Extended affine Weyl groups and Frobenius manifolds-II

Dafeng Zuo joint with B.Dubrovin and Y.Zhang

School of mathematics

Korea Institute for Advanced Study

ISLAND III July 2-7 2007

Main References

- B. Dubrovin, Geometry of 2D topological field theories Lecture Notes in Math. 1620 (Springer, Berlin, 1996) 120–384
- 2. Extended affine Weyl groups and Frobenius manifolds B.Dubrovin and Youjin Zhang

Composition Mathematica 111(1998)167–219

Extended affine Weyl groups and Frobenius manifolds-II
 B.Dubrovin and Youjin Zhang and Dafeng Zuo
 The first draft: math.DG/0502365 (B_I, C_I)

The second draft: in preparation (B_l, C_l, D_l)

The second draft: in preparation (B_l, C_l, D_l)

Outline of this talk

- §1. Some definitions [Ref.1]
- §2. Frobenius manifolds and Extended affine Weyl groups [Ref.2]
- §3. Our question and result [Ref.3]

§1. Some definitions

Definition 1.1 A Frobenius structure of charge d on M is the data $(M, \bullet, \langle, \rangle, e, E)$ satisfying

- (i) $\eta := \langle \ , \ \rangle$ is a flat pseudo-Riemannian metric;
- (ii) \bullet is \mathbb{C} -linear, associative, commutative product on T_mM which depends smoothly on m;
- (iii) e is the unity vector field for the product \bullet and $\nabla e = 0$;
- (iv) $(\nabla_w c)(x, y, z)$ is symmetric, where $c(x, y, z) := \langle x \bullet y, z \rangle$;
- (v) A linear vector field $E \in Vect(M)$ must be fixed on M, i.e. $\nabla \nabla E = 0$ such that

$$\mathcal{L}_{E}\langle \; , \; \rangle = (2-d)\langle \; , \; \rangle, \quad \mathcal{L}_{E} \bullet = \bullet, \quad \mathcal{L}_{E} \; e = -e.$$

Theorem. [B. Dubrovin 1992] There is a one to one correspondence between a Frobenius manifold and the solution $F(\mathbf{t})$ of WDVV equations of associativity

$$\frac{\partial^3 F}{\partial t^\alpha \partial t^\beta \partial t^\lambda} \eta^{\lambda\mu} \frac{\partial^3 F}{\partial t^\mu \partial t^\delta \partial t^\gamma} = \frac{\partial^3 F}{\partial t^\delta \partial t^\beta \partial t^\lambda} \eta^{\lambda\mu} \frac{\partial^3 F}{\partial t^\mu \partial t^\alpha \partial t^\gamma},$$

with a quasihomogeneity condition

$$\mathcal{L}_E F = (3-d)F + \text{quadratic polynomial in t.}$$

Definition 1.2 A Frobenius manifold is called semisimple if the algebra $(T_m M, \bullet)$ are semisimple at generic m.

Definition 1.3 An Intersection form of Frobenius manifold is a symmetric bilinear form on the cotangent bundle T^*M defined by

$$(\omega_1, \omega_2)^* = i_E(\omega_1 \cdot \omega_2), \quad \omega_1, \omega_2 \in T^*M.$$

Here the multiplication law on the cotangent planes is defined using the isomorphism

$$\langle \ , \ \rangle : TM \to T^*M.$$

The discriminant Σ is defined by

$$\Sigma = \{t | \det(\ ,\)|_{\mathcal{T}_t^*M} = 0\} \subset M.$$

Theorem.[B.Dubrovin 1992]

The metrics $\eta := \langle \ , \ \rangle$ and $g := (\ , \)^*$ form a flat pencil on $M \backslash \Sigma$, i.e.,

- 1. The metric $h^{\alpha\beta}=\eta^{\alpha\beta}+\lambda g^{\alpha\beta}$ is flat for arbitrary λ and
- 2. The Levi-Civita connection for the metric $h^{\alpha\beta}$ has the form

$$\Gamma^{\alpha\beta}_{\delta_{(h)}} = \Gamma^{\alpha\beta}_{k_{(\eta)}} + \lambda \Gamma^{\alpha\beta}_{k_{(g)}},$$

where
$$\Gamma^{\alpha\beta}_{\delta_{(h)}} = -h^{\alpha\gamma}\Gamma^{\beta}_{\delta\gamma_{(h)}}$$
, $\Gamma^{\alpha\beta}_{\delta_{(g)}} = -g^{\alpha\gamma}\Gamma^{\beta}_{\delta\gamma_{(g)}}$, $\Gamma^{\alpha\beta}_{\delta_{(\eta)}} = -\eta^{\alpha\gamma}\Gamma^{\beta}_{\delta\gamma_{(\eta)}}$.

The holonomy of the local Euclidean structure defined on $M\setminus \Sigma$ by the intersection form $(\ ,\)^*$ gives a representation

$$\mu: \pi_1(M \setminus \Sigma) \to Isometries(\mathbb{C}^n).$$

Definition 1.4 The group

$$W(M) := \mu(\pi_1(M \setminus \Sigma)) \subset \mathit{Isometries}(\mathbb{C}^n)$$

is called a monodromy group of Frobenius manifold.

$$\Longrightarrow$$
 $M \setminus \Sigma = \Omega/W(M), \quad \Omega \subset \mathbb{C}^n.$

§2. Frobenius manifolds and Extended affine Weyl groups

Motivation. Quantum cohomology of \mathbb{P}^1 :

$$F = \frac{1}{2}t_1^2t_2 + e^{t_2}, E = t_1\partial_1 + 2\partial_2, e = \partial_1, W(M) = \widetilde{W}(A_1)$$

Question: How to construct this kind of Frobenius manifolds? That is,

$$F = F(t_1, \dots, t_n, t_{n+1}, e^{t_{n+1}})$$
 $E = \sum_{\alpha=1}^n d_{\alpha} t_{\alpha} \partial_{\alpha} + d_{n+1} \partial_{n+1}$
 $W(M) = \widetilde{W}^{(k)}(R)$

Notations

Let R be an irreducible reduced root system defined on (V, (,)).

 $\{\alpha_j\}$: a basis of simple roots, $\{\alpha_j^{\vee}\}$: the corresponding coroots.

W Weyl group, $W_a(R)$ affine Weyl group (the semi-direct product of W by the lattice of coroots)

 $W_a(R) \curvearrowright V$: affine transformations

$$\mathbf{x} \mapsto w(\mathbf{x}) + \sum_{j=1}^{I} m_j \alpha_j^{\vee}, \quad w \in W, \ m_j \in \mathbb{Z}.$$

 ω_j : the fundamental weights, $(\omega_i, lpha_j^ee) = \delta_{ij}$

Definition.[B.Dubrovin, Y.Zhang 1998]

The extended affine Weyl group $\widetilde{W}=\widetilde{W}^{(k)}(R)$ acts on the extended space

$$\widetilde{V} = V \oplus \mathbb{R}$$

and is generated by the transformations

$$x = (\mathbf{x}, x_{l+1}) \mapsto (w(\mathbf{x}) + \sum_{j=1}^{l} m_j \alpha_j^{\vee}, \ x_{l+1}), \quad w \in W, \ m_j \in \mathbb{Z},$$

and

$$x = (\mathbf{x}, x_{l+1}) \mapsto (\mathbf{x} + \gamma \omega_k, x_{l+1} - \gamma).$$

Here $\gamma=1$ except for the cases when $R=B_I, k=I$ and $R=F_4, k=3$ or k=4, in these three cases $\gamma=2$.

Definition.[B.Dubrovin, Y.Zhang 1998]

 $\mathcal{A} = \mathcal{A}^{(k)}(R)$ is the ring of all \widetilde{W} -invariant Fourier polynomials of the form

$$\sum_{m_1,...,m_{l+1}\in\mathbb{Z}}a_{m_1,...,m_{l+1}}e^{2\pi i(m_1x_1+\cdots+m_lx_l+\frac{1}{f}\,m_{l+1}x_{l+1})}$$

that are bounded in the limit

$$\mathbf{x} = \mathbf{x}^0 - i \ \omega_k \tau, \quad x_{l+1} = x_{l+1}^0 + i \ \tau, \quad \tau \to +\infty$$

for any $x^0 = (\mathbf{x}^0, x_{l+1}^0)$, where f is the determinant of the Cartan matrix of the root system R.

We introduce a set of numbers

$$d_j = (\omega_j, \omega_k), \quad j = 1, \ldots, I$$

and define the following Fourier polynomials

$$\widetilde{y}_j(x) = e^{2\pi i d_j x_{l+1}} y_j(\mathbf{x}), \quad j = 1, \dots, l,$$

$$\widetilde{y}_{l+1}(x) = e^{\frac{2\pi i}{\gamma} x_{l+1}}.$$

Here

$$y_j(\mathbf{x}) = \frac{1}{n_j} \sum_{w \in W} e^{2\pi i (\omega_j, w(\mathbf{x}))},$$

$$n_i = \#\{ w \in W | e^{2\pi i (\omega_j, w(\mathbf{x}))} = e^{2\pi i (\omega_j, \mathbf{x})} \}.$$

- B.Dubrovin and Y.Zhang considered a particular choice of α_k based on the following observations
- 1. The Dynkin graph of $R_k := \{\alpha_1, \dots, \hat{\alpha_k}, \cdot, \alpha_l\}$ (α_k is omitted) consists of 1, 2 or 3 branches of A_r type for some r.
 - 2. $d_k > d_s, s \neq k$.

Chevalley-Type Theorem [B.Dubrovin, Y.Zhang 1998]

For the above particluar choice of α_k ,

$$\mathcal{A}^{(k)}(R) \simeq \mathbb{C}[\tilde{y}_1, \cdots, \tilde{y}_{l+1}].$$

 $\mathcal{M} = \operatorname{Spec} \mathcal{A}$: the orbit space of $\widetilde{W}^{(k)}(R)$ global coordinates on \mathcal{M} : $\{\widetilde{y}_1(x), \cdots, \widetilde{y}_{l+1}(x)\}$ local coordinates on \mathcal{M} :

$$y^1 = \tilde{y}_1, \dots, y^l = \tilde{y}_l, \ y^{l+1} = \log \tilde{y}_{l+1} = 2\pi i \, x_{l+1}.$$

the metric
$$(\ ,\)^{\sim}$$
 on $\widetilde{V}=V\oplus\mathbb{C}$ $(dx_a,dx_b)^{\sim}=rac{1}{4\pi^2}(\omega_a,\omega_b),$ $(dx_{l+1},dx_a)^{\sim}=0, \qquad 1\leq a,\ b\leq l,$ $(dx_{l+1},dx_{l+1})^{\sim}=-rac{1}{4\pi^2(\omega_b,\omega_b)}=-rac{1}{4\pi^2d_b}$

$$\rightsquigarrow (\mathcal{M} \setminus \Sigma, g^{ij}(y)),$$

$$g^{ij}(y) := (dy^i, dy^j)^{\sim} = \sum_{a,b=1}^{l+1} \frac{\partial y^i}{\partial x^a} \frac{\partial y^j}{\partial x^b} (dx^a, dx^b)^{\sim}. \tag{0.1}$$

Claim: $g^{ij}(y)$ is flat. Moreover for the particular choice, $g^{ij}(y)$ are at most linear w.r.t y^k .

$$ightsquigar \eta^{ij}(y) = \mathcal{L}_e g^{ij}(y) = rac{\partial g^{ij}(y)}{\partial y^k}, \quad e := rac{\partial}{\partial y^k}.$$

Theorem. [B.Dubrovin, Y.Zhang 1998]

For the particular choice of α_k , $\eta^{ij}(y)$ and $g^{ij}(y)$ form a flat pencil. Moreover there exists a unique Frobenius structure on the orbit space $\mathcal{M} = \mathcal{M}(R,k)$ polynomial in $t^1,\ldots,t^l,e^{t^{l+1}}$ such that

- 1. the unity vector field coincides with $\frac{\partial}{\partial y^k} = \frac{\partial}{\partial t^k}$;
- 2. the Euler vector field has the form

$$E = \frac{1}{2\pi i d_k} \frac{\partial}{\partial x_{l+1}} = \sum_{\alpha=1}^{l} \frac{d_{\alpha}}{d_k} t^{\alpha} \frac{\partial}{\partial t^{\alpha}} + \frac{1}{d_k} \frac{\partial}{\partial t^{l+1}}.$$

3. The intersection form of the Frobenius structure coincides with the metric $(\ ,\)^{\sim}$ on $\mathcal{M}.$

Theorem.[P.Slodowy 1998,Preprint but unpublished]

The ring $\mathcal{A}^{(k)}(R)$ is isomorphic to the ring of polynomials of $\tilde{y}_1(x), \dots, \tilde{y}_{l+1}(x)$ for arbitrary choice.

Another proof

We give an alternative proof of Chevelly-Type theorem associated to the root systems B_I , C_I , D_I , (F_4, G_2) .

§3. Our question and result

An natural question: [P.Slodowy, B.Dubrovin and Y.Zhang 1998]

Is whether the geometric structures that were revealed in the above for particular choice also exist on the orbit spaces of the extended affine Weyl groups for an arbitrary choice of α_k ?

Difficulty: d_k will be not the maximal number except the particular choice.

- 1. Note that the $g^{ij}(y)$ may be not linear with respect to y^k . Thus if we define $\eta^{ij}(y) = \frac{\partial g^{ij}(y)}{\partial y^k}$ as before, we can not obtain the flat pencil.
- 2. If we can obtain a flat pencil, how to find flat coordinates and construct Frobenius manifolds?

For the question 1, our strategy is to change the unity vector field.

Main theorem 1. For any fixed integer $0 \le m \le l - k$ there is a flat pencil of metrics $(g^{ij}(y)), (\eta^{ij}(y))$ (bilinear forms on T^*M) with $(g^{ij}(y))$ given by (0.1) and $\eta^{ij}(y) = \mathcal{L}_e g^{ij}(y)$ on the orbit space \mathcal{M} of $\widetilde{W}^{(k)}(C_l)$. Here the unity vector field

$$e := \sum_{j=k}^{I} a_j \frac{\partial}{\partial y^j}$$

is defined by the generating function

$$\sum_{j=k}^{l} a_j u^{l-j} = (u+2)^m (u-2)^{l-k-m}$$

for the constants a_k, \ldots, a_l .

For the question 2, it is very technical.

Main theorem 2. In the flat coordinates t^1, \ldots, t^{l+1} , the nonzero entries of the matrix (η^{ij}) are given by

$$\eta^{ij} = \begin{cases} k, & j = k-i, & 1 \leq i \leq k-1, \\ 1, & i = l+1, j = k & or \ i = k, \ j = l+1, \\ C, & j = l-m+k-i+1, & k+2 \leq i \leq l-m-1, \\ 2, & i = l-m, j = k+1 & or \ i = k+1, \ j = l-m, \\ 4m, & j = 2l-m-i+1, & l-m+2 \leq i \leq l-1, \\ 2, & i = l, j = l-m+1 & or \ i = l-m+1, \ j = l, \end{cases}$$

where C = 4(l-m-k). The entries of the matrix $(g^{ij}(t))$ and the Christoffel symbols $\Gamma_m^{ij}(t)$ are weighted homogeneous polynomials in $t^1, \ldots, t^l, \frac{1}{t^{l-m}}, \frac{1}{t^l}, e^{t^{l+1}}$.

Main theorem 3. For any fixed integer $0 \le m \le l-k$, there exists a unique Frobenius structure of charge d=1 on the orbit space $\mathcal{M}\setminus\{t^{l-m}=0\}\cup\{t^l=0\}$ of $\widetilde{W}^{(k)}(C_l)$ weighted homogeneous polynomial in $t^1,t^2,\cdots,t^l,\frac{1}{t^{l-m}},\frac{1}{t^l},e^{t^{l+1}}$ such that

- 1. The unity vector field e coincides with $\sum_{j=k}^{l} a_j \frac{\partial}{\partial y^j} = \frac{\partial}{\partial t^k}$;
- 2. The Euler vector field has the form

$$E = \sum_{\alpha=1}^{l} \tilde{d}_{\alpha} t^{\alpha} \frac{\partial}{\partial t^{\alpha}} + \frac{\partial}{\partial t^{l+1}}$$

3. The intersection form of the Frobenius structure coincides with the metric $(g^{ij}(t))$.

Main theorem 4. The Frobenius manifold structures that we obtain in this way from B_l and D_l , by fixing the k-th vertex of the corresponding Dynkin diagram, are isomorphic to the one that we obtain from C_l by choosing the k-th vertex of the Dynkin diagram of C_l .

Example. $[C_5, k = 1, m = 2]$ Let R be the root system of type C_5 , take k = 1, m = 2, then

$$\begin{split} F = & \frac{1}{2} t_6 t_1^2 + \frac{1}{2} t_1 t_2 t_3 + \frac{1}{2} t_1 t_4 t_5 - \frac{1}{72} t_3^4 t_5^4 - \frac{1}{8} t_2 t_3 t_4 t_5 \\ & - \frac{1}{2268} t_5^8 - \frac{1}{36288} t_3^8 - \frac{1}{48} t_3^2 t_2^2 - \frac{1}{48} t_4^2 t_5^2 + \frac{1}{24} t_5^4 t_2 t_3 \\ & + \frac{1}{96} t_3^4 t_4 t_5 + \frac{1}{1440} t_3^5 t_2 + \frac{1}{360} t_4 t_5^5 + t_2 t_3 e^{t_6} - t_4 t_5 e^{t_6} \\ & - \frac{2}{3} t_5^4 e^{t_6} + \frac{1}{6} t_3^4 e^{t_6} + \frac{1}{2} e^{2t_6} + \frac{1}{48} \frac{t_2^3}{t_3} + \frac{1}{192} \frac{t_4^3}{t_5}. \end{split}$$

The Euler vector field is given by

$$E = t_1 \partial_1 + \frac{3}{4} t_2 \partial_2 + \frac{1}{4} t_3 \partial_3 + \frac{3}{4} t_4 \partial_4 + \frac{1}{4} t_5 \partial_5 + \partial_6.$$

thanks

Appendix. Main techniques to obtain flat coordinates

The first step: $y \rightarrow \tau$

$$\sum_{j=0}^{l} \theta^{j} u^{l-j} = \sum_{j=0}^{l-m} \varpi^{j} (u+2)^{m} (u-2)^{l-m-j}$$
$$-\sum_{j=l-m+1}^{l} \varpi^{j} (u+2)^{l-j} (u-2)^{j-k-1}.$$

where

$$\theta^{j} = \begin{cases} e^{k y^{l+1}}, & j = 0, \\ y^{j} e^{(k-j)y^{l+1}}, & \varpi^{j} = \begin{cases} e^{k \tau^{l+1}}, & j = 0, \\ \tau^{j} e^{(k-j)\tau^{l+1}}, & j = 1, \dots, k-1, \\ \tau^{j}, & j = k, \dots, l. \end{cases}$$

The second step: $\tau \rightarrow z$

$$z^{l+1} = \tau^{l+1}, \ z^{j} = \tau^{j} + p_{j}(\tau^{1}, \dots, \tau^{j-1}, e^{\tau^{l+1}}), \ 1 \leq j \leq k,$$

$$z^{j} = \tau^{j} + \sum_{s=j+1}^{l-m} c_{s}^{j} \tau^{s}, \quad k+1 \leq j \leq l-k-m,$$

$$z^{j} = \tau^{j} + \sum_{s=i+1}^{l} h_{s}^{j} \tau^{s}, \quad l-k-m+1 \leq j \leq l,$$

where p_j are some weighted homegeoneous polynomials and c_s^j and h_s^j are determined by the following function respectively

$$\cosh\left(\frac{\sqrt{t}}{2}\right)\left(\frac{2\sinh\left(\frac{\sqrt{t}}{2}\right)}{\sqrt{t}}\right)^{2i-1},\quad \left(\frac{\tanh(\sqrt{t})}{\sqrt{t}}\right)^{2i-1}.$$

The third step: $z \rightarrow w$

$$\begin{split} w^{i} &= z^{i}, \quad i = 1, \dots, k, \ l+1, \\ w^{k+1} &= z^{k+1} (z^{l-m})^{-\frac{1}{2(l-m-k)}}, \\ w^{s} &= z^{s} (z^{l-m})^{-\frac{s-k}{l-m-k}}, \ s = k+2, \cdots, l-m-1, \\ w^{l-m} &= (z^{l-m})^{\frac{1}{2(l-m-k)}}, \\ w^{l-m+1} &= z^{l-m+1} (z^{l})^{-\frac{1}{2m}}, \\ w^{r} &= z^{r} (z^{l})^{-\frac{r+m-l}{m}}, \ r = l-m+2, \cdots, l-1, \\ w^{l} &= (z^{l})^{\frac{1}{2m}}. \end{split}$$

The last step: $w \rightarrow t$

$$\begin{split} t^1 &= w^1, \dots, t^k = w^k, \ t^{l+1} = w^{l+1}, \\ t^{k+1} &= w^{k+1} + w^{l-m} \, h_{k+1}(w^{k+2}, \dots, w^{l-m-1}), \\ t^j &= w^{l-m}(w^j + h_j(w^{j+1}, \dots, w^{l-m-1})), \ k+2 \leq j \leq l-m-1, \\ t^{l-m+1} &= w^{l-m+1} + w^l \, h_{l-m+1}(w^{l-m+2}, \dots, w^{l-1}), \\ t^s &= w^l(w^s + h_s(w^{s+1}, \dots, w^{l-1})), \ l-m+2 \leq s \leq l-1 \\ t^{l-m} &= w^{l-m}, \quad t^l = w^l. \end{split}$$

Here $h_{l-m-1}=h_{l-1}=0$, h_j are weighted homogeneous polynomials of degree $\frac{k\,(l-m-j)}{l-m-k}$ for $j=k+1,\ldots,l-m-2$ and h_s are weighted homogeneous polynomials of degree $\frac{k\,(l-s)}{m}$ for $s=l-m+2,\ldots,l-1$.

Due to the above construction, we can associate the following natural degrees to the flat coordinates

$$egin{aligned} & ilde{d}_j = \deg t^j := rac{j}{k}, \quad 1 \leq j \leq k, \\ & ilde{d}_s = \deg t^s := rac{2l - 2m - 2s + 1}{2(l - m - k)}, \quad k + 1 \leq s \leq l - m, \\ & ilde{d}_\alpha = \deg t^\alpha := rac{2l - 2\alpha + 1}{2m}, \quad l - m + 1 \leq \alpha \leq l, \\ & ilde{d}_{l+1} = \deg t^{l+1} := 0. \end{aligned}$$

Main mathematical applications of Frobenius manifolds

- ★ The theory of Gromov Witten invariants,
- ★ Singularity theory,
- ★ Hamiltonian theory of integrable hierarchies,
- ★ Differential geometry of the orbit spaces of reflection groups and of their extensions → semisimple Frobenius manifolds.

[B.Dubrovin's conjecture] The monodromy group is a discrete group for a solution of WDVV equations with good properties.

Example 1. [W(M)=Coxeter group A_1] n = 1, $M = \mathbb{R}$, $t = t^1$,

$$F(t) = \frac{1}{6}t^3$$
, $E = t\partial_t$, $e = \partial_t$, $\eta^{11} = \langle \partial_t, \partial_t \rangle = 1$.

→ dispersionless KdV hierarchy → Witten Conjecture.

Example 2. [W(M)=extended affine Weyl group $W(A_1)]$ Quantum cohomology of \mathbb{P}^1 :

$$F = \frac{1}{2}t_1^2t_2 + e^{t_2}, E = t_1\partial_1 + 2\partial_2, e = \partial_1.$$

→ dispersionless extended Toda hierarchy → Toda Conjecture.

§2. Frobenius manifolds and Coxeter groups

Let W be a finite irreducible Coxeter group.

$$W \curvearrowright V \longrightarrow W \curvearrowright S(V)$$

[Chevalley Theorem]. The ring $S(V)^W$ of W-invariant polynomial functions on V

$$\mathbb{C}[x_1,\cdots,x_n]^W\simeq\mathbb{C}[y^1,\cdots,y^n],$$

where $y^i = y^i(x_1, \dots, x_n)$ are certain homogeneous W-invariant polynomials of degree $\deg y^i = d_i, \ i = 1, \dots, n$.

The maximal degree h is called the Coxeter number. We use the ordering of the invariant polynomials

$$\deg y^n = d_n = h > d_{n-1} > \cdots > d_1 = 2.$$

The degrees satisfy the duality condition

$$d_i + d_{n-i+1} = h + 2, \quad i = 1, \dots, n.$$

$$W \curvearrowright V \qquad \rightsquigarrow \qquad W \curvearrowright V \otimes \mathbb{C}$$

$$\mathcal{M} = V \otimes \mathbb{C}/W$$
 affine algebraic variety

$$S(V)^W$$
 the coordinate ring of \mathcal{M}

$$V \rightsquigarrow \text{flat manifold} \quad (V, \{x_1, \dots, x_n\}, (dx_a, dx_b)^* = \delta_{ab})$$

$$\rightsquigarrow (\mathcal{M} \setminus \Sigma, g^{ij}(y))$$

$$g^{ij}(y) := (dy^i, dy^j)^* = \sum_{a,b=1}^n \frac{\partial y^i}{\partial x_a} \frac{\partial y^j}{\partial x_b} \delta_{ab}$$

Lemma.[K.Saito etc 1980]

- 1. The metric $(g^{ij}(y))$ is flat on $\mathcal{M} \setminus \Sigma$.
- 2. These $g^{ij}(y)$ are at most linear w.r.t y^n .

Write

$$e:=\frac{\partial}{\partial y^n}.$$

Introduce a new metric,

$$\eta^{ij}(y) := \langle dy^i, dy^j \rangle = \mathcal{L}_{eg}^{ij}(y) = \frac{\partial g^{ij}(y)}{\partial y^n}.$$

Theorem. [K.Saito etc. 1980, B.Dubrovin 1992]

The metrics $\langle \ , \ \rangle$ and $(\ , \)^*$ form a flat pencil of metrics. Moreover, there exist homogeneous polynomials

$$t^1(x), \cdots, t^n(x)$$

of degrees d_1, \dots, d_n respectively such that the matrix

$$\langle dt^i, dt^j \rangle := \eta^{ij} = \frac{\partial g^{ij}(t)}{\partial t^n}$$

is a constant nondegenerate matrix.

Theorem.[B.Dubrovin, 1992] There exists a unique Frobenius structure of charge $d=1-\frac{2}{h}$ on the orbit space $\mathcal M$ polynomial in t^1,t^2,\cdots,t^n such that

- 1. The unity vector field e coincides with $\frac{\partial}{\partial y^n} = \frac{\partial}{\partial t^n}$;
- 2. The Euler vector field has the form

$$E = \sum_{\alpha=1}^{n} d_{\alpha} t^{\alpha} \frac{\partial}{\partial t^{\alpha}}.$$

Theorem. [B.Dubrovin's conjecture, 1996. C.Hertling, 1999] Any irreducible semisimple polynomial Frobenius manifold with positive invariant degrees is isomorphic to the orbit space of a finite Coxeter group.