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Consider the following class of matrix ODEs

dx

E — [337 Q(%)],

where x is n X n matrix, ) is a constant linear operator
Q . Matp, — Maty.

For instance, the matrix equation

d
g [z, zc 4 cx] = 2% ¢ — ca°. (1)

dt
IS integrable for any constant matrix ¢ and any n. This

equation possesses an infinite set of homogeneous in-
tegrals H; ;, where ¢+ and 5 are degrees with respect to
x and c.

J



For example,
Hy 1 =trace(zc), Hp i =trace (z°c).

Equation (1) is Hamiltonian one with respect to the
standard matrix linear Poisson bracket, given by the
Hamiltonian operator ad;, and Hamiltonian function Hy ;.

Matrix equations of arbitrary size like (1) are important
because of a possibility to make different reductions.

For the most trivial reduction one may regard x as a
block-matrix. In this case (1) becomes a system of
several matrix equations for the block entries of x«.

Under reduction z! = —z, ¢!’ = ¢ equation (1) is a
commuting flow for the n-dimensional Euler equation.



dx

Let £ and ¢ in the equation E = x

sented by matrices of the form
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where u; and J, are block matrices (of any dimension).
It follows from equation (1) that wu; satisfy the non-
abelian Volterra equation

d
dt

—uk == uk O uk—l—l O Jk—|—1 — Jk—l O uk_l O uk.



A multiplication o defined on the vector space Matn
of all n x n matrices is said to be compatible with the
matrix multiplication if the product

XeoeY =XY4+AXoY (2)

IS associative for any constant .

Since the matrix algebra is rigid, the multiplication (2)
iIs isomorphic to the matrix multiplication for almost all
values of the parameter A. This means that there exists
a formal series of the form

Sy =1+ R X+ 0(\?), (3)

with the coefficients being linear operators on Maty,
such that

Sy (X) Sy (Y) = SH(XY + A XoY). (4)



It follows from this formula that the multiplication o is
given by

XoY = R(X)Y + XR(Y) — R(XY). (5)

where R : Mat,, — Mat, iS a linear operator.

Example 1. Let ¢ be an element of Mat, and R :
X — cX be the operator of left multiplication by c .
Then the corresponding multiplication X oY = X c¢Y is
associative and compatible with matrix multiplication.

Example 2. Suppose a,b € Maty;, then the product
XoY = (aX — Xa) (bY — YD)

is compatible with the standard product in Mat>. The
corresponding operator R is given by R(X) = aXb—abX.



Classical associative Yang-Baxter equation

Let A — Sy be a meromorphic function with values in
End(Matyn) such that Sg = Id and

S\(X)S\(Y) =5 (XY + X XoY),
where o is an associative multiplication compatible with
the matrix one.

T heorem. The formula
1

u —v
defines a solution to the associative Yang-Baxter equa-
tion

SuS; L

r(u,v) =

(r(u, w)z)(r(u,v)y) —r(u, v)((r(v,w)z)y) =
r(u, w)(z(r(w,v)y)).



Integrable matrix ODESs.

It is convenient to write down the operator R in the
form

R(az)=a1xb1—|—...—|—ap:cbp—|—ca:, (6)

where a;, b, ¢ € Maty, with p being smallest possible.

Let o be a multiplication (5) compatible with the ma-
trix product. Consider the following matrix differential
equation

dx
where

R (x) = blazal + ...+ bPzap+zxec



It turns out that equation (7) possesses the Lax repre-

sentation

dL
— = [A7 L]a
dt

where

L=(51)"@), A= 15) (8)

As usual, the integrals of motion for (7) are given by
coefficients of different powers of X in trace (L%), k =
1,2...

To make these formulas constructive, we should find
Sy and S;l in a closed form i.e. as analytic operator-
valued functions.



In the case of Example 1, we have
R(x) = cx, Sy(x) = (1 4+ o) z,

L=xz(1+4+Xx)"1.
The Lax equation is equivalent to the well known inte-
grable matrix equation

d
d—fz [z, zc 4 cx] = 2% ¢ — ca°.

The L-operator produces an infinite set of homoge-
neous integrals H;;, where ¢ and j are degrees with
respect to x and ¢. The simplest are

Hp 1 =trace(zc), Hpi =trace (z°c).



A generalization of Example 2 is defined by two arbi-
trary constant matrices A and B such that

A2 = B?=1. (9)

T he corresponding associative multiplication is given by
(5), where

R(x) = AxB + BAx. (10)

This leads to the following integrable matrix equation

xt = [x, BxA+ AxB + xBA + BAx]. (11)



The Lax representation (8) for (11) is given by the
following explicit formulas for S, and S)Tl:

Sy () Z%BxB—I— 1+4

x+ AN(AxB + BAzx),

1 ~1 1
S (z) = 5(1—|—>\K)_1 (% BaB 4 114

x + AN(ABx — A:I:B)) ,

where ¢ = \/1 —4)2, K = AB + BA.

The simplest linear and quadratic first integrals for (11)
generated by the L-operator are given by

Hi 1 = trace[z(AB+BA)], Ho 1 = trace [ABz®+ Az Bax].



Equation (11) admits the following skew- symmetric
reduction

ol = —x, B = A"l (12)

Different integrable so(n)-models provided by reduction
(12) are in one-to-one correspondence with equivalence
classes with respect to the SO(n) gauge action of nxn
matrices A such that A2 =1.

For the real matrix A, a canonical form for such equiv-
alence class can be chosen as

1 T
A= |7 . (13)
Here 15 stands for the unity s x s matrix and T = {t;,},
where tij = 52']'042'.



This canonical form is defined by the discrete natu-
ral parameter p and continuous parameters aq,..., ar,
where r = min(p,n — p).

For example, in the case n = 4 the equivalence classes
with p = 2 and p = 1 give rise to the Steklov and the
Poincare integrable models, correspondingly.

Thus, whereas (1) is a matrix version of the so(4)
Schottky-Manakov top, equation (11)-(13) with p =
[n/2] and p = 1 can be regarded as new so(n) general-
izations for the so(4) Steklov and Poincare models.



A generalization of the basic matrix integrable model

(7):

dx
— = + x %
ph [z, v] + = x x,

d’U
— = |z, u|l + x %
dt [ Y ] v?

du
— = x xu,

dt
where z,v,w € Maty, and

X %Y = [R(X),Y] + [RT(Y), X] + R ([X, Y]).

If v=u=0, we get

dx .
= [R(x) + R"(x), x].



Algebraic structures.

Let us write R in the form

Rz)=a1 Xbl 4+ ... +apXtP+cX

with minimal p. Here a;,b%, ¢ € Maty.

Lemma 1. If the multiplication defined by
XoY =R(X)Y +XR(Y) — R(XY).
IS associative, then
aiaj = ¢Fjap, + pigl, b = yploh A1

for some tensors gbé"j, fi g, V7, NI

(14)



‘This means that the vector spaces spanned by 1,a1,...ap
and 1,b67,...bp are associative algebras. We denote
them by A and B. The algebras A and B have to be
related by certain consistency conditions.

The simplest example of a similar structure can be de-
scribed as follows.



Associative bi-algebras.

Let A and B be associative algebras with basis Ay,..., Ap
and Bl ... BP and structural constants qﬁ";k and w?"ﬁ.
Suppose that the structural constants satisfy the fol-
lowing identities:

Li l i 1 .
¢§,k¢3,z — ¢37k¢j’ ' _I_ qsz',swks? 1 S 1,7, kal S p.

Then the algebra M of dimension 2p+p? with the basis
A;, BJ, A;B7 and relations

B'Aj = ¢ Ay + ¢} BF

is associative. Note that A;BJ form an associative sub-
algebra of dimension p2.



Consider the vector space L spanned by Ai,Bj. It is
clear that A and B act on £ by right and left multipli-
cation, correspondingly.

Let (-,-) be a non-degenerate symmetric scalar product
on the space £ such that

(Ai, Aj) = (B, By =0,  (A;,B)=4].

Then the consistency condition means that

(b1bo,v) = (b1,bov), (v,a1a2) = (vai,ap)

for any ai,a> € A, b1,bo € B and v € L.



General algebraic structure.

Definition. By week M-structure on a linear space L
we mean a collection of the following data:

e Two subspaces A and B and distinguished element
le ANBCL.

e Associative products Ax A — A and Bx B — B with
unity 1.

e Left action B x £L — L of the algebra B and right
action £ x A — L of the algebra A on the space L,
which commute to each other.

e A non-degenerate symmetric scalar product (-,-) on
the space L.



These data should satisfy the following properties:

1. dmANB=dmL/(A+ B) = 1. Intersection of A
and B is a one dimensional space spanned by the unity
1.

2. Restriction of the action B x £ — L to subspace
B C L is the product in B. Restriction of the action
L x A— L to subspace A C L is the product in A.

3. (al,az) = (bl,bQ) = 0 and

(b1bo,v) = (b1,bov), (v,a1a2) = (vay,ap)
for any ai,a> € A, b1,bo € B and v € L.

It follows from these properties that (-,-) gives a non-
degenerate pairing between A/C1 and B/C1, sodim A =
dimB and dim £ = 2dim A.



For given week M-structure we can define an universal
associative algebra generated by L.

Definition. By week M-algebra associated with week
M-structure on £ we mean an associative algebra U(L)
with the following properties:

1. LCU(L) and the actions Bx L — L, Lx A — L are
restrictions of the product in U(L).

2. For any algebra X with the property 1 there exists
a unique homomorphism of algebras X — U(L), which
iIs identical on L.

It is easy to see that if U(L) exists, then it is unique
for given L.



Let us describe the structure of U(L) explicitly.

Let {1,Aq,..., Ay} be a basis of A and {1, B!, ..., BP} be
a dual basis of B (which means that (A;, B)) = 5;?). Let
C € L doesn't belong to the sum of A and B. Since (-,-)
is non- degenerate, we have (1,C) # 0. Multiplying C
by constant, we may assume that (1,C) = 1. Adding
linear combination of 1, Aq, ..., Ap, B, ..., BP to C, we can
assume that (C,C) = (C, 4;) = (C,B?) = 0. Such ele-
ment C is uniquely determined by choosing basis in A
and B.



Let us define an element K € U(L) by the formula
K= A;B'+C.

Definition. A week M-structure on L is called M-
structure if K € U(L) is a central element of the algebra
U(L).

Theorem 1. The algebra U(L) is spanned by the el-
ements K°, A;K®, B;K®, A;B/K?®, where i,57 = 1,...,p,
and s=0,1,2, ...

Theorem 2. For any representation U(L) — Maty
given by

Al —ay, ..., Ap — ap,Bl — bt ... BP . C —c

formula (5) defines associative product on Mat, com-
patible with the usual product.



Example 3. Suppose A and B are generated by el-
ements a € A and b € B such that oPt! = ppt1 = 1.
Assume that (b*,a™%) = ¢'—1, (1,¢) = 1 and other scalar
products are equal to zero. Here € is a primitive root
of unity of order p. Let

el —1 - € 1
1) — i+7 i+7
bla e—t—J — 1 T ettt —1
for : 4+ 5 # 0 modulo p and
bla'=14 (¢ —1)e, ca*= 1 a’ + 1 b
’ 1 — ¢ et —1 "7
. 1 . 1 .
b’L — ' 1 . 1
c e_z—la_l_l—e_z

for + %= 0 modulo p. These formulas define an M-
structure.



The central element has the following form

Let a, t be linear operators in some vector space. As-
sume that aPt1 = 1, at = eta and the operator t — 1 is
invertible. It is easy to check that the formulas

et — 1 t

f—1 ¢ t—1

define a representation of the algebra U(L).

A — a, B



Case of semi-simple algebras 4 and B

Suppose a vector space L is equipped with a weak M-
structure such that

A = B1<i<rEnd(V;), B = ®1<j<sEnd(W;),
dimV, = m,;, dimW; = n;.
Then £ as A®B-module is isomorphic to @1 <<y 1<j<s(V®

W;)%i, for some a; ; > O

Theorem. For any 7,3

S T
Z ai,jnj — Qmi, Z ai,jmi — QTLj. (15)



The matrix of linear system (15) has the form

2 —A
According to the result by E. Vinberg, if the kernel of
indecomposable matrix Q contains an integer positive

vector, them @ is the Cartan matrix of an affine Dynkin
diagram.

Moreover, it follows from the structure of @ that this
diagram is a simple laced affine Dynkin diagram with
a partition of the set of vertices into two subsets such
that vertices of the same subset are not connected.



Theorem. Let A be an r x s matrix of multiplicities
for an indecomposable weak M -structure. Then, after
a possible permutation of rows and columns and the
transposition, a matrix A is equal to one in the following
list:

1. A= (2). Herer = s =1, ny = m1 = m. The
corresponding Dynkin diagram is of the type Al.

2. a;; = a;;41 = 1 and q;; = 0 for other pairs i,j.
Here »r = s = k > 2, the indexes are taken modulo k,
and n;, = m; = m. The corresponding Dynkin diagram
IS AQ]{:—I'






1 1 O
1

0
3. A=11 0 O|. Herer =3,s =4 and n; =
1 0 0 1
3m,n2=n3:n4: mi1 = mop = m3 = 2m. The

Dynkin diagram is Eg




4. A=

O O
O R K
O = O
= = O
= O O

Here r = 3, s = 5 and

nyT=m, no=3m, n3=2m, ng=3m,
ng = m, mq1 = 2m, mo = 4m, m3z = 2m.

The Dynkin diagram is F7 :




(1 0 0 0 0)
5 A — 1 1 1 0 O
O O 1 1 O
\0 0 0 1 1)
Here ny = 4m, no, = 3m, n3 = bm, ng4

ng=m, mi1=2m, mo=060m, m3z=4m,
mg = 2m.

The Dynkin diagram is Fg :

3m,



6. A=(1,1,1,1). Herer =1,s = 4 and ny = no =
ny = ng = m, m; = 2m. The corresponding Dynkin

diagram is Dg.

7_ al,l = a1,2 p— a173 = 1, CL273 = a274 = a,374 = CL3,5
C = ap2k-1 = a2k = 1, @1k = ap_1 k41

ap—1k+2 =1, and a; ; = 0 for other (3, 7).

Here we haver = k—1,s =k+2and ny = no = ng4q
= m; = 2m.

Nkt = M, N3 = -+ =ng = 2m, m1 = ---

The corresponding Dynkin diagram is [)Qk, where k > 3.

W1 W2

QO O
%. N /v
/ W Wi

O @)

Wo ~ W41



8. aij1 =a12=a13=1, ap3=ap4 =a34 = a3zs =
- =ag-2k-1=0ag 2k =1, ap 1, = agr =1, and
a; ; = 0 for other (z,3).

Here we have r=s =k >3, ni=npo=m, ng=--- =
ne = 2m, mj = -+ = Mp_o = 2mMm, Mp_1 = mp = m.
The corresponding Dynkin diagram is Dop_1 :

Note that if k =3, then a1 1 =a120=a13=1, ap3 =
az 3 = 1.



Resume: Suppose L is an indecomposable M-structure
with semi-simple algebras

A = EBlSiSTEnd(‘/i)r B = @1§j§SEnd(Wj); then there
exists an affine Dynkin diagram of the type A, D, or E
such that:

1. There is a one-to-one correspondence between the
set of vertices and the set of vector spaces

{V]_, ceey Vfr, Wl, ceey Ws}
. 2. For any 7,5 the spaces V}, Vj are not connected by
edges as well as W;, W;.
3. The vector

(dim V4, ..., dim Vi, dim W, ..., dim W)

is equal to mJ, where J is the minimal imaginary positive
root of the Dynkin diagram.



Remark. It can be proved that for indecomposable
M-structures m = 1.

To describe the M-structure it remains to construct an
embedding A — L, B — L and a scalar product (-,-) on
the space L.

If we fix an element 1 € £, then we can define the
embedding A — £, B — L by the formula a — 1la,
b — bl fora e A, b € B. We may assume that 1 is a
generic element of L.



Thus to study M-structures corresponding to a Dynkin
diagram, one should take a generic element in L =
P1<i<r1<j<s(V;¥ ® W;)%s, find its simplest canonical
form by choosing bases in the vector spaces

V]_, ceey Vr, W]_, ceey Ws,

calculate the embedding A — L, B — L and the scalar
product (-,-) on the space L.

The classification of generic elements 1 € £ up to
choice of bases in the vector spaces V1, ..., Vy, W1, ..., Wq
IS equivalent to classification of irreducible representa-
tions of the quivers corresponding to our affine Dynkin
diagrams and we can apply known results about these
representations.



Semi-simple case.

Consider an associative algebra

M = EBlSaSmMOéa

where M, is isomorphic to Mat,,. We are going to
study associative products in this algebra compatible
with the initial one.

The main algebraic object is the weak PM-structure (of
size m) on L. All properties coincide with the properties
of weak M-structure except for

1. dmANB=dmL/(A+ B) = m. The intersection
of A and B is a m-dimensional algebra isomorphic to
Co..oC.



The scalar product (-,-) defines a non- degenerate pair-
ing between A/ANB and B/ANB, so dmA = dimB
and dim £ = 2dim A.

Let {eq; 1 < a < m} be a basis of the space AN B such
that

eqeg = 5%56@.

Denote by Laﬁ the vector space consisting of elements
Va8 € L with the property

€ala,p = Ya,5¢8 = Ya,3-

Let -Aoz,ﬁ = AN 'Coz,ﬁ and Ba,ﬁ = BN 'Coz,ﬁ-

We sum by repeated Latin indexes and do not sum by
repeated Greek indexes



T he following properties hold:

* L = Di<apf<mbas A= Di<ap<mAapg and B =
D1<a,8<mBa,g-

e dimA, gNB,3=dm ﬁ/(.Aaﬂg + Ba,ﬁ) = 0q,3- The
intersection of Aq.o and B« IS an one-dimensional
space spanned by eg,.

° Baﬁﬁﬁlﬁ = 0 for B # ﬁ, and Baﬁﬁﬁﬁ C ,Caﬁ. Sim-
ilarly L, gAg ., =0 for 8 # 3" and L, 3Ag, C Lay.
In particular, A, gAg ., = B, gBg ., = 0 for g # 3
and AaﬁAﬁﬁ C Aa v, BO@BBB,V C Ba,y.



¢ LoplLly yifazd or B4



It follows from these properties that (-,-) gives non-
degenerate pairing between A, 5 and Bg , for a = 8 and
between A o/Ceq and Ba,a/Ceq. Therefore dim A, 3 =
dim Bﬁ,a'

Definition. By weak PM-algebra associated with a
weak PM-structure £ we mean an associative algebra
U(L) possessing the following properties:

1. LCU(L) and the actions Bx L — L, Lx A — L are
the restrictions of the product in U(L).

2. For any algebra X with the property 1 there exists a
unigue homomorphism of algebras X — U(L) identical
on L.



Itisclearthat U(L) = ®1<a g<mU(L)q g, Where U(L), 3 =
{v € U(L); eav = veg =v}. We have U(L),gU(L)gy =
0 for B # B’ and U(L)qgU(L) 5, C U(L)ay-



Let {ea,Aja,ail < @ < pa,n} be a basis of Ay« and
{ea, By.ai 1 < i < pa,a) be the dual basis of Ba,n. Let

{Aiaps 1l <i<pga} bea basis of A, 3 for a # 3 and
{B’@a; 1 <i < pgs be the dual basis of Bg,.

Take Cq € Lq,o that does not belong to the sum of Aq
and Bq.o. Without loss of generality we can assume that
(ea, Ca) = 1, (Ca,Ca) = (COéaAi,a,a) — (C’a,Béya) = 0.
Such element C is uniquely determined by choosing of
basis in Aq .

Let us define the element Kq € U(L) by the formula
Ko =Cq+ Zlgygm Az’,a,l/Bzz/,oz-

Definition. A weak PM-structure L is called PM-
structure if K = > 1<q<m Ko € U(L) is a central element
of the algebra U(L).



Theorem 3.4. A basis of U(L)aﬁ for a #= [ consists
of the elements

{Ai,a,ﬂKéa Bé)ﬁKf}a Ail,a,uBZ}ﬁKf}}a

where 1 S 1 Spﬁ,ou 1 S] Spa,ﬁ7 1 S O%B)V S mal S
7:]_ Spl/,Oéa 1 S]l Spl/,ﬁ7 82071727°"-

A basis of U(L)a,n consists of the elements

s ' S J1 S
{6047 Ai,oz,ozKom Bgz,aKou Ail,a,I/Bl/,aKa}a

Where 1 S 7’7] S pOé,Oéa 1 S 4 S m, 1 S i].)jl S pl/,Oéa S —
0,1,2,....



Theorem. Let £ be a PM-structure. Then for any
representation of U(L) given by

Ai,ﬁ,a — 48 o fo,@ — bg’ﬁ, Coo —  cCa;
1<i<pap 1< aB<m the formula

T 0 Yg = i,5,0%aba,gUs + Tatia,gYsbs e @ F P
Lo © Yo — ai,a,ax&b,é%ay& _I_ maai,a,ayabia,oz_

)
ai,oz,oﬂjayozba,a + TacaYa-

defines a product on M = ®1<q<mMatn, compatible
with the usual one.



Lemma 2. If (5) is associative, then for some tensor
i
j
DS = o nty” + 0G50 + ity — Oty — 85
and
ba; = 1b; a4 ¢} B+t + e
Lemma 3. If (5) is associative, then

ki 1k Lk Lk
b c = Aoy, — ¢ bY — ¢ kR bs — g ADF

_ k k s Lk Lk
caj = pjkb" —tjap — dp ;" as — pg;
and moreover

' S,1 ' 1. S,T
gbj,ktg — ¢j Hs,k + ¢§',st2 o 5;wk Hr,s;

ki,s — 11 k,s S,i,k 1k \7,8
s tj = ¢j,3>‘ —+ ’(bj tg — 5]-ng’7)\ .



Proposition 1. The algebra U(L) is defined by the
following relations

AA; = ¢F i Ap+ iy,  B'BI =) BY 4 XY
B'Aj = ¢ Ay + ¢ B+t + 5LC
B'C = AVIAy +uf,BF +p', CAj; = p; 1 B" +uiA, + g

— k ug p, _:u],k —I—’U,] k_l_QZ

for certain tensors gbw,wk Wiy AW Ul Pt g,

Lemma. L as A-module is isomorphic to @199(%*)2’”%.



Definition. The r x s matrix A = (a; ;) is called matrix
of multiplicities of a weak M-structure.

Definition. The matrix A is called decomposable if
there exist partitions {1,...,7} = ITu I’ and {1,...,s} =
JuJ' such that a; ; =0 for (i,j) e I x J'UI" x J.

Lemma. If A is decomposable, then the corresponding
M-structure is decomposable.



