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§1.  Some definitions

Definition 1.1 A Frobenius structure of charge d on M is the data
(M,e,(,), e, E) satisfying

(i) n:=(, ) is a flat pseudo-Riemannian metric;

(ii) @ is C-linear, associative, commutative product on T,,M which
depends smoothly on m;

(iii) e is the unity vector field for the product e and Ve = 0;
(iv) (Vwe)(x,y, z) is symmetric, where c(x,y,z) := (x ey, z);
(v) A linear vector field E € Vect(M) must be fixed on M, i.e.
VVE = 0 such that

£E<7>:(2_d)<7>7 Lre=e Lpe=—e.



Theorem.[B.Dubrovin 1992] There is a one to one correspondence
between a Frobenius manifold and the solution F(t) of WDVV
equations of associativity

BF ., OF  F 93F
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0t 0RO | Dthoror | 0rotPor | oot o

with a quasihomogeneity condition

LeF = (3 — d)F + quadratic polynomial in t.

Definition 1.2 A Frobenius manifold is called semisimple if the
algebra (T, M, @) are semisimple at generic m.



Definition 1.3 An Intersection form of Frobenius manifold is a
symmetric bilinear form on the cotangent bundle T*M defined by

(CU]_,W2)* = iE(wl . (,UQ), w1, w2 € T"M.

Here the multiplication law on the cotangent planes is defined
using the isomorphism

(,): TM — T*M.
The discriminant X is defined by

Y = {t‘ det( , )’Tt*/\// = 0} c M.



Theorem.[B.Dubrovin 1992]

The metrics:=(, ) and g == (, )* form a flat pencil on M\ X,
ie.,

1. The metric h®P = n®# 4+ \g®P is flat for arbitrary A and

2. The Levi-Civita connection for the metric h°° has the form

aﬁ _ rop aB
s rk( ) + /\rk(g)’

a/@:_a'yﬁ aﬁz_a'y/@ Oéﬁ:_a'y/@
where r5(h) h r57(h)' r5<g> € r‘”(g)’ r5(n) " r‘;“/m)'



The holonomy of the local Euclidean structure defined on M\ &
by the intersection form (, )* gives a representation

o m(MN\X) — Isometries(C").
Definition 1.4 The group
W(M) := p(m(M\X)) C Isometries(C")
is called a monodromy group of Frobenius manifold.

— M\ =Q/W(M), QccC"



§2. Frobenius manifolds and Extended affine Weyl groups

Motivation. Quantum cohomology of P!:

1 —
F = §t12t2 + e E = 1101 + 202, e = &1, W(M) = W(A)

Question: How to construct this kind of Frobenius manifolds?
That is,
F= F(t17 T tna tn+17 etn+1)

E= Z dataaa + dn+18n+1

a=1

w(m) = WK(R)



Notations
Let R be an irreducible reduced root system defined on (V, (, )).
{aj}: a basis of simple roots, ~ {a;'}: the corresponding coroots.

W Weyl group, W,(R) affine Weyl group (the semi-direct
product of W by the lattice of coroots)

W,(R) ~ V: affine transformations

/
X — W(X)+ija}/, we W, mjel.
j=1

wj: the fundamental weights, (w;, o) = dj;



Definition.[B.Dubrovin, Y.Zhang 1998]

The extended affine Weyl group W = W(k)(R) acts on the
extended space _
V=V&R

and is generated by the transformations

/
X = (X>X/+1) = (W(X) + Z ijéJ\-/, X/+1)7 we W, m; € L,
j=1

and
x = (%, x41) = (X + YWk, X141 —7)-

Here v = 1 except for the cases when R = B;, k =/ and
R = F4,k =3 or k =4, in these three cases v = 2.



Definition.[B.Dubrovin, Y.Zhang 1998]

A = AK(R) is the ring of all W-invariant Fourier polynomials of
the form

: 1
27i(myxy 4 myx4- 7 mpp1x41)
ams,...,mp 1 €

my,...my1€Z
that are bounded in the limit
X:XO—iwkT, x/+1:x,0+1+i7', T — 400

for any x% = (x% x2;), where f is the determinant of the Cartan
matrix of the root system R.



We introduce a set of numbers
di = (wj,wk), Jj=1,...,1

and define the following Fourier polynomials

-~ — 6271—inle+1

¥i(x) yi(x), j=1,...,1,

2mi

Vir1(x) = e

Here

1 i(wj,w(x
yj(x):; Z e2mi(wiw(x))

J wew

nj = #{W c W‘e27ri(wj',W(X)) — eZWi(wj,x)}‘



B.Dubrovin and Y.Zhang considered a particular choice of ay
based on the following observations

1. The Dynkin graph of Ry := {aq, -+, dk, -, ay} (ak is
omitted) consists of 1, 2 or 3 branches of A, type for some r.

2. di > ds,s # k.

Chevalley-Type Theorem [B.Dubrovin, Y.Zhang 1998]

For the above particluar choice of oy,

‘A(k)(R) = (C[yla et 7,)7/+1]'
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M = SpecA: the orbit space of W(K(R)
global coordinates on M: {y1(x), -, y+1(x)}
local coordinates on M:

yi=, oy =g,y = log i = 2mi x4

the metric (, )  on V=V &C
~ 1
(an7 de) = m(wa,uﬂ)),

(dxj41,dxs)” =0, 1<a b<,

~ 1 1
d d = — = —




~ (M Z,8%(y)),

y L Y
g'(y) = (dy',dy!) = 3X33Xb(d dx®)”. (0.1)
a,b=1

Claim:g(y) is flat. Moreover for the particular choice, g¥(y) are
at most linear w.r.t y*.

~ni(y) = Legl(y) =



Theorem. [B.Dubrovin, Y.Zhang 1998]

For the particular choice of av, n¥(y) and g¥(y) form a flat pencil.
Moreover there exists a unique Frobenius structure on the orbit
space M = M(R, k) polynomial in t',... t, et such that

0 0

1. the unity vector field coincides with BF = 0k’

2. the Euler vector field has the form

/
19 do o0 1 0
Dridk Ox111 az_:l di © o g oe

3. The intersection form of the Frobenius structure coincides with
the metric (1, )~ on M.



Theorem.[P.Slodowy 1998,Preprint but unpublished]

The ring A¥)(R) is isomorphic to the ring of polynomials of
y1(x), -+, ¥1+1(x) for arbitrary choice.

Another proof

We give an alternative proof of Chevelly-Type theorem
associated to the root systems By, C;, Dy, (Fa, G2).



§3. Our question and result

An natural question:[P.Slodowy, B.Dubrovin and Y.Zhang 1998]

Is whether the geometric structures that were revealed in the
above for particular choice also exist on the orbit spaces of the
extended affine Weyl groups for an arbitrary choice of a?

Difficulty: dy will be not the maximal number except the
particular choice.

1. Note that the g¥(y) may be not linear with respect to yk.

y i
Thus if we define nY(y) = 8%}/(3/) as before, we can not obtain

the flat pencil.

2. If we can obtain a flat pencil, how to find flat coordinates
and construct Frobenius manifolds?



For the question 1, our strategy is to change the unity vector field.

Main theorem 1. For any fixed integer 0 < m < | — k there is a
flat pencil of metrics (g¥(y)), (n¥(y)) (bilinear forms on T*M)
with (g¥(y)) given by (0.1) and n(y) = L.g¥(y) on the orbit
space M of W(k)(C/). Here the unity vector field

Lo
=

is defined by the generating function

/

Z aju'™ = (u+2)"(u—2)7k=m
j=k

for the constants ay, ..., a;.



For the question 2, it is very technical.

Main theorem 2. In the flat coordinates t, ..., t'*1, the nonzero
entries of the matrix (n) are given by

( k, Jj=k—i, 1<i<k-1,

1, i=1I+1,j=k ori=k, j=1+1,

C, j=l-m+k—i+1, k+2<i</l—-m-1,

2, i=l—-mj=k+1 ori=k+1, j=I—m
dm, j=2l—m—i+1, l—m+2<i</-1,

[ 2, i=lLj=1-m+1 ori=l—m+1 j=1,

where C = 4(I — m — k). The entries of the matrix (g'(t)) and

the Christoffel symbols T'),(t) are weighted homogeneous

1+1
polynomials in t1, ... t, t,%m, %, et



Main theorem 3. For any fixed integer 0 < m < | — k, there
exists a unique Frobenius structure of charge d =1 on the orbit
space M\ {t'=" =0} U {t! = 0} of WK(C)) weighted

homogeneous polynomial in t*,t2,--- |t/ t,%m, %, e!"™ such that
a0
1. The unity vector field e coincides with d— = —;
Y Z; Tyl Otk
J:

2. The Euler vector field has the form

i
~ 5 0 0
E= dyt
az:l 01‘0‘ + atlJrl

3. The intersection form of the Frobenius structure coincides with
the metric (g"(t)).



Main theorem 4. The Frobenius manifold structures that we
obtain in this way from By and D;, by fixing the k-th vertex of the
corresponding Dynkin diagram, are isomorphic to the one that we
obtain from C; by choosing the k-th vertex of the Dynkin diagram
of C/.



Example. [Gs, k = 1, m = 2]Let R be the root system of type GCs,
take k =1, m = 2, then

F= 1tt2—|—1ttt+1ttt 1t4t4 ltttt
—261 2123 2145 7235 82345
1 8 1 8 1 2,2 1 2,2 1 4
- 8 — 38 — 13202 — — 1262+ ot
2268 ° 3p288 2 ag B T ag T Tyt 23

1 4 1 5 1 5 t t
— t3 tat — 37 I —— st thtze'® — tytge™®
+96345+144032+36045+236 4lse
P2 R P B S e
—— t 6 —t 6 _ 6 = S
g e gl e ot e Tk

The Euler vector field is given by

3 1 3 1
E=1t01+ thaz + Zt383 + Zt484 + Ztsas + 0s.



thanks



Appendix. Main techniques to obtain flat coordinates

The first step: y — 7

/ I—m
Z@’ul S = ij (u+2)"(u—2)"m
=0 j=0

j=l—-m+1
where
1+1 I+1
eky b ekT ) ,/ = )
91 = yje(k_j)yl+17 wJ = Tje(k_j)71+1 ]_7 . 7k — ]_7
¥, T, J=kyoe



The second step: 7 — z

=7 =y pj(Tl7 T eTIH), 1<) <k,
I—m
Z=74 Z cdrs, k+1<j<I—k—m,
s=j+1
/
d=r 4+ Y K, I—k-m+1<j<,
s=j+1
where p; are some weighted homegeoneous polynomials and cé and
h’;- are determined by the following function respectively

o () 2smn ()" (et

2 Vi Vi



The third step: z — w

wi =z, i=1,...,k [+1,
wktl — Zk+1(zl—m)_2(lfmfk)’
s—k

Ws:ZS(ZIfm)—m7 s = k+2,... ’[_m_1’
w!—m — (Z/*m)2(/—m—k)7
WI—m—|—1 — zl—m—i—l(zl)—ﬁ

)
W= ()T r= e m 2, -,
w! = (zl)ﬁ



The last step: w — t

tl = Wl,...,tk = Wk7 1.“”rl = WI+1,
tk—i-l — Wk+1 + Wl—m hk+1(Wk+2, el Wl—m—l)’
t=w"m(w + W w Y)Y k2 << - m—1,

|—m+1 _  |—m+1 / [—m+2 -1
t =w +w' h—my1(w e, W ),

t*=w/(w®+hs(wt . W), I—m+2<s<i—1
tl—m — Wl—m tl — WI.

Here hj_nm—1 = hj—1 = 0, h; are weighted homogeneous
polynomials of degree % forj=k+1,...,/—m—2 and hs
are weighted homogeneous polynomials of degree # for
s=l-m+2,...,1 -1



Due to the above construction, we can associate the following
natural degrees to the flat coordinates

cNJ’j:degtj::J;, 1<j<k,

- 2/ —2m —2s+ 1

s =08 (1 —m—k)y & rrsssimm

~ 2/ —2 1

da:degta::7a+, l—-m+1<a</,
2m

di;1 = deg tHl.=o.



Main mathematical applications of Frobenius manifolds
% The theory of Gromov - Witten invariants,
% Singularity theory,

% Hamiltonian theory of integrable hierarchies,

* Differential geometry of the orbit spaces of reflection groups
and of their extensions ~~ semisimple Frobenius manifolds.



[B.Dubrovin’s conjecture] The monodromy group is a discrete
group for a solution of WDVV equations with good properties.



Example 1. [W(M)=Coxeter group A1l n=1, M =R, t = t,

1
F(t) = 6t3, E = tata e = at, ’[711 =< ataat >= 1.

~ dispersionless KdV hierarchy ~» Witten Conjecture.

Example 2. [W(M)=extended affine Weyl group W(Al)]
Quantum cohomology of P*:

1
F = Etftz + etZ,E = t101 + 20>, e = 0.

~ dispersionless extended Toda hierarchy ~» Toda Conjecture.



§2. Frobenius manifolds and Coxeter groups

Let W be a finite irreducible Coxeter group.

W~ Vv ~ W ~ S(V)

[Chevalley Theorem]. The ring S(V)W of W-invariant
polynomial functions on V

C[Xl7"' 7Xn]W E(C[yl, ’yn]7

where y' = y'(x1,--- ,xp) are certain homogeneous W-invariant
polynomials of degree degy' =d;, i=1,--- ,n.



The maximal degree h is called the Coxeter number. We use the
ordering of the invariant polynomials

degy"=d, =h>dp_1> - >d =2.
The degrees satisfy the duality condition

di+dn—i+1:h+27 i:17"'7n'



WnVv ~ WnVeC
M=VeC/W affine algebraic variety

S(VW the coordinate ring of M
V ~~ flat manifold  (V, {x1, -+ ,xn}, (dXa, dxp)* = 02p)
~ (M\ L, 8%(y))
dy' 8yf

g'(y) = (dy', dy’)* Z oo
a,b=1 a b




Lemma.[K.Saito etc 1980]
1.The metric (g¥(y)) is flat on M\ ¥.

2. These gli(y) are at most linear w.r.t y".

Write




Theorem. [K.Saito etc. 1980, B.Dubrovin 1992]

The metrics (, ) and (, )* form a flat pencil of metrics.
Moreover, there exist homogeneous polynomials

tl(X)" ’tn(X)
of degrees dq, - - - , d,, respectively such that the matrix
i 080(0)
dt', dt/) :=n" =
< ) > 77 8t"

is a constant nondegenerate matrix.



Theorem.[B.Dubrovin, 1992] There exists a unique Frobenius
structure of charge d =1 — 5 on the orbit space M polynomial in

t1, t2,. .., t" such that

. . ., 0 0
1. The unity vector field e coincides with — = ;
dy"  Ot"

2. The Euler vector field has the form

Theorem. [B.Dubrovin's conjecture, 1996. C.Hertling, 1999]

Any irreducible semisimple polynomial Frobenius manifold with
positive invariant degrees is isomorphic to the orbit space of a
finite Coxeter group.



