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Consider the following class of matrix ODEs

dx

dt
= [x, Q(x)],

where x is n×n matrix, Q is a constant linear operator

Q : Matn →Matn.

For instance, the matrix equation

dx

dt
= [x, xc+ cx] = x2 c− c x2. (1)

is integrable for any constant matrix c and any n. This

equation possesses an infinite set of homogeneous in-

tegrals Hi,j, where i and j are degrees with respect to

x and c.



For example,

H1,1 = trace (xc) , H2,1 = trace (x2c).

Equation (1) is Hamiltonian one with respect to the

standard matrix linear Poisson bracket, given by the

Hamiltonian operator adx, and Hamiltonian function H2,1.

Matrix equations of arbitrary size like (1) are important

because of a possibility to make different reductions.

For the most trivial reduction one may regard x as a

block-matrix. In this case (1) becomes a system of

several matrix equations for the block entries of x.

Under reduction xT = −x, cT = c equation (1) is a

commuting flow for the n-dimensional Euler equation.



Let x and c in the equation
dx

dt
= x2 c − c x2 be repre-

sented by matrices of the form

x =


0 u1 0 0 · 0
0 0 u2 0 · 0
· · · · · ·
0 0 0 0 · uN−1
uN 0 0 0 · 0

 , c =


0 0 0 · 0 JN
J1 0 0 · 0 0
0 J2 0 · 0 0
· · · · · ·
0 0 0 · JN−1 0

 ,

where uk and Jk are block matrices (of any dimension).

It follows from equation (1) that uk satisfy the non-

abelian Volterra equation

d

dt
uk = uk ◦ uk+1 ◦ Jk+1 − Jk−1 ◦ uk−1 ◦ uk.



A multiplication ◦ defined on the vector space Matn
of all n × n matrices is said to be compatible with the
matrix multiplication if the product

X • Y = XY + λX ◦ Y (2)

is associative for any constant λ.

Since the matrix algebra is rigid, the multiplication (2)
is isomorphic to the matrix multiplication for almost all
values of the parameter λ. This means that there exists
a formal series of the form

Sλ = 1 +R λ+O(λ2), (3)

with the coefficients being linear operators on Matn,
such that

Sλ(X)Sλ(Y ) = Sλ(XY + λ X ◦ Y ). (4)



It follows from this formula that the multiplication ◦ is

given by

X ◦ Y = R(X)Y +XR(Y )−R(XY ). (5)

where R : Matn →Matn is a linear operator.

Example 1. Let c be an element of Matn and R :

X → cX be the operator of left multiplication by c .

Then the corresponding multiplication X ◦ Y = X cY is

associative and compatible with matrix multiplication.

Example 2. Suppose a, b ∈Mat2; then the product

X ◦ Y = (aX −Xa) (bY − Y b)

is compatible with the standard product in Mat2 . The

corresponding operator R is given by R(X) = aXb−abX.



Classical associative Yang-Baxter equation

Let λ → Sλ be a meromorphic function with values in
End(Matn) such that S0 = Id and

Sλ(X)Sλ(Y ) = Sλ(XY + λ X ◦ Y ),

where ◦ is an associative multiplication compatible with
the matrix one.

Theorem. The formula

r(u, v) =
1

u− v
SuS

−1
v

defines a solution to the associative Yang-Baxter equa-
tion

(r(u,w)x)(r(u, v)y)− r(u, v)((r(v, w)x)y) =

r(u,w)(x(r(w, v)y)).



Integrable matrix ODEs.

It is convenient to write down the operator R in the

form

R(x) = a1 x b
1 + ...+ ap x b

p + c x, (6)

where ai, b
i, c ∈Matn, with p being smallest possible.

Let ◦ be a multiplication (5) compatible with the ma-

trix product. Consider the following matrix differential

equation

dx

dt
= [R(x) +R∗(x), x], (7)

where

R∗(x) = b1 x a1 + ...+ bp x ap + x c.



It turns out that equation (7) possesses the Lax repre-

sentation
dL

dt
= [A, L],

where

L =
(
S−1
λ

)∗
(x), A =

1

λ
Sλ(x). (8)

As usual, the integrals of motion for (7) are given by

coefficients of different powers of λ in trace (Lk), k =

1,2...

To make these formulas constructive, we should find

Sλ and S−1
λ in a closed form i.e. as analytic operator-

valued functions.



In the case of Example 1, we have

R(x) = cx, Sλ(x) = (1 + λc)x,

L = x(1 + λc)−1.

The Lax equation is equivalent to the well known inte-

grable matrix equation

dx

dt
= [x, xc+ cx] = x2 c− c x2.

The L-operator produces an infinite set of homoge-

neous integrals Hi,j, where i and j are degrees with

respect to x and c. The simplest are

H1,1 = trace (xc) , H2,1 = trace (x2c).



A generalization of Example 2 is defined by two arbi-

trary constant matrices A and B such that

A2 = B2 = 1. (9)

The corresponding associative multiplication is given by

(5), where

R(x) = AxB +BAx. (10)

This leads to the following integrable matrix equation

xt = [x, BxA+AxB + xBA+BAx]. (11)



The Lax representation (8) for (11) is given by the

following explicit formulas for Sλ and S−1
λ :

Sλ(x) =
1− q

2
BxB +

1 + q

2
x+ λ(AxB +BAx),

S−1
λ (x) =

1

q
(1+λK)−1

(
q − 1

2
BxB +

1 + q

2
x+ λ(ABx−AxB)

)
,

where q =
√

1− 4λ2, K = AB +BA.

The simplest linear and quadratic first integrals for (11)

generated by the L-operator are given by

H1,1 = trace [x(AB+BA)], H2,1 = trace [ABx2+AxBx].



Equation (11) admits the following skew- symmetric

reduction

xT = −x, B = AT . (12)

Different integrable so(n)-models provided by reduction

(12) are in one-to-one correspondence with equivalence

classes with respect to the SO(n) gauge action of n×n
matrices A such that A2 = 1.

For the real matrix A, a canonical form for such equiv-

alence class can be chosen as

A =

(
1p T

0 1n−p

)
. (13)

Here 1s stands for the unity s× s matrix and T = {tij},
where tij = δijαi.



This canonical form is defined by the discrete natu-

ral parameter p and continuous parameters α1, . . . , αr,

where r = min(p, n− p).

For example, in the case n = 4 the equivalence classes

with p = 2 and p = 1 give rise to the Steklov and the

Poincare integrable models, correspondingly.

Thus, whereas (1) is a matrix version of the so(4)

Schottky-Manakov top, equation (11)-(13) with p =

[n/2] and p = 1 can be regarded as new so(n) general-

izations for the so(4) Steklov and Poincare models.



A generalization of the basic matrix integrable model

(7):

dx

dt
= [x, v] + x ? x,

dv

dt
= [x, u] + x ? v,

du

dt
= x ? u,

where x, v, w ∈Matn and

X ? Y = [R(X), Y ] + [RT (Y ), X] +RT ([X,Y ]).

If v = u = 0, we get

dx

dt
= [R(x) +R∗(x), x].



Algebraic structures.

Let us write R in the form

R(x) = a1X b1 + ...+ apX bp + cX (14)

with minimal p. Here ai, b
i, c ∈MatN .

Lemma 1. If the multiplication defined by

X ◦ Y = R(X)Y +XR(Y )−R(XY ).

is associative, then

aiaj = φki,jak + µi,j1, bibj = ψ
i,j
k bk + λi,j1

for some tensors φki,j, µi,j, ψ
i,j
k , λi,j.



This means that the vector spaces spanned by 1, a1, . . . ap
and 1, b1, . . . bp are associative algebras. We denote

them by A and B. The algebras A and B have to be

related by certain consistency conditions.

The simplest example of a similar structure can be de-

scribed as follows.



Associative bi-algebras.

Let A and B be associative algebras with basis A1, . . . , Ap

and B1, . . . , Bp and structural constants φij,k and ψ
α,β
γ .

Suppose that the structural constants satisfy the fol-

lowing identities:

φsj,kψ
l,i
s = φls,kψ

s,i
j + φij,sψ

l,s
k , 1 ≤ i, j, k, l ≤ p.

Then the algebra M of dimension 2p+p2 with the basis

Ai, B
j, AiB

j and relations

BiAj = ψ
k,i
j Ak + φij,kB

k

is associative. Note that AiB
j form an associative sub-

algebra of dimension p2.



Consider the vector space L spanned by Ai, B
j. It is

clear that A and B act on L by right and left multipli-

cation, correspondingly.

Let (·, ·) be a non-degenerate symmetric scalar product

on the space L such that

(Ai, Aj) = (Bi, Bj) = 0, (Ai, B
j) = δ

j
i .

Then the consistency condition means that

(b1b2, v) = (b1, b2v), (v, a1a2) = (va1, a2)

for any a1, a2 ∈ A, b1, b2 ∈ B and v ∈ L.



General algebraic structure.

Definition. By week M-structure on a linear space L
we mean a collection of the following data:

• Two subspaces A and B and distinguished element
1 ∈ A ∩ B ⊂ L.

• Associative products A×A → A and B×B → B with
unity 1.

• Left action B × L → L of the algebra B and right
action L ×A → L of the algebra A on the space L,
which commute to each other.

• A non-degenerate symmetric scalar product (·, ·) on
the space L.



These data should satisfy the following properties:

1. dimA ∩ B = dimL/(A+ B) = 1. Intersection of A
and B is a one dimensional space spanned by the unity
1.

2. Restriction of the action B × L → L to subspace
B ⊂ L is the product in B. Restriction of the action
L ×A → L to subspace A ⊂ L is the product in A.

3. (a1, a2) = (b1, b2) = 0 and

(b1b2, v) = (b1, b2v), (v, a1a2) = (va1, a2)

for any a1, a2 ∈ A, b1, b2 ∈ B and v ∈ L.

It follows from these properties that (·, ·) gives a non-
degenerate pairing between A/C1 and B/C1, so dimA =
dimB and dimL = 2dimA.



For given week M-structure we can define an universal
associative algebra generated by L.

Definition. By week M-algebra associated with week
M-structure on L we mean an associative algebra U(L)
with the following properties:

1. L ⊂ U(L) and the actions B ×L → L, L×A → L are
restrictions of the product in U(L).

2. For any algebra X with the property 1 there exists
a unique homomorphism of algebras X → U(L), which
is identical on L.

It is easy to see that if U(L) exists, then it is unique
for given L.



Let us describe the structure of U(L) explicitly.

Let {1, A1, ..., Ap} be a basis of A and {1, B1, ..., Bp} be

a dual basis of B (which means that (Ai, B
j) = δ

j
i ). Let

C ∈ L doesn’t belong to the sum of A and B. Since (·, ·)
is non- degenerate, we have (1, C) 6= 0. Multiplying C

by constant, we may assume that (1, C) = 1. Adding

linear combination of 1, A1, ..., Ap, B
1, ..., Bp to C, we can

assume that (C,C) = (C,Ai) = (C,Bj) = 0. Such ele-

ment C is uniquely determined by choosing basis in A
and B.



Let us define an element K ∈ U(L) by the formula
K = AiB

i + C.

Definition. A week M-structure on L is called M-
structure if K ∈ U(L) is a central element of the algebra
U(L).

Theorem 1. The algebra U(L) is spanned by the el-
ements Ks, AiK

s, BjK
s, AiB

jKs, where i, j = 1, ..., p,
and s = 0,1,2, ...

Theorem 2. For any representation U(L) → Matn
given by

A1 → a1, ..., Ap → ap, B
1 → b1, ..., Bp → bp, C → c

formula (5) defines associative product on Matn com-
patible with the usual product.



Example 3. Suppose A and B are generated by el-

ements a ∈ A and b ∈ B such that ap+1 = bp+1 = 1.

Assume that (bi, a−i) = εi−1, (1, c) = 1 and other scalar

products are equal to zero. Here ε is a primitive root

of unity of order p. Let

biaj =
ε−j − 1

ε−i−j − 1
ai+j +

εi − 1

εi+j − 1
bi+j

for i+ j 6= 0 modulo p and

bia−i = 1 + (εi − 1)c, cai =
1

1− εi
ai +

1

εi − 1
bi,

bic =
1

ε−i − 1
ai +

1

1− ε−i
bi

for i 6= 0 modulo p. These formulas define an M-

structure.



The central element has the following form

K = c+
∑

0<i<p

1

εi − 1
a−ibi.

Let a, t be linear operators in some vector space. As-

sume that ap+1 = 1, at = εta and the operator t− 1 is

invertible. It is easy to check that the formulas

A→ a, B →
εt− 1

t− 1
a, C →

t

t− 1

define a representation of the algebra U(L).



Case of semi-simple algebras A and B

Suppose a vector space L is equipped with a weak M-

structure such that

A = ⊕1≤i≤rEnd(Vi), B = ⊕1≤j≤sEnd(Wj),

dimVi = mi, dimWj = nj.

Then L as A⊗B-module is isomorphic to ⊕1≤i≤r,1≤j≤s(V ?i ⊗
Wj)

ai,j , for some ai,j ≥ 0

Theorem. For any i, j

s∑
j=1

ai,jnj = 2mi,
r∑

i=1

ai,jmi = 2nj. (15)



The matrix of linear system (15) has the form

Q =

(
2 −A
−At 2

)
.

According to the result by E. Vinberg, if the kernel of

indecomposable matrix Q contains an integer positive

vector, them Q is the Cartan matrix of an affine Dynkin

diagram.

Moreover, it follows from the structure of Q that this

diagram is a simple laced affine Dynkin diagram with

a partition of the set of vertices into two subsets such

that vertices of the same subset are not connected.



Theorem. Let A be an r × s matrix of multiplicities

for an indecomposable weak M -structure. Then, after

a possible permutation of rows and columns and the

transposition, a matrix A is equal to one in the following

list:

1. A = (2). Here r = s = 1, n1 = m1 = m. The

corresponding Dynkin diagram is of the type Ã1.

2. ai,i = ai,i+1 = 1 and ai,j = 0 for other pairs i, j.

Here r = s = k ≥ 2, the indexes are taken modulo k,

and ni = mi = m. The corresponding Dynkin diagram

is Ã2k−1.
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3. A =

 1 1 0 0

1 0 1 0

1 0 0 1

. Here r = 3, s = 4 and n1 =

3m, n2 = n3 = n4 = m, m1 = m2 = m3 = 2m. The

Dynkin diagram is Ẽ6 :

eueue
u
e

W4V3W1V1W2

V2

W3 Ẽ6



4. A =

 1 1 0 0 0

0 1 1 1 0

0 0 0 1 1

.

Here r = 3, s = 5 and

n1 = m, n2 = 3m, n3 = 2m, n4 = 3m,

n5 = m, m1 = 2m, m2 = 4m, m3 = 2m.

The Dynkin diagram is Ẽ7 :

eueuu ee
e

W5V3W4V2W2V1W1

W3 Ẽ7



5. A =


1 0 0 0 0

1 1 1 0 0

0 0 1 1 0

0 0 0 1 1

.

Here n1 = 4m, n2 = 3m, n3 = 5m, n4 = 3m,

n5 = m, m1 = 2m, m2 = 6m, m3 = 4m,

m4 = 2m.

The Dynkin diagram is Ẽ8 :

eueuu ee
e

u W5V4W4V3W3V2W1

W2

V1

Ẽ8



6. A = (1,1,1,1). Here r = 1, s = 4 and n1 = n2 =

n3 = n4 = m, m1 = 2m. The corresponding Dynkin

diagram is D̃4.

7. a1,1 = a1,2 = a1,3 = 1, a2,3 = a2,4 = a3,4 = a3,5 =

· · · = ak−2,k−1 = ak−2,k = 1, ak−1,k = ak−1,k+1 =

ak−1,k+2 = 1, and ai,j = 0 for other (i, j).

Here we have r = k−1, s = k+2 and n1 = n2 = nk+1 =

nk+2 = m, n3 = · · · = nk = 2m, m1 = · · · = ml = 2m.

The corresponding Dynkin diagram is D̃2k, where k ≥ 3.
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8. a1,1 = a1,2 = a1,3 = 1, a2,3 = a2,4 = a3,4 = a3,5 =
· · · = ak−2,k−1 = ak−2,k = 1, ak−1,k = ak,k = 1, and
ai,j = 0 for other (i, j).

Here we have r = s = k ≥ 3, n1 = n2 = m, n3 = · · · =
nk = 2m, m1 = · · · = mk−2 = 2m, mk−1 = mk = m.
The corresponding Dynkin diagram is D̃2k−1 :

eueu Wk
Vk−2W3

V1
�

�
�

�

@
@

@@

e

e

W1

W2

@
@

@
@

�
�

��

u

u

Vk

Vk−1D̃2k−1

Note that if k = 3, then a1,1 = a1,2 = a1,3 = 1, a2,3 =
a3,3 = 1.



Resume: Suppose L is an indecomposableM-structure
with semi-simple algebras
A = ⊕1≤i≤rEnd(Vi), B = ⊕1≤j≤sEnd(Wj); then there
exists an affine Dynkin diagram of the type A, D, or E
such that:

1. There is a one-to-one correspondence between the
set of vertices and the set of vector spaces

{V1, ..., Vr,W1, ...,Ws}
. 2. For any i, j the spaces Vi, Vj are not connected by
edges as well as Wi, Wj.

3. The vector

(dimV1, ...,dimVr,dimW1, ...,dimWs)

is equal to mJ, where J is the minimal imaginary positive
root of the Dynkin diagram.



Remark. It can be proved that for indecomposable

M-structures m = 1.

To describe the M-structure it remains to construct an

embedding A → L, B → L and a scalar product (·, ·) on

the space L.

If we fix an element 1 ∈ L, then we can define the

embedding A → L, B → L by the formula a → 1a,

b → b1 for a ∈ A, b ∈ B. We may assume that 1 is a

generic element of L.



Thus to study M-structures corresponding to a Dynkin

diagram, one should take a generic element in L =

⊕1≤i≤r,1≤j≤s(V ?i ⊗ Wj)
ai,j , find its simplest canonical

form by choosing bases in the vector spaces

V1, ..., Vr,W1, ...,Ws,

calculate the embedding A → L, B → L and the scalar

product (·, ·) on the space L.

The classification of generic elements 1 ∈ L up to

choice of bases in the vector spaces V1, ..., Vr,W1, ...,Ws

is equivalent to classification of irreducible representa-

tions of the quivers corresponding to our affine Dynkin

diagrams and we can apply known results about these

representations.



Semi-simple case.

Consider an associative algebra

M = ⊕1≤α≤mMα,

where Mα is isomorphic to Matnα. We are going to

study associative products in this algebra compatible

with the initial one.

The main algebraic object is the weak PM-structure (of

size m) on L. All properties coincide with the properties

of weak M-structure except for

1. dimA ∩ B = dimL/(A+ B) = m. The intersection

of A and B is a m-dimensional algebra isomorphic to

C⊕ ...⊕ C.



The scalar product (·, ·) defines a non- degenerate pair-

ing between A/A ∩ B and B/A ∩ B, so dimA = dimB
and dimL = 2dimA.

Let {eα; 1 ≤ α ≤ m} be a basis of the space A ∩ B such

that

eαeβ = δα,βeα.

Denote by Lα,β the vector space consisting of elements

vα,β ∈ L with the property

eαvα,β = vα,βeβ = vα,β.

Let Aα,β = A ∩ Lα,β and Bα,β = B ∩ Lα,β.

We sum by repeated Latin indexes and do not sum by

repeated Greek indexes



The following properties hold:

• L = ⊕1≤α,β≤mLα,β, A = ⊕1≤α,β≤mAα,β and B =

⊕1≤α,β≤mBα,β.

• dimAα,β ∩ Bα,β = dimL/(Aα,β + Bα,β) = δα,β. The

intersection of Aα,α and Bα,α is an one-dimensional

space spanned by eα.

• Bα,βLβ′,γ = 0 for β 6= β′ and Bα,βLβ,γ ⊂ Lα,γ. Sim-

ilarly Lα,βAβ′,γ = 0 for β 6= β′ and Lα,βAβ,γ ⊂ Lα,γ.
In particular, Aα,βAβ′,γ = Bα,βBβ′,γ = 0 for β 6= β′

and Aα,βAβ,γ ⊂ Aα,γ, Bα,βBβ,γ ⊂ Bα,γ.



• Lα,β⊥Lβ′,α′ if α 6= α′ or β 6= β′.



It follows from these properties that (·, ·) gives non-

degenerate pairing between Aα,β and Bβ,α for α 6= β and

between Aα,α/Ceα and Bα,α/Ceα. Therefore dimAα,β =

dimBβ,α.

Definition. By weak PM-algebra associated with a

weak PM-structure L we mean an associative algebra

U(L) possessing the following properties:

1. L ⊂ U(L) and the actions B ×L → L, L×A → L are

the restrictions of the product in U(L).

2. For any algebra X with the property 1 there exists a

unique homomorphism of algebras X → U(L) identical

on L.



It is clear that U(L) = ⊕1≤α,β≤mU(L)α,β, where U(L)α,β =

{v ∈ U(L); eαv = veβ = v}. We have U(L)α,βU(L)β′,γ =

0 for β 6= β′ and U(L)α,βU(L)β,γ ⊂ U(L)α,γ.



Let {eα, Ai,α,α; 1 ≤ i ≤ pα,α} be a basis of Aα,α and
{eα, Biα,α; 1 ≤ i ≤ pα,α} be the dual basis of Bα,α. Let
{Ai,α,β; 1 ≤ i ≤ pβ,α} be a basis of Aα,β for α 6= β and
{Biβ,α; 1 ≤ i ≤ pβ,α} be the dual basis of Bβ,α.

Take Cα ∈ Lα,α that does not belong to the sum of Aα,α
and Bα,α. Without loss of generality we can assume that
(eα, Cα) = 1, (Cα, Cα) = (Cα, Ai,α,α) = (Cα, B

j
α,α) = 0.

Such element Cα is uniquely determined by choosing of
basis in Aα,α.

Let us define the element Kα ∈ U(L) by the formula
Kα = Cα +

∑
1≤ν≤mAi,α,νB

i
ν,α.

Definition. A weak PM-structure L is called PM-
structure if K =

∑
1≤α≤mKα ∈ U(L) is a central element

of the algebra U(L).



Theorem 3.4. A basis of U(L)α,β for α 6= β consists

of the elements

{Ai,α,βKs
β, B

j
α,βK

s
β, Ai1,α,νB

j1
ν,βK

s
β},

where 1 ≤ i ≤ pβ,α, 1 ≤ j ≤ pα,β, 1 ≤ α, β, ν ≤ m,1 ≤
i1 ≤ pν,α, 1 ≤ j1 ≤ pν,β, s = 0,1,2, ... .

A basis of U(L)α,α consists of the elements

{eα, Ai,α,αKs
α, B

j
α,αK

s
α, Ai1,α,νB

j1
ν,αK

s
α},

where 1 ≤ i, j ≤ pα,α, 1 ≤ ν ≤ m, 1 ≤ i1, j1 ≤ pν,α, s =

0,1,2, ... .



Theorem. Let L be a PM-structure. Then for any

representation of U(L) given by

Ai,β,α → ai,β,α, Biα,β → biα,β, Cα → cα;

1 ≤ i ≤ pα,β, 1 ≤ α, β ≤ m the formula

xα ◦ yβ = ai,β,αxαb
i
α,βyβ + xαai,α,βyβb

i
β,α, α 6= β,

xα ◦ yα = ai,α,αxαb
i
α,αyα + xαai,α,αyαb

i
α,α−

ai,α,αxαyαb
i
α,α + xαcαyα.

defines a product on M = ⊕1≤α≤mMatnα compatible

with the usual one.



Lemma 2. If (5) is associative, then for some tensor
tij

φsj,kψ
l,i
s = φls,kψ

s,i
j + φij,sψ

l,s
k + δlkt

i
j − δijt

l
k − δijφ

l
s,rψ

r,s
k ,

and

biaj = ψ
k,i
j ak + φij,k b

k + tij + δij c.

Lemma 3. If (5) is associative, then

bi c = λk,iak − tik b
k − φik,lψ

l,k
s bs − φik,lλ

l,k,

c aj = µj,k b
k − tkj ak − φsk,lψ

l,k
j as − µk,lψ

l,k
j

and moreover

φsj,kt
i
s = ψ

s,i
j µs,k + φij,st

s
k − δijψ

s,r
k µr,s,

ψk,is tsj = φij,sλ
k,s + ψ

s,i
j tks − δijφ

k
s,rλ

r,s.



Proposition 1. The algebra U(L) is defined by the

following relations

AiAj = φki,jAk + µi,j, BiBj = ψ
i,j
k Bk + λi,j

BiAj = ψ
k,i
j Ak + φij,kB

k + tij + δijC,

BiC = λk,iAk + uikB
k + pi, CAj = µj,kB

k + ukjAk + qi

for certain tensors φki,j, ψ
i,j
k , µi,j, λ

i,j, uik, p
i, qi.

Lemma. L as A-module is isomorphic to ⊕1≤i≤r(V ?i )2mi.



Definition. The r× s matrix A = (ai,j) is called matrix

of multiplicities of a weak M-structure.

Definition. The matrix A is called decomposable if

there exist partitions {1, ..., r} = I t I ′ and {1, ..., s} =

J t J ′ such that ai,j = 0 for (i, j) ∈ I × J ′ t I ′ × J.

Lemma. If A is decomposable, then the corresponding

M-structure is decomposable.


