Polynomial solutions of Knizhnik-Zamolodchikov equations and Schur–Weyl duality

A.P. Veselov

Joint work with G. Felder

Talk at ISLAND-3 meeting

"Algebraic aspects of integrable systems"

Islay, July 2007

Plan

KZ equations with values in S_N -module W^{λ} Schur-Weyl duality Configuration space C_{λ} and integration cycles The integral formula for the solutions Duality $m \leftrightarrow -m$ and intersection pairing Some open problems KZ equations with values in S_N -modules

$$\partial_i \psi = m \sum_{j \neq i}^N \frac{s_{ij} + 1}{z_i - z_j} \psi, \quad i = 1, \dots, N$$

Here $\psi(z)$ takes values in an irreducible representation W^{λ} of the symmetric group S_N with Young diagram λ and s_{ij} is the action of the corresponding elementary transposition in W^{λ} .

We will assume that *m* is a positive integer, then all the solutions are polynomial (**Opdam**; **Felder-V.**) of degree equal to the value of the central element

$$C = m \sum_{i < j} (s_{ij} + 1) = m \sum_{i < j} s_{ij} + m \frac{N(N-1)}{2}$$

in the irreducible representation W^{λ} . Our aim is an explicit integral formula for these solutions.

Schur-Weyl duality

Let V be an n-dimensional complex vector space.

The classical **Schur–Weyl theorem** states that, as a $GL(V) \times S_N$ module, $V^{\otimes N}$ has a decomposition into a direct sum

$$V^{\otimes N} \cong \oplus_{\lambda} M^{\lambda} \otimes W^{\lambda}$$

where M^{λ} are inequivalent irreducible GL(V)modules and W^{λ} are inequivalent irreducible S_N -modules. The sum is over partitions λ of N into at most n parts, which are sequences of integers $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$ with $\sum \lambda_i = N$. If $n \geq N$ all irreducible S_N modules appear.

From this one can realise $W^{\lambda} = (V^{\otimes N})_{\lambda}^{n_{+}}$ as the set of primitive vectors of weight λ . This gives the following basis of W^{λ} labeled by standard Young tableaux. Recall that a standard tableau on λ is a numbering $T: \lambda \rightarrow \{1, \ldots, N\}$ of the boxes of λ , which is increasing from left to right and from top to bottom.

Let λ be a Young diagram with N boxes with rows of lengths $\lambda_1, \ldots, \lambda_m$. To each numbering T we associate a vector $e_T = e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_N} \in$ $V^{\otimes N}$ so that $\alpha_k = i$ whenever $T^{-1}(k)$ is in the *i*th row. For example, if T is the numbering

then $e_T = e_1 \otimes e_2 \otimes e_1 \otimes e_1 \otimes e_2 \otimes e_3$.

Then the claim is that the vectors

$$v_T = \sum_{\sigma \in C(T)} \operatorname{sign}(\sigma) e_{\sigma T},$$

where T runs over the set $\mathcal{T}(\lambda)$ of standard tableaux on λ , form a basis of the S_N -module $W^{\lambda} = (V^{\otimes N})^{n_+}_{\lambda}$.

Configuration space C_{λ} and integration cycles

For given $\lambda = (\lambda_1, \dots, \lambda_n)$ define the integers m_i from the relation

 $\lambda = (m_0 - m_1, m_1 - m_2, \dots, m_{n-2} - m_{n-1}, m_{n-1}):$ m_s is the number of boxes in the rows of λ strictly lower than s.

Consider *n* sets $X_0, X_1, \ldots, X_{n-1}$ of points on the complex plane \mathbb{C} consisting of m_0, \ldots, m_{n-1} points respectively with the condition that X_i and X_{i+1} have no common points. Denote the elements of X_0 as z_1, \ldots, z_N and fix them. The set of all admissible $\{X_1, \ldots, X_{n-1}\}$ is our configuration space $C_{\lambda}(z_1, \ldots, z_N)$. Let

$$X_s = \{t_s^b \in \mathbb{C}, b \in \lambda, r(b) > s\},\$$

then

$$C_{\lambda} = \{ t_s^b \in \mathbb{C}, b \in \lambda : t_{s+1}^b \neq t_s^{b'}, t_1^b \neq z_k \}.$$

On C_{λ} we have a natural action of the group $G_{\lambda} = S_{m_1} \times S_{m_2} \times \cdots \times S_{m_{n-1}}$. The *integration cycles* $\sigma_T, T \in \mathcal{T}(\lambda)$ in the top homology group $H_{top}(C_{\lambda}(z_1, \ldots, z_N))$ are defined as follows.

Consider first the product Γ_T of circles consecutively surrounding anti-clockwise z_k with the variables $t_1^b, \ldots, t_{r(b)-1}^b, b = T^{-1}(k)$ located on these circles:

$$\Gamma_T = \{ t_s^b \in \mathbb{C} : |t_s^b - z_k| = \epsilon s, \ b = T^{-1}(k) \}$$

for any real positive ϵ small enough.

The cycle σ_T is the skew-symmetrisation of Γ_T by the action of G_{λ} :

$$\sigma_T = \sum_{g \in G_{\lambda}} (-1)^g g_*(\Gamma_T).$$

The formula

Define the form ω_T as

$$\omega_T = \frac{1}{(2\pi i)^{d_\lambda}} \Phi^m_\lambda \phi_T dt,$$

where

$$\Phi_{\lambda} = \Delta(z) \prod_{s,b \neq b'} (t_s^b - t_s^{b'})^2 \prod_{s,b,b'} \frac{1}{(t_{s+1}^b - t_s^{b'})} \prod_{k,b} \frac{1}{(t_1^b - z_k)},$$

$$\phi_T = \prod_{s,b} (t_{s+1}^b - t_s^b)^{-1} \prod_b (t_1^b - z_{T(b)})^{-1}$$

$$\Delta(z) = \prod_{i < j}^N (z_i - z_j)^2 \text{ and } dt = \prod_{s,b} dt_s^b.$$

Theorem. A fundamental set of solutions of the KZ equation with values in S_N -module W^{λ} has a form

$$\psi_T(z_1,\ldots,z_N) = \sum_{T'\in\mathcal{T}(\lambda)} \psi_{T,T'}(z_1,\ldots,z_N) v_{T'}$$

where

$$\psi_{T,T'} = \int_{\sigma_T} \omega_{T'}.$$

This integral can be effectively computed as an iterated residue and gives a polynomial in z_1, \ldots, z_N with **integer** coefficients.

The proof is based on Schur-Weyl duality and the results of **Matsuo**, who found some integral formulas for the solutions of the original SU(n) KZ equation inspired by **Zamolodchikov**-**Fateev** and **Christe-Flume**.

In the asymptotic region 0 $\ll |z_1| \ll \cdots \ll |z_N|$ we have

$$\psi_{T,T}(z) \sim C \prod_{b \in \lambda} z_{T(b)}^{m(T(b)-1+c(b)-r(b))} + \cdots$$

Corollary (Frobenius) The value $f_2(\lambda)$ of the central element $\sum_{i < j} s_{ij}$ in the representation W^{λ} can be computed as

$$f_2(\lambda) = \sum_{b \in \lambda} (c(b) - r(b)).$$

Example. In the simplest non-trivial example when N = 3 and $\lambda = (2, 1)$, which corresponds to the usual two-dimensional representation of S_3 . In this case there are two standard tableaux:

$$T = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \qquad S = \begin{bmatrix} 1 \\ 2 \end{bmatrix},$$

The corresponding primitive vectors are $v_T = \epsilon_3 - \epsilon_1$, $v_S = \epsilon_2 - \epsilon_1$.

The residues can be computed explicitly to give:

$$\psi_1 = z_{23}^{2m} \sum_{k=0}^m d_{m,k} \left((m-k)v_T + kv_S \right) z_{12}^{m-k} z_{13}^k,$$

$$\psi_2 = z_{13}^{2m} \sum_{k=0}^{m} (-1)^{m-k} d_{m,k} \left((m-k)v_T - mv_S \right) z_{12}^{m-k} z_2^k$$

where $z_{ij} = z_i - z_j$ and

$$d_{m,k} = -\frac{1}{m} \binom{-m}{k} \binom{-m}{m-k}.$$

Duality $m \leftrightarrow -m$ and intersection pairing

To apply our results to negative m we can use the following isomorphism between the space of solutions

$$KZ(V,m) \approx KZ(V \otimes \mathsf{Alt},-m)$$

of the KZ equation with values in the representations V and $V \otimes Alt$, where $Alt = \mathbb{C}\epsilon$ is the alternating representation:

If $\psi \in KZ(V,m)$ then $\phi = \prod_{i>j} (z_i - z_j)^{-2m} \psi \otimes \epsilon \in KZ(V \otimes Alt, -m)$.

In particular it follows that for negative m all solutions are rational functions.

It is well-known that the involution $V \rightarrow V \otimes Alt$ corresponds to the *transposition* of the Young diagram $\lambda \rightarrow \lambda'$, so we have shown that

$$KZ(\lambda,m) \approx KZ(\lambda',-m).$$

It turns out that there is a link between the spaces of KZ solutions with the *same* Young diagram:

 $j: KZ(\lambda, m) \approx KZ(\lambda, -m)^*.$

More precisely, there exists a natural pairing

$$KZ(V,m) \times KZ(V^*,-m) \to \mathbb{C},$$

where V^* is the dual space to V: for any two solutions $\psi \in KZ(V,m)$ and $\phi \in KZ(V^*,-m)$ the product $\langle \psi(z_1,\ldots,z_N), \phi(z_1,\ldots,z_N) \rangle$ is independent of z_1,\ldots,z_N and thus defines a pairing.

A fundamental matrix for $KZ(\lambda, -m)$ is

 $\Phi_{\lambda,-m}(z_1,\ldots,z_N) = (\Phi_{\lambda,m}(z_1,\ldots,z_N)^{-1})^T$ and the determinant has the form

$$\det \Phi_{\lambda,m}(z_1,\ldots,z_N) = C \prod_{i < j} (z_i - z_j)^{2md_+(\lambda)},$$

where $C = C(\lambda, m)$ is a non-zero constant and $d_{+}(\lambda) = \dim W_{+}^{\lambda}$ is the dimension of the fixed subspace of reflection s_{ij} acting in the representation W^{λ} .

We now give the topological interpretation of this duality in the special case of the standard (N-1)-dimensional representation of S_N , corresponding to $\lambda = (N-1, 1)$.

For positive m our integral formula gives

$$\psi_a = \Delta(z)^m \operatorname{res}_{t=z_a} \prod_{i=1}^N (t-z_i)^{-m} \sum_{b=1}^N \frac{1}{t-z_b} \epsilon_b dt$$

with the relation $\psi_1 + \dots + \psi_N = 0$.

For the space $KZ(\lambda, -m)$ with positive m there is a different integral representation (**Felder** - **V**.):

$$\phi_a = \Delta(z)^{-m} \int_{z_a}^{z_N} \prod_{i=1}^N (t - z_i)^m \sum_{b=1}^N \frac{1}{t - z_b} \epsilon_b \, dt$$

give a basis in $KZ(\lambda, -m)$.

Thus we have two maps

$$H_1(\mathbb{C} \setminus \{z_1, \dots, z_N\}) \to W^{\lambda},$$
$$H_1(\mathbb{C}, \{z_1, \dots, z_N\}) \to W^{\lambda},$$

sending horizontal sections for the Gauss–Manin connection to solutions in $KZ(\lambda, m)$ and $KZ(\lambda, -m)$, respectively.

Theorem. The intersection pairing

 $H_1(\mathbb{C} \setminus \{z_1, \ldots, z_N\}) \times H_1(\mathbb{C}, \{z_1, \ldots, z_N\}) \to \mathbb{Z},$ is proportional to the pairing

 $KZ(V,m) \times KZ(V^*,-m) \to \mathbb{C}.$

More precisely,

 $\langle \psi_{\sigma}(z_1,\ldots,z_N), \phi_{\tau}(z_1,\ldots,z_N) \rangle = C_N \frac{1}{m} (\sigma \cdot \tau),$

 $\sigma \in H_1(\mathbb{C} \setminus \{z_1, \ldots, z_N\}), \quad \tau \in H_1(\mathbb{C}, \{z_1, \ldots, z_N\}),$ for some constant $C_N \neq 0$ depending on the normalization of the isomorphism $(W^{\lambda})^* \to W^{\lambda}.$

Some open problems

Intersection pairing interpretation of duality for an arbitrary representation W^λ

Generalisation to the quantum KZ equation and possible combinatorial links (**Razumov and Stroganov, Di Francesco and P. Zinn-Justin**)

Large *m* limit and new approach to representation theory of symmetric group (**Vershik and Okounkov**)

Relations with representation theory of Cherednik algebras (**Berest and Chalykh**)

Reference

G. Felder and A.P. Veselov, math.RT/0610383To appear in IMRN, 2007.