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The setting

On a lattice, we define a relation which will induce an evolution. It relates the values
of some field around an elementary cell. One of the simplest cases is obtained with a
two-dimensional square lattice and a multilinear relation.
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The typical relation is multilinear:

Q = q1 · x x1 x2 x12 + q2 · x x1 x2 + q3 · x x1x12 + q4 · x1 x2 x12 + q5 · x x2 x12

+q6 · x x2 + q7 · x1 x2 + q8 · x2 x12 + q9 · x x1 + p10 · x x12 + q11 · x1 x12

+q12 · x2 + q13 · x + q14 · x1 + q15 · x12 + q16 = 0

so that any of the four corner values can be rationally expressed in terms of the three
others. We will be interested in global properties of the evolutions defined by this infinites-
imal relation, as well as local constraints (like consistency around the cube or factorization
properties). ←↩
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Integrability: Lax pair and consistency around the cube (CAC)

Consider the archetypal case of discrete mKdV: p1 (x x1−x2 x12)+p2 (x x2−x1 x12) = 0
It is possible to embed the two-dimensional cell into a three-dimensional one:
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where one imposes a similar relation to all faces (the same for opposite faces).

pi (x xi − xj xij) + pj (x xj − xi xij) = 0, i, j = 1, 2, 3

The higher dimensional system is compatible, i.e. the value of x123 is independent of the
way it is calculated. This is called consistency around the cube (CAC).

The major output of CAC is that it ensures the existence of a Lax pair, which is accepted
as a proof of integrability1. ←↩

1This however relies on the specific form of relation Q = 0

4



Consistency around the cube: Q4

While the defining plaquette relation is written on one cell, and is thus infinitesimal, the
CAC relation is written on a loop of cells, and is a local relation.

The way it is written associates the parameters to bonds rather than to faces (this implies
to spot the spectral parameters, which may not be easy).

It is a very constraining equation, and is not easy to manipulate: if one takes the most
general form of the defining relation Q = 0, the expressions of x123 get quite difficult to
handle, they are big.

We will be interested in the generic solution of CAC, i.e. the Adler solution. Its form has
been improved by Nijhoff, and by Hietarinta. It was shown to be the generic solution of
CAC by Adler-Bobenko-Suris.

The solution is called Q4. There are different avatars of it, linked in particular to different
parametrizations.
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k0 x x1 x2 x12 − k1(x x1 x2 + x1 x2 x12 + x x2 x12 + x x1 x12) + k2(x x12 + x1 x2)

−k3(x x1 + x2 x12)− k4(x x2 + x1 x12) + k5(x + x1 + x2 + x12) + k6 = 0

with k0 = α + β, k1 = αν + βµ, k2 = αν2 + βµ2, k5 = g3
2 k0 + g2

4 k1, k6 = g2
2

16k0 + g3k1,

k3 = αβ(α+β)
2(ν−µ) − αν2 + β(2µ2 − g2

4 ), k4 = αβ(α+β)
2(µ−ν) − βµ2 + α(2ν2 − g2

4 ).

and α2 = r(µ), β2 = r(ν), r(z) = 4 z3 − g2 z − g3

A ((x− b) (x2 − b)− d) ((x1 − b) (x12 − b)− d)

+B ((x− a) (x1 − a)− e) ((x2 − a) (x12 − a)− e) = f

where (a, A), (b, B), (c, C) = (b, B)− (a, A) on the curve Z2 = r(z),

and d = (a− b) (c− b) e = (b− a) (c− a), f = A B C (a− b)

sn(α) sn(β) sn(α + β)(k2 x x1 x2 x12 + 1) + sn(α + β)(x x12 + x1 x2)

−sn(α)(x x1 + x2 x12)− sn(β)(x x2 + x1 x12) = 0

What we will see is that there is another interesting one. To see that, we will use the notion
of algebraic entropy.

←↩
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Integrability: Algebraic entropy

Given a lattice map on a plane square lattice, we may define four fundamental evolutions,
corresponding to initial data given on diagonals with slope +1 or −1, and evolutions towards
the four corners of the lattice:
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Fundamental evolutions on a square lattice

←↩
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Algebraic entropy of the lattice map

The space of initial data is infinite dimensional. Initial data are given on a line which must
allow the determination of the values at all points of the lattice. The simplest possible
choice is to take a regular diagonal staircase going diagonally.
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Algebraic entropy of the lattice map

The space of initial data is infinite dimensional. Initial data are given on a line which must
allow the determination of the values at all points of the lattice. The simplest possible
choice is to take a regular diagonal staircase going diagonally.

We may iterate the lattice map by calculating the values on diagonals moving away from
the initial staircase, and define a sequence of degrees dn in terms of the initial data.

0 1 2 3 4
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Definition

We define the entropy by

ε = lim
n→∞

1

n
log(dn).

Theorem: The limit defined above exists.

The reason is the same as for maps (subadditivity of the log(dn)).

We get four fundamental entropies, corresponding to the four directions of evolution. They
do not have to be identical.
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Theorem: The limit defined above exists.

The reason is the same as for maps (subadditivity of the log(dn)).

We get four fundamental entropies, corresponding to the four directions of evolution. They
do not have to be identical.

In practice, due to the structure of the recurrence relation (causality) we need only 2q + 1
initial values if we want to calculate q steps !

We may evaluate explicitly the degrees with the same trick as for maps: initial data are
given a fractional linear value in terms of some unknown t, all with the same denominator.
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Definition

We define the entropy by

ε = lim
n→∞

1

n
log(dn).

Theorem: The limit defined above exists.

The reason is the same as for maps (subadditivity of the log(dn)).

We get four fundamental entropies, corresponding to the four directions of evolution. They
do not have to be identical.

In practice, due to the structure of the recurrence relation (causality) we need only 2q + 1
initial values if we want to calculate q steps !

We may evaluate explicitly the degrees with the same trick as for maps: initial data are
given a fractional linear value in terms of some unknown t, all with the same denominator.

When the entropy vanishes, the growth of the degree is polynomial, and the degree of that
polynomial is a secondary characterization of the complexity.

The outcome of our numerous experiments, as well as what we know for maps leads to the
claim that integrability of the lattice map is equivalent to the vanishing of its entropy. (see
arXiv:math-ph/060943)

←↩
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Q5

Apply this calculation to Q4. The most general form having the same symmetries:

a1 x x1 x2 x12 + a2 ( x x2 x12 + x1 x2 x12 + x x1 x12 + x x1 x2)

+a3 ( x x1 + x2 x12) + a4 ( x x12 + x1 x2) + a5 ( x1 x12 + x x2)

+a6 ( x + x1 + x2 + x12) + a7 = 0
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Q5

Apply this calculation to Q4. The most general form having the same symmetries:

a1 x x1 x2 x12 + a2 ( x x2 x12 + x1 x2 x12 + x x1 x12 + x x1 x2)

+a3 ( x x1 + x2 x12) + a4 ( x x12 + x1 x2) + a5 ( x1 x12 + x x2)

+a6 ( x + x1 + x2 + x12) + a7 = 0

For our entropy analysis, is much better to have integer coefficients. We can find integer
coefficient verifying the conditions fulfilled by {a1, . . . , a7} (of the type we saw before : they
are constructed from points on an elliptic curve).

We can take the curve

Z2 = 4 z3 − 32 z + 4

and the points (a, A) = (0, 2), (c, C) = (3, 4), (b, B) = (a, A)⊕(c, C) = (−26/9,−2/27)

We get the sequence {dn} = {1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, . . .}, that is to say the
quadratic growth

dn = 1 + n (n− 1)

But ...
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... we may also take the above form with completely arbitrary coefficients {a1, . . . , a7}.
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With arbitrary values of the parameters, we get the same quadratic growth as with con-
strained values:

{dn} = {1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, . . .}

fitted with

g(s) =
∞∑

n=0
dn sn =

1 + s2

(1− s)3
, and dn = 1 + n (n− 1)

This indicates integrability of the unconstrained form, with 7 free homogeneous parameters
(intersection of hyperplanes in the space of multilinear relations).

This is what we call Q5.
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With arbitrary values of the parameters, we get the same quadratic growth as with con-
strained values:

{dn} = {1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, . . .}

fitted with

g(s) =
∞∑

n=0
dn sn =

1 + s2

(1− s)3
, and dn = 1 + n (n− 1)

This indicates integrability of the unconstrained form, with 7 free homogeneous parameters
(intersection of hyperplanes in the space of multilinear relations).

This is what we call Q5.

Remark: the sequence of degrees verifies a finite recursion relation

dn = 3 dn−1 − 3 dn−2 + dn−3

This means that the global behaviour of the sequence degrees is dictated by a local condition.
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Q4 vs Q5

We may wonder about the number of parameters, but it seems the count is right.

16 − 1− 4× 3 = 3

7 − 1− 3 = 3

1 + 1 + 1 = 3

The general multilinear relations has 16 homogeneous parameters.

The group of homographies is SL(2) and has 3 parameters.

The CAC relation, seen as a condition on one face is acted upon by 4 copies of SL(2).

Integrability is preserved only if the four corners of a plaquette are acted upon with the same
element of SL(2).

←↩
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Factorization

Another configuration is interesting: the first quadrant of the lattice
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dij = 1 + 2 i j

The diagonal degree growth is quadratic ( dn = 1 + 2 n2) = integrability

←↩
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What makes the degree drop is the factorization process. Consider the corner
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and calculate X, Y , Z, T for generic Q.

deg(Y ) = 1 + 1 + 1 = 3, deg(X) = deg(Z) = deg(Y ) + 1 + 1 = 5

deg(T ) = deg(X) + deg(Y ) + deg(Z) = 13

but for Q5 there is a factorization

T =
H(x, z) P (x, y, z, u, v)

H(x, z) Q(x, y, z, u, v)
' P

Q

deg(T ) = deg(X) + deg(Y ) + deg(Z)−deg(H) = 13− 4 = 9

The factor H(x, z) is the bi-quadratic which appears in the singularity analysis.
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Suppose we look at the elementary plaquette
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The relation Q give a projective linear map ϕxz : y −→ Y , whose inverse ϕ−1 is projective
linear. The composed map ϕ · ϕ−1 is proportional to the biquadratic H(x, z).

H(x, z) = (q16q10 − q15q13) + (−q8q6 + q12q5) x2 + (q7q3 − q2q11 − q9q4 + q14q1) z2x

+ (−q6q4 − q2q8 + q7q5 + q12q1) x2z + (−q4q2 + q7q1) x2z2 + (−q11q9 + q14q3) z2

+ (−q2q15 − q6q11 + q7q10 − q9q8 + q12q3 + q16q1 − q13q4 + q14q5) xz

+ (q16q3 − q13q11 + q14q10 − q9q15) z + (q16q5 + q12q10 − q13q8 − q6q15) x

In the case of Q5 the drop at d22 is 13− 9 = 4. What factorizes from the iterate is precisely
equation of the bi-quadratic H(x, z).

The elliptic curve of the known forms of Q4 is lurking there.
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But this does not account for the whole process, and higher degree curves appear at later
steps (total degree 16, degree 4 in x, y, z, and bi-quadratic in v, w).
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What may however happen is that, due to the specific form of the relation Q, it sufficient
to ensure that the first factorization happens to have them all.

←↩
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This is spirit of the systematic analysis performed by JH last year, for quadratic relations,
and with the additional hypothesis that factors are made out of linear pieces (we know we
will not find Q4 this way).

This produced 80 a priori different models. We have run an algebraic entropy test over those,
and finally came out with a short list of integrable cases,not all in the Adler-Bobenko-Suris
list, and a list of models with non-vanishing entropy.

The non-vanishing values of the entropy we got range from log((1+
√

2)/2) to log(1+
√

2).
When the entropy vanishes, the growth was either linear either quadratic (J Hietarinta +
CMV, arXiv:0705.1903).

Again some local structure (extending over a finite range of elementary cells) ensures a global
property (integrability), as may be seen form the existence of a finite recurrence relation on
the degrees.

←↩
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Conclusion

• The three levels infinitesimal/local/global appear in the discrete world. In the setting we
use, which is strongly constrained (multilinearity of the elementary relation, birationality
of the evolution), a local property is good enough to ensure integrability.

• One should clarify what is the group of coordinate transformations we want to take into
account.

• About the rationality vs elliptic nature of the parametrization, the phenomenon is appar-
ently the same as the one we saw (J Hietarinta+CMV, q-alg/9504028) for the celebrated
Baxters solution of the Yang-Baxter equations. There exists a rational form of Baxter’s
R-matrix. It is gauge equivalent to the usual elliptic form, which reappears when one
request a symmetric form of the solution .

• This phenomenon invites us to examine again the “Yang-Baxter maps” constructed from
lattice maps.

• Finally Q5 will be useful if one wants to look at the possible “de-autonomisations” of
Q4.

←↩
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