁ:
i=1 2] r=1 5 wy)] [ﬂfﬂrg(/ﬂ wy )] pr [z £ ]
Z 2$2_H H[ﬂfz_— (5 Wr Oér] [xz_%(cll wr) Br]H[:UZ:I:xj—/@] T__5
4

xz‘

+

r=

[
(L ] [§wm+as] 4L (wrst i 0) + Be) 1 [ (wr— )+ 1]
1 (—5cmAr) [m]g [3wrs] 511 [ (wrs+K—0)] H

where w,s = w, — wg and ¢, = 2mk + Z§:1(as + B5). This operator is
symmetric with respect to the 8 parameters

{71,...,78}:{%(5—%)4—04“ %(/ﬁ—wr)—i—ﬁr (r=1,...,4)}



Kernel functions for the BC),, Ruijsenaars operator

We consider two sets of variables x = (z1,...,2y) and y = (y1,. .., Yn)-

Kernel function of type I (Ruijsenaars, m = n):
Under the balancing condition

2(m —n)k + oo (as + B5) = 0,

The function

O(x1y) ﬁﬁG(%‘ +yr+ 30— k);6) Gla; —yi + 5(6 — K); 0)
j:”:lG(xj +y+ 300+ K);0) Gz; — yi + 30+ K); 0)
(or its multiple by any d-periodic factor) satisfies the kernel relation

DY y) = DI ().

Kernel function of type II:
Under the balancing condition

2mk + 2nd + Zizl(as + Gs) =0,

the function A
V(zsy) = [[]] Tz + willz; — wil
i=11=1

satisfiles the kernel relation

(5] D10 () + [6] DY (5 y) = 0.

)

It would be an important problem to explore how to use these kernel
functions for the study of eigenfunctions of the Ruijsenaars operators.



