KP solitons, total positivity, and cluster algebras

 $\tau_{\Box}\tau_{\Box} = \tau_{\phi}\tau_{\Box} + \tau_{\Box}\tau_{\Box}$ $\Delta_{ik}\Delta_{jl} = \Delta_{ij}\Delta_{kl} + \Delta_{il}\Delta_{jk}$

Lauren K. Williams, UC Berkeley

(joint work with Yuji Kodama) Understanding regular soliton solutions to the KP equation via total positivity for the Grassmannian and cluster algebras.

- Background on total positivity on the Grassmannian
- Background on the KP equation
- Tight connection between KP solitons and total positivity
- Application 1: classification of soliton graphs
- Application 2: connection to cluster algebras
- Application 3: the inverse problem for soliton graphs

Total positivity on the Grassmannian

The real Grassmannian and its non-negative part

The Grassmannian $Gr_{k,n}(\mathbb{R}) = \{V \mid V \subset \mathbb{R}^n, \dim V = k\}$

Represent an element of $Gr_{k,n}(\mathbb{R})$ by a full-rank $k \times n$ matrix A.

Given $I \in {[n] \choose k}$, the Plücker coordinate $\Delta_I(A)$ is the minor of the $k \times k$ submatrix of A in column set I.

The totally non-negative part of the Grassmannian $(Gr_{k,n})_{\geq 0}$ is the subset of $Gr_{k,n}(\mathbb{R})$ where all Plucker coordinates $\Delta_I(A)$ are non-negative.

Context

1930's: Beginning of classical theory of totally positive matrices, matrices with all minors positive.

1990's: Lusztig developed total positivity in Lie theory. Provided part of the motivation for Fomin-Zelevinsky's cluster algebras.

2001-2006: Postnikov defined and studied the totally non-negative part of the real Grassmannian.

Total positivity on the Grassmannian

The real Grassmannian and its non-negative part

The Grassmannian $Gr_{k,n}(\mathbb{R}) = \{V \mid V \subset \mathbb{R}^n, \dim V = k\}$

Represent an element of $Gr_{k,n}(\mathbb{R})$ by a full-rank $k \times n$ matrix A.

Given $I \in {[n] \choose k}$, the Plücker coordinate $\Delta_I(A)$ is the minor of the $k \times k$ submatrix of A in column set I.

The totally non-negative part of the Grassmannian $(Gr_{k,n})_{\geq 0}$ is the subset of $Gr_{k,n}(\mathbb{R})$ where all Plucker coordinates $\Delta_I(A)$ are non-negative.

Context

1930's: Beginning of classical theory of totally positive matrices, matrices with all minors positive.

1990's: Lusztig developed total positivity in Lie theory. Provided part of the motivation for Fomin-Zelevinsky's cluster algebras.

2001-2006: Postnikov defined and studied the totally non-negative part of the real Grassmannian.

Postnikov studied $(Gr_{k,n})_{\geq 0}$, found a nice cell decomposition, and showed that cells were in bijection with several interesting combinatorial objects.

Theorem (Postnikov)

Given a subset \mathcal{M} of $\binom{[n]}{k}$, define the positroid cell

 $\mathcal{S}_{\mathcal{M}}^{tnn} := \{A \in (Gr_{k,n})_{\geq 0} \mid \Delta_I(A) > 0 \text{ iff } I \in \mathcal{M}\}.$

If $\mathcal{S}_{\mathcal{M}}^{tnn} \neq \emptyset$, then it is a cell (homeomorphic to an open ball).

We will be interested in only the *irreducible* positroid cells. (in row-echelon form, its elements don't contain all-zero column or a row which contains all zeros besides the pivot)

The (irreducible) positroid cells of $(Gr_{k,n})_{\geq 0}$ are in bijection with (and labeled by):

- Derangements $\pi \in S_n$ with k excedances
- (Irreducible) \bot -diagrams L contained in $k \times (n k)$ rectangle
- (Irred.) Equivalence classes of reduced plabic graphs G of type (k, n)

(3,4,5,1,2) =

- 1 2 3 4 5
- 3 4 5 1 2

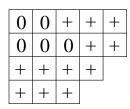
If $S_{\mathcal{M}}^{tnn}$ is labeled by the derangement π , we also refer to the cell as S_{π}^{tnn} . (Similarly for *L*, *G*.)

The (irreducible) positroid cells of $(Gr_{k,n})_{\geq 0}$ are in bijection with (and labeled by):

- Derangements $\pi \in S_n$ with k excedances

• (Irred.) Equivalence classes of reduced plabic graphs G of type (k, n)

(3,4,5,1,2) =

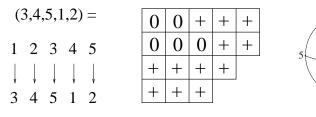


If $S_{\mathcal{M}}^{tnn}$ is labeled by the derangement π , we also refer to the cell as S_{π}^{tnn} . (Similarly for *L*, *G*.)

Lauren K. Williams (UC Berkeley) KP Solitons, total positivity, cluster algebras

The (irreducible) positroid cells of $(Gr_{k,n})_{\geq 0}$ are in bijection with (and labeled by):

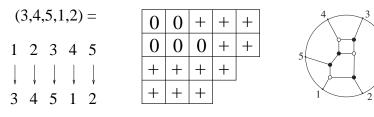
- Derangements $\pi \in S_n$ with k excedances
- (Irred.) Equivalence classes of reduced plabic graphs G of type (k, n)



If $S_{\mathcal{M}}^{tnn}$ is labeled by the derangement π , we also refer to the cell as S_{π}^{tnn} . (Similarly for *L*, *G*.)

The (irreducible) positroid cells of $(Gr_{k,n})_{\geq 0}$ are in bijection with (and labeled by):

- Derangements $\pi \in S_n$ with k excedances
- (Irred.) Equivalence classes of reduced plabic graphs G of type (k, n)



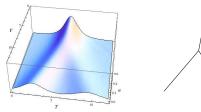
If $S_{\mathcal{M}}^{tnn}$ is labeled by the derangement π , we also refer to the cell as S_{π}^{tnn} . (Similarly for *L*, *G*.)

The Kadomtsev-Petviashvili equation

The KP equation

$$\frac{\partial}{\partial x}\left(-4\frac{\partial u}{\partial t}+6u\frac{\partial u}{\partial x}+\frac{\partial^3 u}{\partial x^3}\right)+3\frac{\partial^2 u}{\partial y^2}=0$$

- Proposed by Kadomtsev and Petviashvili in 1970, in order to study the stability of the one-soliton solution of the Korteweg-de Vries (KdV) equation under the influence of weak transverse perturbations.
- Gives an excellent model to describe shallow water waves



The Kadomtsev-Petviashvili equation

The KP equation

$$\frac{\partial}{\partial x}\left(-4\frac{\partial u}{\partial t}+6u\frac{\partial u}{\partial x}+\frac{\partial^3 u}{\partial x^3}\right)+3\frac{\partial^2 u}{\partial y^2}=0$$

- Proposed by Kadomtsev and Petviashvili in 1970, in order to study the stability of the one-soliton solution of the Korteweg-de Vries (KdV) equation under the influence of weak transverse perturbations.
- Gives an excellent model to describe shallow water waves

Soliton solutions to the KP equation

The real Grassmannian

The Grassmannian $Gr_{k,n}(\mathbb{R}) = \{V \mid V \subset \mathbb{R}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}(\mathbb{R})$ by a full-rank $k \times n$ matrix A. Given $I \in {[n] \choose k}, \Delta_I(A)$ is the minor of the *I*-submatrix of A.

From $A \in Gr_{k,n}(\mathbb{R})$, can construct τ_A , and then a solution u_A of the KP equation. (cf Sato, Hirota, Satsuma, Freeman-Nimmo, ...)

The au function au_A is given by a Wronskian

Fix real parameters κ_j such that $\kappa_1 < \kappa_2 < \cdots < \kappa_n$. Define $E_j(t_1, \ldots, t_n) := \exp(\kappa_j t_1 + \kappa_j^2 t_2 + \cdots + \kappa_j^n t_n)$. For $J = \{j_1, \ldots, j_k\} \subset [n]$, define $E_J := E_{j_1} \ldots E_{j_k} \prod_{\ell < m} (\kappa_{j_m} - \kappa_{j_\ell})$. The τ -function is

$$\tau_A(t_1, t_2, \ldots, t_n) := \sum_{J \in \binom{[n]}{k}} \Delta_J(A) E_J(t_1, t_2, \ldots, t_n).$$

Soliton solutions to the KP equation

The real Grassmannian

The Grassmannian $Gr_{k,n}(\mathbb{R}) = \{V \mid V \subset \mathbb{R}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}(\mathbb{R})$ by a full-rank $k \times n$ matrix A. Given $I \in {[n] \choose k}, \Delta_I(A)$ is the minor of the *I*-submatrix of A.

From $A \in Gr_{k,n}(\mathbb{R})$, can construct τ_A , and then a solution u_A of the KP equation. (cf Sato, Hirota, Satsuma, Freeman-Nimmo, ...)

The τ function τ_A is given by a Wronskian

Fix real parameters κ_j such that $\kappa_1 < \kappa_2 < \cdots < \kappa_n$. Define $E_j(t_1, \ldots, t_n) := \exp(\kappa_j t_1 + \kappa_j^2 t_2 + \cdots + \kappa_j^n t_n)$. For $J = \{j_1, \ldots, j_k\} \subset [n]$, define $E_J := E_{j_1} \ldots E_{j_k} \prod_{\ell < m} (\kappa_{j_m} - \kappa_{j_\ell})$. The τ -function is

$$\tau_A(t_1, t_2, \ldots, t_n) := \sum_{J \in \binom{[n]}{k}} \Delta_J(A) E_J(t_1, t_2, \ldots, t_n).$$

The τ function τ_A

Choose
$$A \in Gr_{k,n}(\mathbb{R})$$
, and fix κ_j 's such that $\kappa_1 < \kappa_2 < \cdots < \kappa_n$.
Define $E_j(t_1, \ldots, t_n) := \exp(\kappa_j t_1 + \kappa_j^2 t_2 + \cdots + \kappa_j^n t_n)$.
For $J = \{j_1, \ldots, j_k\} \subset [n]$, define $E_J := E_{j_1} \ldots E_{j_k} \prod_{\ell < m} (\kappa_{j_m} - \kappa_{j_\ell})$.
 $\tau_A(t_1, t_2, \ldots, t_n) := \sum_{J \in \binom{[n]}{k}} \Delta_J(A) E_J(t_1, t_2, \ldots, t_n)$.

A solution $u_A(x, y, t)$ of the KP equation

Set $x = t_1, y = t_2, t = t_3$ (treat other t_i 's as constants). Then

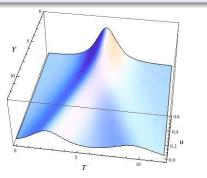
$$u_A(x, y, t) = 2 \frac{\partial^2}{\partial x^2} \ln \tau_A(x, y, t)$$
(1)

is a solution to the KP equation.

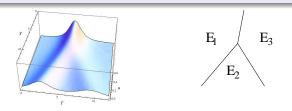
If all $\Delta_I(A) \ge 0$, this solution is everywhere regular.

The contour plot of $u_A(x, y, t)$

We analyze $u_A(x, y, t)$ by fixing t, and drawing its *contour plot* $C_t(u_A)$ for fixed times t – this will approximate the subset of \mathbb{R}^2 where $u_A(x, y, t)$ takes on its maximum values.

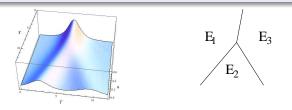


Choose $A \in S_{\mathcal{M}}^{tnn}$. $u_A(x, y, t)$ is defined in terms of $\tau_A(x, y, t) := \sum_{I \in \mathcal{M}} \Delta_I(A) E_I(x, y, t)$. At most points (x, y, t), $\tau_A(x, y, t)$ will be dominated by one term. Define $\hat{f}_A(x, y, t) = \max\{\Delta_J(A)E_J\}_{J \in \mathcal{M}}$. Define $f_A(x, y, t) = \max\{\ln(\Delta_J(A)E_J)\}_{J \in \mathcal{M}}$. $= \max\{\ln(\Delta_J(A)\prod(\kappa_{j_m} - \kappa_{j_\ell})) + \sum_i (\kappa_{j_i}x + \kappa_{j_i}^2y + \dots)\}_{J \in \mathcal{M}}$. The contour plot $C_i(u_A)$ is the subset of \mathbb{R}^2 where $f_A(x, y, t)$ is not linear



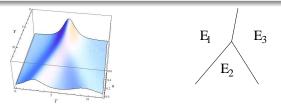
One term E_I dominates u_A in each region of the complement of $C_t(u_A)$. Label each region by the dominant exponential.

Choose $A \in S_{\mathcal{M}}^{tnn}$. $u_A(x, y, t)$ is defined in terms of $\tau_A(x, y, t) := \sum_{I \in \mathcal{M}} \Delta_I(A) E_I(x, y, t)$. At most points (x, y, t), $\tau_A(x, y, t)$ will be dominated by one term. Define $\hat{f}_A(x, y, t) = \max\{\Delta_J(A)E_J\}_{J \in \mathcal{M}}$. Define $f_A(x, y, t) = \max\{\ln(\Delta_J(A)E_J)\}_{J \in \mathcal{M}}$. $\max\{\ln(\Delta_J(A)\prod(\kappa_{jn} - \kappa_{j_i})) + \sum_i(\kappa_{j_i}x + \kappa_{j_i}^2y + \dots)\}_{J \in \mathcal{M}}$. The contour plot $C_i(u_A)$ is the subset of \mathbb{R}^2 where $f_A(x, y, t)$ is not linear



One term E_I dominates u_A in each region of the complement of $C_t(u_A)$. Label each region by the dominant exponential.

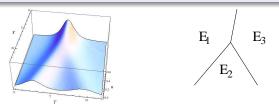
Choose $A \in S_{\mathcal{M}}^{tnn}$. $u_A(x, y, t)$ is defined in terms of $\tau_A(x, y, t) := \sum_{I \in \mathcal{M}} \Delta_I(A) E_I(x, y, t)$. At most points (x, y, t), $\tau_A(x, y, t)$ will be dominated by one term. Define $\hat{f}_A(x, y, t) = \max\{\Delta_J(A)E_J\}_{J \in \mathcal{M}}$. Define $f_A(x, y, t) = \max\{\ln(\Delta_J(A)E_J)\}_{J \in \mathcal{M}}$. $= \max\{\ln(\Delta_J(A)\prod(\kappa_{jm} - \kappa_{j\ell})) + \sum_i(\kappa_{ji}x + \kappa_{ji}^2y + \dots)\}_{J \in \mathcal{M}}$. The contour plot $C_t(u_A)$ is the subset of \mathbb{R}^2 where $f_A(x, y, t)$ is not linear.



One term E_I dominates u_A in each region of the complement of $C_t(u_A)$. Label each region by the dominant exponential.

Choose $A \in S_{\mathcal{M}}^{tnn}$. $u_A(x, y, t)$ is defined in terms of $\tau_A(x, y, t) := \sum_{I \in \mathcal{M}} \Delta_I(A) E_I(x, y, t)$. At most points (x, y, t), $\tau_A(x, y, t)$ will be dominated by one term. Define $\hat{f}_A(x, y, t) = \max\{\Delta_J(A)E_J\}_{J \in \mathcal{M}}$. Define $f_A(x, y, t) = \max\{\ln(\Delta_J(A)E_J)\}_{J \in \mathcal{M}}$ $= \max\{\ln(\Delta_J(A)\prod(\kappa_{j_m} - \kappa_{j_\ell})) + \sum_i(\kappa_{j_i}x + \kappa_{j_i}^2y + \dots)\}_{J \in \mathcal{M}}$.

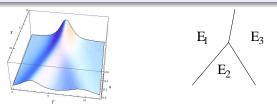
The contour plot $C_t(u_A)$ is the subset of \mathbb{R}^2 where $f_A(x, y, t)$ is not linear.



One term E_I dominates u_A in each region of the complement of $C_t(u_A)$. Label each region by the dominant exponential.

Choose $A \in S_{\mathcal{M}}^{tnn}$. $u_A(x, y, t)$ is defined in terms of $\tau_A(x, y, t) := \sum_{I \in \mathcal{M}} \Delta_I(A) E_I(x, y, t)$. At most points (x, y, t), $\tau_A(x, y, t)$ will be dominated by one term. Define $\hat{f}_A(x, y, t) = \max\{\Delta_J(A)E_J\}_{J \in \mathcal{M}}$. Define $f_A(x, y, t) = \max\{\ln(\Delta_J(A)E_J)\}_{J \in \mathcal{M}}$. $= \max\{\ln(\Delta_J(A)\prod(\kappa_{jm} - \kappa_{j_\ell})) + \sum_i(\kappa_{ji}x + \kappa_{j_i}^2y + \dots)\}_{J \in \mathcal{M}}$. The contour plot $\mathcal{C}(u_i)$ is the subset of \mathbb{P}^2 where $f_i(x, y, t)$ is pet linear

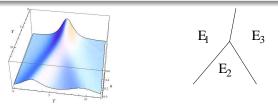
The contour plot $C_t(u_A)$ is the subset of \mathbb{R}^2 where $f_A(x, y, t)$ is not linear.



One term E_I dominates u_A in each region of the complement of $C_t(u_A)$. Label each region by the dominant exponential.

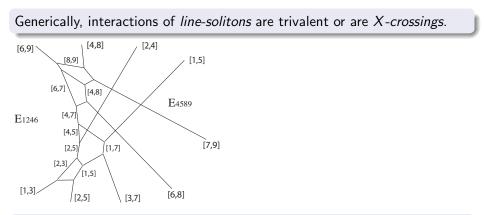
Choose $A \in S_{\mathcal{M}}^{tnn}$. $u_A(x, y, t)$ is defined in terms of $\tau_A(x, y, t) := \sum_{I \in \mathcal{M}} \Delta_I(A) E_I(x, y, t)$. At most points (x, y, t), $\tau_A(x, y, t)$ will be dominated by one term. Define $\hat{f}_A(x, y, t) = \max\{\Delta_J(A)E_J\}_{J \in \mathcal{M}}$. Define $f_A(x, y, t) = \max\{\ln(\Delta_J(A)E_J)\}_{J \in \mathcal{M}}$. $= \max\{\ln(\Delta_J(A)\prod(\kappa_{jm} - \kappa_{j_\ell})) + \sum_i(\kappa_{ji}x + \kappa_{j_i}^2y + \dots)\}_{J \in \mathcal{M}}$. The contour plot $\mathcal{C}(u_i)$ is the subset of \mathbb{P}^2 where $f_i(x, y, t)$ is pet linear

The contour plot $C_t(u_A)$ is the subset of \mathbb{R}^2 where $f_A(x, y, t)$ is not linear.



One term E_I dominates u_A in each region of the complement of $C_t(u_A)$. Label each region by the dominant exponential.

Visualizing soliton solutions to the KP equation

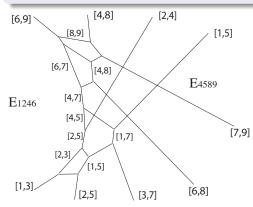


If two adjacent regions are labeled E_I and E_J , then $J = (I \setminus \{i\}) \cup \{j\}$.^a The line-soliton between the regions has slope $\kappa_i + \kappa_j$; label it [i, j].

^aPhase shifts negligable if differences $\kappa_{i+1} - \kappa_i$ are similar and graph on large scale.

Soliton graphs

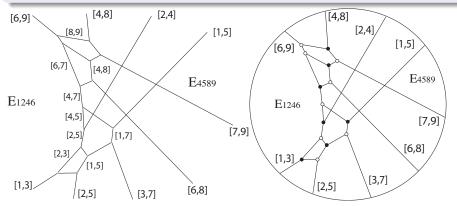
We associate a *soliton graph* $G_t(u_A)$ to a contour plot $C_t(u_A)$ by: forgetting lengths and slopes of edges, and marking a trivalent vertex black or white based on whether it has a unique edge down or up.



Goal: classify soliton graphs.

Soliton graphs

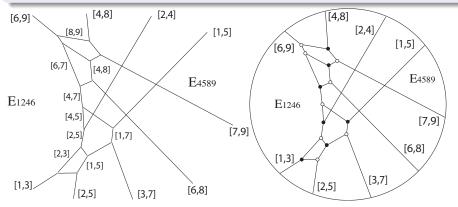
We associate a *soliton graph* $G_t(u_A)$ to a contour plot $C_t(u_A)$ by: forgetting lengths and slopes of edges, and marking a trivalent vertex black or white based on whether it has a unique edge down or up.



Goal: classify soliton graphs.

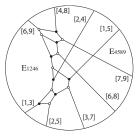
Soliton graphs

We associate a *soliton graph* $G_t(u_A)$ to a contour plot $C_t(u_A)$ by: forgetting lengths and slopes of edges, and marking a trivalent vertex black or white based on whether it has a unique edge down or up.



Goal: classify soliton graphs.

Total positivity on the Grassmannian and KP solitons

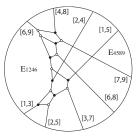


Let A be an element of an (irreducible) positroid cell in $(Gr_{kn})_{\geq 0}$. What can we say about the soliton graph $G_t(u_A)$?

Metatheorem (Kodama-W.)

Which cell A lies in determines the asymptotics of $G_t(u_A)$ as $y \to \pm \infty$ and $t \to \pm \infty$. Use the derangement and \Box -diagram labeling the cell.

Total positivity on the Grassmannian and KP solitons



Let A be an element of an (irreducible) positroid cell in $(Gr_{kn})_{\geq 0}$. What can we say about the soliton graph $G_t(u_A)$?

Metatheorem (Kodama-W.)

Which cell A lies in determines the asymptotics of $G_t(u_A)$ as $y \to \pm \infty$ and $t \to \pm \infty$. Use the derangement and \exists -diagram labeling the cell.

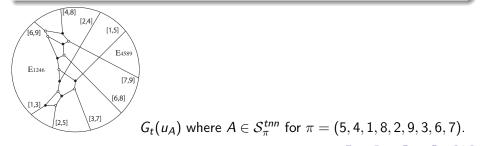
How the positroid cell determines asymptotics at $y \to \pm \infty$

Recall: positroid cells in $(Gr_{kn})_{\geq 0} \leftrightarrow$ derangements $\pi \in S_n$ with k exc.

Theorem (Biondini-Chakravarty, Chakravarty-Kodama + Kodama-W.)

Let A lie in the irreducible positroid cell S_{π}^{tnn} of $(Gr_{kn})_{\geq 0}$.

For any t, the soliton graph $G_t(u_A)$ has precisely: k line-solitons at y >> 0, labeled by the excedances $[i, \pi(i)]$ of π , and n - k line-solitons at y << 0 labeled by the nonexcedances $[i, \pi(i)]$.

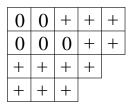


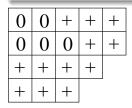
How the positroid cell determines asymptotics at $t ightarrow -\infty$

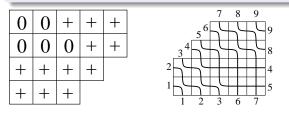
Recall: positroid cells in $(Gr_{k,n})_{\geq 0} \leftrightarrow$ J-diagrams contained in $k \times (n-k)$ rectangle

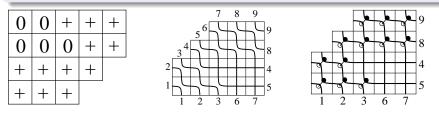
Definition

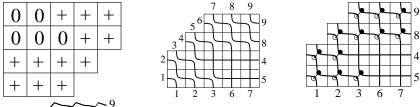
A J-diagram is a filling of the boxes of a Young diagram by +'s and 0's such that: there is no 0 with a + above it in the same column, and a + to its left in the same row.

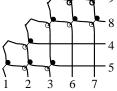






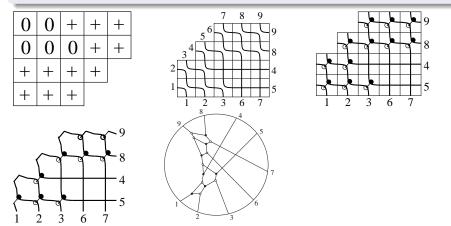






How the positroid cell determines asymptotics at $t ightarrow -\infty$

Theorem (Kodama-W.)



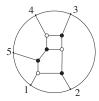
Plabic graphs and soliton graphs

Recall: Positroid cells \leftrightarrow equivalence classes of reduced plabic graphs.

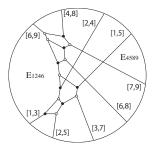
We've seen that derangements and J-diagrams are very useful for understanding soliton graphs. What about plabic graphs?

Definition

A plabic graph is a planar undirected graph G inside a disk with n boundary vertices $1, \ldots, n$ in counterclockwise order around the disk's boundary, such that each boundary vertex *i* is incident to a single edge. Interior vertices are colored black or white.



Soliton graph \rightarrow generalized plabic graph

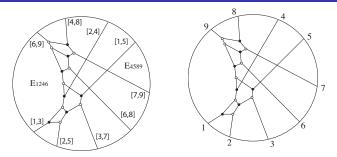


A *generalized plabic graph* is a graph in a disk with *n boundary vertices* 1,..., *n labeled in any order* around the bdry, s.t. each bdry vertex has degree 1. *Two edges may cross.* Interior vertices colored black or white.

Associate a generalized plabic graph to each soliton graph by

- Labeling each bdry vertex incident to the line-soliton $[i, \pi(i)]$ by $\pi(i)$.
- Forgetting the labels of line-solitons and regions.

Soliton graph \rightarrow generalized plabic graph

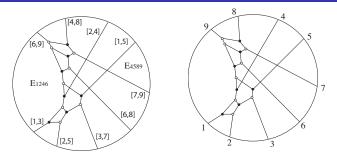


A generalized plabic graph is a graph in a disk with n boundary vertices $1, \ldots, n$ labeled in any order around the bdry, s.t. each bdry vertex has degree 1. Two edges may cross. Interior vertices colored black or white.

Associate a generalized plabic graph to each soliton graph by:

- Labeling each bdry vertex incident to the line-soliton $[i, \pi(i)]$ by $\pi(i)$.
- Forgetting the labels of line-solitons and regions.

Soliton graph \rightarrow generalized plabic graph



A generalized plabic graph is a graph in a disk with n boundary vertices $1, \ldots, n$ labeled in any order around the bdry, s.t. each bdry vertex has degree 1. Two edges may cross. Interior vertices colored black or white.

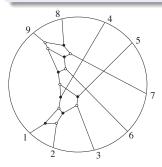
Associate a generalized plabic graph to each soliton graph by:

- Labeling each bdry vertex incident to the line-soliton $[i, \pi(i)]$ by $\pi(i)$.
- Forgetting the labels of line-solitons and regions.

Passing from soliton graph \rightarrow generalized plabic graph does not lose any information!

Theorem (Kodama-W.)

We can reconstruct the labels of line-solitons by following the "rules of the road." From the boundary vertex *i*, turn right at black and left at white. Label each edge along trip with *i*, and each region to the left of trip by *i*.



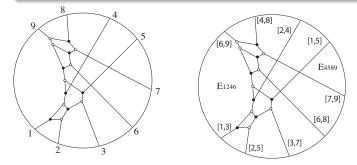
Consequence: can IDENTIFY the soliton graph with its gen. plabic graph $_{\circ}$

Lauren K. Williams (UC Berkeley) KP Solitons, total positivity, cluster algebras

Passing from soliton graph \rightarrow generalized plabic graph does not lose any information!

Theorem (Kodama-W.)

We can reconstruct the labels of line-solitons by following the "rules of the road." From the boundary vertex *i*, turn right at black and left at white. Label each edge along trip with *i*, and each region to the left of trip by *i*.



Consequence: can IDENTIFY the soliton graph with its gen. plabic graph

Lauren K. Williams (UC Berkeley) KP Solitons, total positivity, cluster algebras

Definition (Cluster algebra, cf Fomin and Zelevinsky)

A *cluster algebra* is "a kind of commutative ring with a great deal of structure." It has a distinguished family of generators called *cluster variables*, which are naturally grouped into generating sets called *clusters*.

Can be viewed as kind of discrete dynamical system; close relation with T-systems, Q-systems, etc. Dynamics is governed by *quiver mutation*.

Theorem (J. Scott)

The coordinate ring $\mathbb{C}[Gr_{k,n}]$ of the Grassmannian has a natural cluster algebra structure. The Plücker coordinates comprise some of the cluster variables.

Definition (Cluster algebra, cf Fomin and Zelevinsky)

A *cluster algebra* is "a kind of commutative ring with a great deal of structure." It has a distinguished family of generators called *cluster variables*, which are naturally grouped into generating sets called *clusters*.

Can be viewed as kind of discrete dynamical system; close relation with T-systems, Q-systems, etc. Dynamics is governed by *quiver mutation*.

Theorem (J. Scott)

The coordinate ring $\mathbb{C}[Gr_{k,n}]$ of the Grassmannian has a natural cluster algebra structure. The Plücker coordinates comprise some of the cluster variables.

▲□ ► ▲ □ ► ▲

Definition (Cluster algebra, cf Fomin and Zelevinsky)

A *cluster algebra* is "a kind of commutative ring with a great deal of structure." It has a distinguished family of generators called *cluster variables*, which are naturally grouped into generating sets called *clusters*.

Can be viewed as kind of discrete dynamical system; close relation with T-systems, Q-systems, etc. Dynamics is governed by *quiver mutation*.

Theorem (J. Scott)

The coordinate ring $\mathbb{C}[Gr_{k,n}]$ of the Grassmannian has a natural cluster algebra structure. The Plücker coordinates comprise some of the cluster variables.

Definition (The totally positive Grassmannian $(Gr_{k,n})_{>0}$)

 $(\mathit{Gr}_{k,n})_{>0}$ is the set of $A \in \mathit{Gr}_{k,n}$ s.t. $\Delta_I(A) > 0 \forall I$.

Theorem (Kodama-W.)

Let $A \in (Gr_{k,n})_{>0}$, and consider the soliton graph $G_t(u_A)$. If it is generic (all vertices trivalent), then the set of dominant exponentials labeling $G_t(u_A)$ forms a cluster for the cluster algebra associated to the Grassmannian.

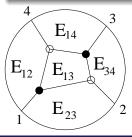
Soliton graphs and clusters

Definition (The totally positive Grassmannian $(Gr_{k,n})_{>0}$)

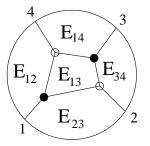
 $(Gr_{k,n})_{>0}$ is the set of $A \in Gr_{k,n}$ s.t. $\Delta_I(A) > 0 \forall I$.

Theorem (Kodama-W.)

Let $A \in (Gr_{k,n})_{>0}$, and consider the soliton graph $G_t(u_A)$. If it is generic (all vertices trivalent), then the set of dominant exponentials labeling $G_t(u_A)$ forms a cluster for the cluster algebra associated to the Grassmannian.



Soliton graphs and cluster algebras



Corollary

Let $A \in (Gr_{k,n})_{>0}$, and consider the soliton graph $G_t(u_A)$. If it is generic then the set of dominant exponentials labeling $G_t(u_A)$ represent a set C of algebraically independent Plücker coordinates. Moreover, every Plücker coordinate can be written as a Laurent polynomial in the elements of C.

Inverse problem

Given a time t together with the contour plot of a soliton solution of KP, can one reconstruct the point of $(Gr_{k,n})_{\geq 0}$ which gave rise to the solution?

Theorem (Kodama-W.)

1. If we know that t << 0 sufficiently small, we can solve the inverse problem, no matter what cell of $(Gr_{k,n})_{\geq 0}$ the element A came from. 2. If the contour plot is generic and came from a point of the TP Grassmannian, we can solve the inverse problem, regardless of time t.

Proof of 1: uses our description of soliton graphs at $t \ll 0$, and work of Kelli Talaska.

Proof of 2: uses result that the set of dominant exponentials labeling such a contour plot forms a cluster in the cluster algebra associated to $Gr_{k,n}$.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Inverse problem

Given a time t together with the contour plot of a soliton solution of KP, can one reconstruct the point of $(Gr_{k,n})_{\geq 0}$ which gave rise to the solution?

Theorem (Kodama-W.)

1. If we know that $t \ll 0$ sufficiently small, we can solve the inverse problem, no matter what cell of $(Gr_{k,n})_{\geq 0}$ the element A came from. 2. If the contour plot is generic and came from a point of the TP Grassmannian, we can solve the inverse problem, regardless of time t.

Proof of 1: uses our description of soliton graphs at $t \ll 0$, and work of Kelli Talaska.

Proof of 2: uses result that the set of dominant exponentials labeling such a contour plot forms a cluster in the cluster algebra associated to $Gr_{k,n}$.

June 2011 23 / 27

A B K A B K

Inverse problem

Given a time t together with the contour plot of a soliton solution of KP, can one reconstruct the point of $(Gr_{k,n})_{\geq 0}$ which gave rise to the solution?

Theorem (Kodama-W.)

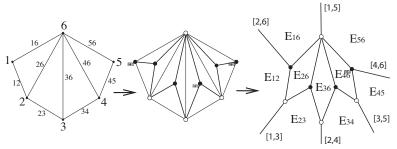
1. If we know that t << 0 sufficiently small, we can solve the inverse problem, no matter what cell of $(Gr_{k,n})_{\geq 0}$ the element A came from. 2. If the contour plot is generic and came from a point of the TP Grassmannian, we can solve the inverse problem, regardless of time t.

Proof of 1: uses our description of soliton graphs at $t \ll 0$, and work of Kelli Talaska.

Proof of 2: uses result that the set of dominant exponentials labeling such a contour plot forms a cluster in the cluster algebra associated to $Gr_{k,n}$.

Application: classification of soliton graphs for $(Gr_{2,n})_{>0}$

Up to graph-isomorphism, the soliton graphs for $(Gr_{2,n})_{>0}$ are in bijection with triangulations of an *n*-gon.

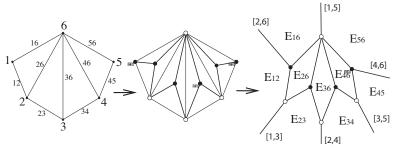


Theorem (Kodama-W.)

Every plabic graph obtained via the above algorithm is a soliton graph $G_t(u_A)$ for some $A \in (Gr_{2,n})_{>0}$. Conversely, all (generic) soliton graphs for $A \in (Gr_{2,n})_{>0}$ can be produced from a triangulation of an n-gon as above.

Application: classification of soliton graphs for $(Gr_{2,n})_{>0}$

Up to graph-isomorphism, the soliton graphs for $(Gr_{2,n})_{>0}$ are in bijection with triangulations of an *n*-gon.

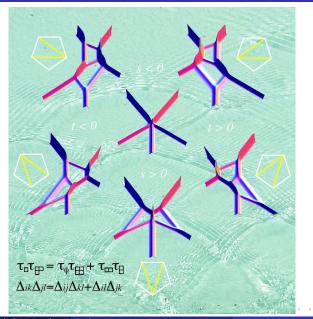


Theorem (Kodama-W.)

Every plabic graph obtained via the above algorithm is a soliton graph $G_t(u_A)$ for some $A \in (Gr_{2,n})_{>0}$. Conversely, all (generic) soliton graphs for $A \in (Gr_{2,n})_{>0}$ can be produced from a triangulation of an n-gon as above.

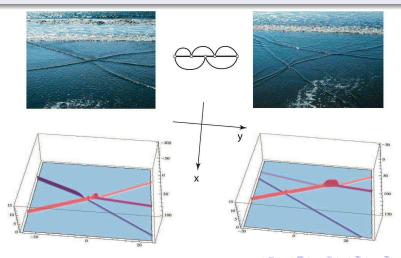
June 2011 24 / 27

Application: classification of soliton graphs for $(Gr_{2,n})_{>0}$



Thanks for listening! (movies?)

- $\bullet~$ KP solitons, total positivity, and cluster algebras (K. + W.), PNAS, May 11, 2011.
- KP solitons and total positivity for the Grassmannian (K. + W.), http://front.math.ucdavis.edu/1106.0023.



Why look at asymptotics as $y \to \pm \infty$ and not $x \to \pm \infty$?

The equation for a line-soliton separating dominant exponentials E_I and E_J is where $I = \{i, m_2, ..., m_k\}$ and $J = \{j, m_2, ..., m_k\}$ is

$$(\kappa_i + \kappa_j)y + (\kappa_i^2 + \kappa_i\kappa_j + \kappa_j^2)t = constant$$

So we may have line-solitons parallel to the *y*-axis, but never to the *x*-axis. (κ_i 's are fixed)