Discrete Chebyshev nets and a universal permutability theorem

by

W.K. Schief

Technische Universität Berlin

ARC Centre of Excellence for Mathematics and Statistics of Complex Systems

1. History

- I. Lund & Regge (1976):
 - AKNS Lax pair for sine-Gordon equation = parameter-dependent SU(2)-valued generalization of the Gauß-Weingarten equations for pseudospherical surfaces.
 - Relativistic motion of a string → Lund-Regge equation

$$oldsymbol{r}_{xy} = oldsymbol{r}_x imes oldsymbol{r}_y$$

- II. Pohlmeyer (1976, 1977):
 - Lagrangian field theories Pohlmeyer-Lund-Regge system

$$\theta_{xy} + \frac{\cos \theta}{\sin^3 \theta} \varphi_x \varphi_y = \sin \theta \cos \theta$$
$$(\cot^2 \theta \varphi_x)_y = (\cot^2 \theta \varphi_y)_x$$

is an integrable generalization of the sine-Gordon equation.

- Interpretation as Gauß-Mainardi-Codazzi equations for surfaces in S^3 .
- III. Sym (1982): 'Soliton theory is surface theory'

2. Chebyshev nets (1878) ('On the cutting of our clothes')

Theorem: Any surface Σ : r=r(x,y) in \mathbb{R}^3 may be (locally) parametrized in such a way that

$$r_x^2 = f(x), \quad r_y^2 = g(y),$$

i.e. opposite sides of coordinate patches are of equal length.

First fundamental form (suitably reparametrized):

$$I = dr^2 = dx^2 + 2\cos 2\theta \, dxdy + dy^2$$

with 2θ = angle between coordinate lines.

Theorem: A surface Σ : r = r(x,y) is parametrized in terms of Chebyshev coordinates if and only if $r_{xy} \cdot r_x = r_{xy} \cdot r_y = 0$ and therefore

$$r_{xy} = \sigma r_x \times r_y, \qquad \sigma = \sigma(x, y)$$

or, equivalently,

$$oxed{m{r}_{xy} \parallel \hat{m{N}},} oxed{\hat{m{N}} = rac{m{r}_x imes m{r}_y}{|m{r}_x imes m{r}_y|}}.$$

3. The Pohlmeyer-Lund-Regge system (1976)

The Lund-Regge equation corresponds to $\sigma = 1$:

$$r_{xy} = r_x \times r_y$$

Second fundamental form:

$$II = -d\mathbf{r} \cdot d\hat{\mathbf{N}} = 2\cot\theta\,\varphi_x\,dx^2 + 2\sin 2\theta\,dxdy + 2\cot\theta\,\varphi_y\,dy^2$$

Associated Gauß-Mainardi-Codazzi equations:

$$\theta_{xy} + \frac{\cos \theta}{\sin^3 \theta} \varphi_x \varphi_y = \sin \theta \cos \theta$$
$$(\cot^2 \theta \varphi_x)_y = (\cot^2 \theta \varphi_y)_x$$

Invariance: $\varphi \to \tilde{\varphi} = -\varphi$

Thus: Lund-Regge surfaces come in isometric pairs $(\Sigma, \tilde{\Sigma})!$

4. The O(4) nonlinear σ -model (1976)

Pohlmeyer (1976): The Pohlmeyer-Lund-Regge system is equivalent to the O(4) non-linear σ -model

$$N_{xy} + (N_x \cdot N_y)N = 0, \quad N \in S^3$$

If $\Sigma = \tilde{\Sigma}$, that is $\varphi = 0$, then one obtains the spherical representation

$$\hat{N}_{xy} + (\hat{N}_x \cdot \hat{N}_y)\hat{N} = 0, \quad \hat{N}^2 = 1$$

of pseudospherical surfaces.

Lelieuvre formulae:

$$oldsymbol{r}_x = \hat{oldsymbol{N}} imes \hat{oldsymbol{N}}_x, \quad oldsymbol{r}_y = \hat{oldsymbol{N}}_y imes \hat{oldsymbol{N}}$$

provide the link between a pseudospherical surface and its spherical representation.

Given a solution N of the O(4) nonlinear σ -model, the generalized Lelieuvre formulae

$$R_x = 2(N_x N^{\mathsf{T}} - NN_x^{\mathsf{T}}), \quad R_y = 2(NN_y^{\mathsf{T}} - N_y N^{\mathsf{T}}), \quad R \in so(4)$$

are compatible. These imply, in turn, that

$$R_{xy} = \frac{1}{2}[R_x, R_y]$$

Isomorphisms: $so(4) \cong so(3) \oplus so(3)$ and $so(3) \cong su(2) \cong \mathbb{R}^3$

$$\Rightarrow r_{xy} = r_x \times r_y, \quad \tilde{r}_{xy} = \tilde{r}_x \times \tilde{r}_y$$

Conclusion: N encodes the pair $(\Sigma, \tilde{\Sigma})$ of Lund-Regge surfaces. Furthermore:

$$\bar{r}_x = N \times N_x, \quad \bar{r}_y = N_y \times N, \quad \bar{r} = \frac{r + \tilde{r}}{2}, \quad N =: (N_0, N)$$

Thus: ${m N}$ is a normal to the mid-surface ${ar \Sigma}$ and x,y are asymptotic coordinates thereon.

Chiral model connection: $(N^{\dagger}N_x)_y + (N^{\dagger}N_y)_x = 0, \quad N \in SU(2) \cong S^3 \ni N$

6. Discrete Chebyshev nets

Definition: A 'discrete surface'

$$r: \mathbb{Z}^2 \to \mathbb{R}^3, \quad (n_1, n_2) \mapsto r(n_1, n_2)$$

is termed a discrete Chebyshev net if

$$(\Delta_1 r)^2 = f(n_1), \quad (\Delta_2 r)^2 = g(n_2).$$

Applications: discrete pseudospherical surfaces (1950), discrete smoke ring flows ...

Theorem: A discrete surface Σ : r=r(x,y) constitutes a discrete Chebyshev net if and only if $(\Delta_{12}r)\cdot(r_{12}-r)=(\Delta_{12}r)\cdot(r_2-r_1)=0$ and therefore

$$\Delta_{12}r = \frac{\sigma}{2}(r_{12} - r) \times (r_2 - r_1), \qquad \sigma = \sigma(n_1, n_2)$$

or, equivalently,

$$oxed{\Delta_{12}r \parallel \hat{N},} \qquad \hat{N} = rac{(r_{12}-r) imes (r_2-r_1)}{|(r_{12}-r) imes (r_2-r_1)|}.$$

Comparison:

$$\sigma = \frac{(\Delta_{12}r) \cdot \hat{N}}{\frac{1}{2}|(r_{12} - r) \times (r_2 - r_1)|} = \frac{2h}{A}, \qquad \text{(discrete)}$$

$$\sigma = \frac{r_{xy} \cdot \hat{N}}{|r_x \times r_y|} = \frac{f}{\sqrt{\det I}}, \qquad \text{(continuous)}$$

where f is the off-diagonal coefficient of the second fundamental form.

Question: Is the canonical choice ($\sigma = 1$)

$$\Delta_{12}r = \frac{(r_{12} - r) \times (r_2 - r_1)}{2}$$

integrable and, if so, is it what we 'want'?

Answer: 'Yes' and 'No'!

Standard integrable discrete O(n) nonlinear σ -model (Schief 2001) in the case n=4:

$$N_{12} + N = \frac{N \cdot (N_1 + N_2)}{1 + N_1 \cdot N_2} (N_1 + N_2), \quad N \in S^3$$

Generalized discrete Lelieuvre formulae:

$$\Delta_1 R = 2(N_1 N^T - NN_1^T), \quad \Delta_2 R = 2(NN_2^T - N_2 N^T), \quad R \in so(4)$$

These imply that

$$\Delta_{12}R = \frac{[R_{12} - R, R_2 - R_1]}{2N \cdot (N_1 + N_2)}$$

so that decomposition produces the discrete Lund-Regge equation

$$\Delta_{12}r = \frac{(r_{12} - r) \times (r_2 - r_1)}{\alpha(n_1) + \beta(n_2)}$$

$$\alpha = \sqrt{1 - (\Delta_1 r)^2}, \quad \beta = \sqrt{1 - (\Delta_2 r)^2}$$

for r and \tilde{r}

Remarks:

I. Discrete Lund-Regge mid-surfaces constitute discrete asymptotic nets since for

$$\bar{r} = \frac{r + \tilde{r}}{2}$$
:

$$\Delta_1 \bar{r} = N \times N_1, \quad \Delta_2 \bar{r} = N_2 \times N$$

II. Discrete SU(2) chiral model:

$$(N_1^{\dagger} + N_2^{\dagger})N_{12} = N^{\dagger}(N_1 + N_2), \quad N \in SU(2)$$

III. The generalized discrete Lund-Regge equation

$$\Delta_{12}r = \frac{(r_{12} - r) \times (r_2 - r_1)}{\alpha(n_1) + \beta(n_2)}$$

is integrable for any prescribed choice of $\alpha(n_1)$ and $\beta(n_2)$.

8. A universal permutability theorem

Theorem: The four-point relation of 'Lund-Regge type'

may be interpreted as a superposition principle for any integrable system which admits commuting matrix Darboux transformations acting on an su(2) linear representation.

Interpretation 1 (Example): NLS equation + conservation law (cf. Boiti et al. 1981)

$$iq_t + q_{xx} + \frac{1}{2}|q|^2 q = 0,$$
 $p_x = |q|^2,$
 $p_t = i(q_x \bar{q} - q \bar{q}_x),$
 $r = \begin{pmatrix} -\frac{1}{2}\Re(q) \\ \frac{1}{2}\Im(q) \\ -\frac{1}{4}p \end{pmatrix}$

Interpretation 2 (Example): Heisenberg spin equation + Sym-Tafel formula

$$r_t = r_x \times r_{xx}, \quad r_x^2 = 1, \quad r = \Phi^{-1}\Phi_{\lambda}, \quad r \in su(2) \cong \mathbb{R}^3 \ni r$$

Theorem ('Consistency around the cube'): The three copies

$$\Delta_{12}r = \frac{(r_{12} - r) \times (r_2 - r_1)}{a(n_1) - b(n_2)}$$

$$\Delta_{23}r = \frac{(r_{23} - r) \times (r_3 - r_2)}{b(n_2) - c(n_3)}$$

$$\Delta_{31}r = \frac{(r_{31} - r) \times (r_1 - r_3)}{c(n_3) - a(n_1)}$$

of the generalized discrete Lund-Regge equation and their formal continuuum limit

$$egin{aligned} r_{xy} &=& 2rac{m{r}_x imes m{r}_y}{a(x)-b(y)} \ r_{yz} &=& 2rac{m{r}_y imes m{r}_z}{b(y)-c(z)} \ r_{zx} &=& 2rac{m{r}_z imes m{r}_x}{c(z)-a(x)} \end{aligned}$$

are compatible. $[\longrightarrow (discrete) Zakharov-Manakov connection!]$