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Plan of the talk

Understanding regular soliton solutions to the KP equation via total
positivity for the Grassmannian and cluster algebras.

Background on total positivity on the Grassmannian

Background on the KP equation

Tight connection between KP solitons and total positivity

Application 1: classification of soliton graphs

Application 2: connection to cluster algebras

Application 3: the inverse problem for soliton graphs

Lauren K. Williams (UC Berkeley) KP Solitons, total positivity, cluster algebras June 2011 2 / 27



Total positivity on the Grassmannian

The real Grassmannian and its non-negative part

The Grassmannian Grk,n(R) = {V | V ⊂ R
n, dimV = k}

Represent an element of Grk,n(R) by a full-rank k × n matrix A.

Given I ∈
([n]

k

)

, the Plücker coordinate ∆I (A) is the minor of the k × k
submatrix of A in column set I .

The totally non-negative part of the Grassmannian (Grk,n)≥0 is the subset
of Grk,n(R) where all Plucker coordinates ∆I (A) are non-negative.

Context

1930’s: Beginning of classical theory of totally positive matrices, matrices
with all minors positive.

1990’s: Lusztig developed total positivity in Lie theory. Provided part of
the motivation for Fomin-Zelevinsky’s cluster algebras.

2001-2006: Postnikov defined and studied the totally non-negative part of
the real Grassmannian.
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, the Plücker coordinate ∆I (A) is the minor of the k × k
submatrix of A in column set I .

The totally non-negative part of the Grassmannian (Grk,n)≥0 is the subset
of Grk,n(R) where all Plucker coordinates ∆I (A) are non-negative.

Context

1930’s: Beginning of classical theory of totally positive matrices, matrices
with all minors positive.

1990’s: Lusztig developed total positivity in Lie theory. Provided part of
the motivation for Fomin-Zelevinsky’s cluster algebras.

2001-2006: Postnikov defined and studied the totally non-negative part of
the real Grassmannian.

Lauren K. Williams (UC Berkeley) KP Solitons, total positivity, cluster algebras June 2011 3 / 27



Total positivity on the Grassmannian

Postnikov studied (Grk,n)≥0, found a nice cell decomposition, and showed
that cells were in bijection with several interesting combinatorial objects.

Theorem (Postnikov)

Given a subset M of
([n]

k

)

, define the positroid cell

Stnn
M := {A ∈ (Grk,n)≥0 | ∆I (A) > 0 iff I ∈ M}.

If Stnn
M 6= ∅, then it is a cell (homeomorphic to an open ball).

We will be interested in only the irreducible positroid cells.
(in row-echelon form, its elements don’t contain all-zero column or a row
which contains all zeros besides the pivot)
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Total positivity on the Grassmannian

Theorem (Postnikov)

The (irreducible) positroid cells of (Grk,n)≥0 are in bijection with (and
labeled by):

Derangements π ∈ Sn with k excedances

(Irreducible)

Γ

-diagrams L contained in k × (n − k) rectangle

(Irred.) Equivalence classes of reduced plabic graphs G of type (k, n)

1 2 3 4 5

3 4 5 1 2

(3,4,5,1,2) = 

If Stnn
M is labeled by the derangement π, we also refer to the cell as Stnn

π .
(Similarly for L, G .)
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The Kadomtsev-Petviashvili equation

The KP equation

∂

∂x

(

−4
∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3

)

+ 3
∂2u

∂y2
= 0

Proposed by Kadomtsev and Petviashvili in 1970, in order to study
the stability of the one-soliton solution of the Korteweg-de Vries
(KdV) equation under the influence of weak transverse perturbations.

Gives an excellent model to describe shallow water waves

Lauren K. Williams (UC Berkeley) KP Solitons, total positivity, cluster algebras June 2011 6 / 27



The Kadomtsev-Petviashvili equation

The KP equation

∂

∂x

(

−4
∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3

)

+ 3
∂2u

∂y2
= 0

Proposed by Kadomtsev and Petviashvili in 1970, in order to study
the stability of the one-soliton solution of the Korteweg-de Vries
(KdV) equation under the influence of weak transverse perturbations.

Gives an excellent model to describe shallow water waves

-100 -50 0 50 100

-100

-50

0

50

100

Lauren K. Williams (UC Berkeley) KP Solitons, total positivity, cluster algebras June 2011 6 / 27



Soliton solutions to the KP equation

The real Grassmannian

The Grassmannian Grk,n(R) = {V | V ⊂ R
n, dimV = k}

Represent an element of Grk,n(R) by a full-rank k × n matrix A.

Given I ∈
([n]

k

)

, ∆I (A) is the minor of the I -submatrix of A.

From A ∈ Grk,n(R), can construct τA, and then a solution uA of the KP equation.

(cf Sato, Hirota, Satsuma, Freeman-Nimmo, ...)

The τ function τA is given by a Wronskian

Fix real parameters κj such that κ1 < κ2 < · · · < κn.
Define Ej (t1, . . . , tn) := exp(κj t1 + κ2

j t2 + · · · + κn
j tn).

For J = {j1, . . . , jk} ⊂ [n], define EJ := Ej1 . . . Ejk

∏

ℓ<m(κjm − κjℓ).
The τ -function is

τA(t1, t2, . . . , tn) :=
∑

J∈([n]
k )

∆J(A)EJ (t1, t2, . . . , tn).
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Soliton solutions to the KP equation

The τ function τA

Choose A ∈ Grk,n(R), and fix κj ’s such that κ1 < κ2 < · · · < κn.
Define Ej (t1, . . . , tn) := exp(κj t1 + κ2

j t2 + · · · + κn
j tn).

For J = {j1, . . . , jk} ⊂ [n], define EJ := Ej1 . . . Ejk

∏

ℓ<m(κjm − κjℓ).
τA(t1, t2, . . . , tn) :=

∑

J∈([n]
k ) ∆J(A)EJ(t1, t2, . . . , tn).

A solution uA(x , y , t) of the KP equation

Set x = t1, y = t2, t = t3 (treat other ti ’s as constants). Then

uA(x , y , t) = 2
∂2

∂x2
ln τA(x , y , t) (1)

is a solution to the KP equation.
If all ∆I (A) ≥ 0, this solution is everywhere regular.
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Visualing soliton solutions to the KP equation

The contour plot of uA(x , y , t)

We analyze uA(x , y , t) by fixing t, and drawing its contour plot Ct(uA) for
fixed times t – this will approximate the subset of R

2 where uA(x , y , t)
takes on its maximum values.
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Definition of the contour plot as tropical curve

Choose A ∈ S tnn
M .

uA(x , y , t) is defined in terms of τA(x , y , t) :=
∑

I∈M ∆I (A)EI (x , y , t).
At most points (x , y , t), τA(x , y , t) will be dominated by one term.
Define f̂A(x , y , t) = max{∆J(A)EJ}J∈M.

Define fA(x , y , t) = max{ln(∆J(A)EJ )}J∈M

= max{ln(∆J(A)
∏

(κjm − κjℓ)) +
∑

i(κji x + κ2
ji
y + . . . )}J∈M.

The contour plot Ct(uA) is the subset of R
2 where fA(x , y , t) is not linear.

1 3

2

E E

E

One term EI dominates uA in each region of the complement of Ct(uA).
Label each region by the dominant exponential.
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Visualizing soliton solutions to the KP equation

Generically, interactions of line-solitons are trivalent or are X-crossings.

[1,3]
[2,5] [3,7]

[2,4]

[1,5]

[2,5]

[2,3]

[6,8]

[7,9]

[6,9] [4,8]

[8,9]

[6,7]

[4,7]

[4,5]

E1246

E4589

[1,7]

[1,5]

[4,8]

If two adjacent regions are labeled EI and EJ , then J = (I \ {i}) ∪ {j}.a

The line-soliton between the regions has slope κi + κj ; label it [i , j].

aPhase shifts negligable if differences κi+1 − κi are similar and graph on large scale.
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Soliton graphs

We associate a soliton graph Gt(uA) to a contour plot Ct(uA) by:
forgetting lengths and slopes of edges, and marking a trivalent vertex
black or white based on whether it has a unique edge down or up.

[1,3]
[2,5] [3,7]

[2,4]

[1,5]

[2,5]

[2,3]

[6,8]

[7,9]

[6,9] [4,8]

[8,9]

[6,7]

[4,7]

[4,5]

E1246

E4589

[1,7]

[1,5]

[4,8]

Goal: classify soliton graphs.
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Total positivity on the Grassmannian and KP solitons

Let A be an element of an (irreducible)
positroid cell in (Grkn)≥0. What can we say
about the soliton graph Gt(uA)?

[1,3]

[2,5]
[3,7]

[2,4]

[1,5]

[6,8]

[7,9]

[6,9]

[4,8]

E1246

E4589

Metatheorem (Kodama-W.)

Which cell A lies in determines the asymptotics of Gt(uA) as y → ±∞ and
t → ±∞. Use the derangement and

Γ

-diagram labeling the cell.
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How the positroid cell determines asymptotics at y → ±∞

Recall: positroid cells in (Grkn)≥0 ↔ derangements π ∈ Sn with k exc.

Theorem (Biondini-Chakravarty, Chakravarty-Kodama + Kodama-W.)

Let A lie in the irreducible positroid cell Stnn
π of (Grkn)≥0.

For any t, the soliton graph Gt(uA) has precisely:
k line-solitons at y >> 0, labeled by the excedances [i , π(i)] of π, and
n − k line-solitons at y << 0 labeled by the nonexcedances [i , π(i)].

[1,3]

[2,5]
[3,7]

[2,4]

[1,5]

[6,8]

[7,9]

[6,9]

[4,8]

E1246

E4589

Gt(uA) where A ∈ Stnn
π for π = (5, 4, 1, 8, 2, 9, 3, 6, 7).
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How the positroid cell determines asymptotics at t → −∞

Recall: positroid cells in (Grk,n)≥0 ↔

Γ

-diagrams contained in k × (n − k)
rectangle

Definition

A

Γ

-diagram is a filling of the boxes of a Young diagram by +’s and 0’s
such that: there is no 0 with a + above it in the same column, and a + to
its left in the same row.

+ + +
+ +
++++

+ + +

0 0
000
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How the positroid cell determines asymptotics at t → −∞

Theorem (Kodama-W.)

Let L be a

Γ

-diagram. The following procedure realizes the soliton graph
Gt(uA) for A ∈ Stnn

L and t << 0.

+ + +
+ +
++++

+ + +

0 0
000
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1 2 3 6 7

4

5

8

9
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1

6
5

3
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Plabic graphs and soliton graphs

Recall: Positroid cells ↔ equivalence classes of reduced plabic graphs.

We’ve seen that derangements and

Γ

-diagrams are very useful for
understanding soliton graphs. What about plabic graphs?

Definition

A plabic graph is a planar undirected graph G inside a disk with n
boundary vertices 1, . . . , n in counterclockwise order around the disk’s
boundary, such that each boundary vertex i is incident to a single edge.
Interior vertices are colored black or white.

1 2

34

5
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Soliton graph → generalized plabic graph

[1,3]

[2,5]
[3,7]

[2,4]

[1,5]

[6,8]

[7,9]

[6,9]

[4,8]

E1246

E4589

A generalized plabic graph is a graph in a disk with n boundary vertices
1, . . . , n labeled in any order around the bdry, s.t. each bdry vertex has
degree 1. Two edges may cross. Interior vertices colored black or white.

Associate a generalized plabic graph to each soliton graph by:

Labeling each bdry vertex incident to the line-soliton [i , π(i)] by π(i).

Forgetting the labels of line-solitons and regions.

Lauren K. Williams (UC Berkeley) KP Solitons, total positivity, cluster algebras June 2011 18 / 27



Soliton graph → generalized plabic graph

[1,3]

[2,5]
[3,7]

[2,4]

[1,5]

[6,8]

[7,9]

[6,9]

[4,8]

E1246

E4589

9

8

1

2 3

6

7

5

4

A generalized plabic graph is a graph in a disk with n boundary vertices
1, . . . , n labeled in any order around the bdry, s.t. each bdry vertex has
degree 1. Two edges may cross. Interior vertices colored black or white.

Associate a generalized plabic graph to each soliton graph by:

Labeling each bdry vertex incident to the line-soliton [i , π(i)] by π(i).

Forgetting the labels of line-solitons and regions.

Lauren K. Williams (UC Berkeley) KP Solitons, total positivity, cluster algebras June 2011 18 / 27



Soliton graph → generalized plabic graph

[1,3]

[2,5]
[3,7]

[2,4]

[1,5]

[6,8]

[7,9]

[6,9]

[4,8]

E1246

E4589

9

8

1

2 3

6

7

5

4

A generalized plabic graph is a graph in a disk with n boundary vertices
1, . . . , n labeled in any order around the bdry, s.t. each bdry vertex has
degree 1. Two edges may cross. Interior vertices colored black or white.

Associate a generalized plabic graph to each soliton graph by:

Labeling each bdry vertex incident to the line-soliton [i , π(i)] by π(i).

Forgetting the labels of line-solitons and regions.

Lauren K. Williams (UC Berkeley) KP Solitons, total positivity, cluster algebras June 2011 18 / 27



Passing from soliton graph → generalized plabic graph

does not lose any information!

Theorem (Kodama-W.)

We can reconstruct the labels of line-solitons by following the “rules of the
road.” From the boundary vertex i , turn right at black and left at white.

Label each edge along trip with i , and each region to the left of trip by i .

9

8

1

2 3

6

7

5

4

Consequence: can IDENTIFY the soliton graph with its gen. plabic graph.
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Cluster algebras and the Grassmannian

Definition (Cluster algebra, cf Fomin and Zelevinsky)

A cluster algebra is “a kind of commutative ring with a great deal of
structure.” It has a distinguished family of generators called cluster
variables, which are naturally grouped into generating sets called clusters.

Can be viewed as kind of discrete dynamical system; close relation with
T-systems, Q-systems, etc. Dynamics is governed by quiver mutation.

Theorem (J. Scott)

The coordinate ring C[Grk,n] of the Grassmannian has a natural cluster
algebra structure. The Plücker coordinates comprise some of the cluster
variables.
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Soliton graphs and clusters

Definition (The totally positive Grassmannian (Grk,n)>0)

(Grk,n)>0 is the set of A ∈ Grk,n s.t. ∆I (A) > 0∀I .

Theorem (Kodama-W.)

Let A ∈ (Grk,n)>0, and consider the soliton graph Gt(uA). If it is generic
(all vertices trivalent), then the set of dominant exponentials labeling
Gt(uA) forms a cluster for the cluster algebra associated to the
Grassmannian.
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Soliton graphs and cluster algebras
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Corollary

Let A ∈ (Grk,n)>0, and consider the soliton graph Gt(uA). If it is generic
then the set of dominant exponentials labeling Gt(uA) represent a set C of
algebraically independent Plücker coordinates. Moreover, every Plücker
coordinate can be written as a Laurent polynomial in the elements of C.
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Application: solving the inverse problem for soliton graphs

Inverse problem

Given a time t together with the contour plot of a soliton solution of KP,
can one reconstruct the point of (Grk,n)≥0 which gave rise to the solution?

Theorem (Kodama-W.)

1. If we know that t << 0 sufficiently small, we can solve the inverse
problem, no matter what cell of (Grk,n)≥0 the element A came from.
2. If the contour plot is generic and came from a point of the TP
Grassmannian, we can solve the inverse problem, regardless of time t.

Proof of 1: uses our description of soliton graphs at t << 0, and work of
Kelli Talaska.

Proof of 2: uses result that the set of dominant exponentials labeling such
a contour plot forms a cluster in the cluster algebra associated to Grk,n.
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Application: classification of soliton graphs for (Gr2,n)>0

Up to graph-isomorphism, the soliton graphs for (Gr2,n)>0 are in bijection
with triangulations of an n-gon.

1

2

3

4

5

6

16 56

12

23 34

45

26

36

46

E12

E16 E56

E26

E23 E34

E45
E36

E46

[2,6]

[1,3]

[1,5]

[2,4]

[4,6]

[3,5]

Theorem (Kodama-W.)

Every plabic graph obtained via the above algorithm is a soliton graph
Gt(uA) for some A ∈ (Gr2,n)>0. Conversely, all (generic) soliton graphs for
A ∈ (Gr2,n)>0 can be produced from a triangulation of an n-gon as above.
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Application: classification of soliton graphs for (Gr2,n)>0
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Thanks for listening! (movies?)

KP solitons, total positivity, and cluster algebras (K. + W.), PNAS, May 11, 2011.

KP solitons and total positivity for the Grassmannian (K. + W.),
http://front.math.ucdavis.edu/1106.0023.

Lauren K. Williams (UC Berkeley) KP Solitons, total positivity, cluster algebras June 2011 26 / 27



Why look at asymptotics as y → ±∞ and not x → ±∞?

The equation for a line-soliton separating dominant exponentials EI and
EJ is where I = {i ,m2, . . . ,mk} and J = {j ,m2, . . . ,mk} is

x + (κi + κj)y + (κ2
i + κiκj + κ2

j )t = constant.

So we may have line-solitons parallel to the y -axis, but never to the x-axis.
(κi ’s are fixed)
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