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Introduction

A ring R is (von
Neumann) regular if for
all x ∈ R there is y ∈ R
such that x = xyx. In R
every right ideal is
generated by an
idempotent: xR = (xy)R.
The set L(RR) of
principal right ideals of R
is a lattice, which is
modular and
complemented.
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Von Neumann showed a realization result:

Theorem (Von Neumann coordinatization theorem)
For every complemented modular lattice L with a
“homogeneous basis" of order ≥ 4 there is a regular ring R,
unique up to isomorphism, such that L ∼= L(RR).
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Under the influence of Goodearl and Handelman, the subject
became close to the study of the structure of finitely generated
projective modules over regular rings, and its interconnections
with the ring structure.

K. R. Goodearl, Von Neumann Regular Rings, Pitman, 1979;
second edition, Krieger, 1991.
57 open problems, almost all of them have something to do
with direct sum decomposition properties of projectives
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The Monoid of Projective Modules

Definition
Let R be a ring. The monoid of projective modules, V(R), is the
set of isomorphism classes of finitely generated projective left
R-modules. We endow V(R) with the structure of an abelian
monoid by imposing the operation [P ] + [Q] = [P ⊕Q].
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The Realization Theorem for Hereditary Rings

Theorem (Bergman’74, Bergman-Dicks’78)
Let M be an abelian monoid with a distinguished element
1 6= 0, such that:

1 (∀x, y ∈M)(x+ y = 0)⇒ x = y = 0 (conical).
2 (∀x ∈M)(∃y ∈M,n > 0) such that x+ y = n1 (order-unit).

Then there exists a hereditary K-algebra R, such that
V(R) ∼= M as monoids with order-unit.
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The Realization Problem for Regular Rings

For a regular ring R, V(R) is a refinement monoid.
Let M be an abelian monoid. Then M is a refinement monoid
in case any equality a+ b = c+ d admits a refinement:

c d
a x y
b z t
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Fundamental Open Problem (Goodearl 1995)

What abelian monoids appear as V(R) for a regular ring R?

R1. Realization Problem for von Neumann Regular Rings

Is every refinement conical abelian monoid with order-unit
realizable by a von Neumann regular ring?

R1 is false
F. Wehrung constructed a counterexample of size ℵ2.



Structure of Projectives Quiver Algebras Are graph monoids enough? Separated graphs

Fundamental Open Problem (Goodearl 1995)

What abelian monoids appear as V(R) for a regular ring R?

R1. Realization Problem for von Neumann Regular Rings

Is every refinement conical abelian monoid with order-unit
realizable by a von Neumann regular ring?

R1 is false
F. Wehrung constructed a counterexample of size ℵ2.



Structure of Projectives Quiver Algebras Are graph monoids enough? Separated graphs

Fundamental Open Problem (Goodearl 1995)

What abelian monoids appear as V(R) for a regular ring R?

R1. Realization Problem for von Neumann Regular Rings

Is every refinement conical abelian monoid with order-unit
realizable by a von Neumann regular ring?

R1 is false
F. Wehrung constructed a counterexample of size ℵ2.



Structure of Projectives Quiver Algebras Are graph monoids enough? Separated graphs

Fundamental Open Problem (Goodearl 1995)

What abelian monoids appear as V(R) for a regular ring R?

R1. Realization Problem for von Neumann Regular Rings

Is every refinement conical abelian monoid with order-unit
realizable by a von Neumann regular ring?

R1 is false
F. Wehrung constructed a counterexample of size ℵ2.



Structure of Projectives Quiver Algebras Are graph monoids enough? Separated graphs

Fundamental Open Problem (Goodearl 1995)

What abelian monoids appear as V(R) for a regular ring R?

R2. Realization Problem for von Neumann Regular Rings

Is every countable refinement conical abelian monoid with
order-unit realizable by a von Neumann regular ring?

R1 is false
F. Wehrung constructed a counterexample of size ℵ2.
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Separative Rings

Definition (A, Goodearl, O’Meara, Pardo 1998)
A class C of modules is called separative if for all A,B ∈ C we
have

A⊕A ∼= A⊕B ∼= B ⊕B =⇒ A ∼= B.

A ring R is separative if FP (R) is a separative class.

SP. Separativity Problem for von Neumann Regular Rings

Is every von Neumann regular ring separative?

We have
(R2 has positive answer ) =⇒ (SP has a negative answer ).
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The Definitions

Definition

A quiver (oriented graph) E is a 4-tuple (E0, E1, r, s) where E0

is the set of vertices, E1 is the set of arrows and r, s : E1 → E0

are the incidence maps.

E is row-finite in case |s−1(v)| <∞ for every v ∈ E0.

Definition
A path in a quiver E is either an ordered sequence of arrows
α = e1 · · · en with r(et) = s(et+1) for 1 6 t < n, or a path of
length 0 (trivial path) corresponding to a vertex v ∈ E0.

We denote the set of all paths in E by Path(E).
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Examples

The n-rose quiver, Rn, is given by one vertex and n arrows:

•v e1hh

e2

ss

e3

��

en

RR···

Paths in Rn are words in the set {e1, . . . , en}.
The n-line quiver, An, is the following quiver:

•v1
f1 // •v2

f2 // •v3 // . . . // •vn−1
fn−1 // •vn

Paths in An are sequences fifi+1 · · · fi+k or vertices vi.
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Given a quiver E and a field K, one may associate to it the path
algebra PK(E), but this is not interesting for our purposes:

1 PK(E) is far from being regular.
2 V(PK(E)) = (Z+)(E0) is far from being an interesting

monoid.
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Instead we may associate to a row-finite quiver E the Leavitt
path algebra LK(E) (Abrams-Aranda 2005, A-Moreno-Pardo
2007), which is the K-algebra with generators E0 t E1 t (E1)∗

and relations:
(V) uv = δuvu for all u, v ∈ E0.
(E1) s(e)e = er(e) = e for all e ∈ E1.
(E2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.
(CK1) f∗e = δefr(e) for all e, f ∈ E1.
(CK2) v =

∑
e∈s−1(v) ee

∗ for all v ∈ E0 such that s−1(v) 6= ∅.
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Examples

Examples

For the n-rose quiver we have that PK(Rn) is the free
algebra K〈e1, . . . , en〉.
For the n-line quiver we have that PK(An) is a triangular
matrix ring of size n× n:K . . . K

. . .
...

0 K





Structure of Projectives Quiver Algebras Are graph monoids enough? Separated graphs

Examples

Examples

For the n-rose quiver we have that PK(Rn) is the free
algebra K〈e1, . . . , en〉.
For the n-line quiver we have that PK(An) is a triangular
matrix ring of size n× n:K . . . K

. . .
...

0 K





Structure of Projectives Quiver Algebras Are graph monoids enough? Separated graphs

Examples

For the n-rose quiver we have that LK(Rn) is the classical
Leavitt algebra of type (1,n)

L(1, n) = K〈x1, . . . , xn, y1, . . . , yn | yixj = δi,j ,

n∑
i=1

xiyi = 1〉

For the n-line quiver we have that LK(An) is a full matrix
ring of size n× n: K . . . K

...
. . .

...
K . . . K
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The Monoid of a row-finite Quiver

For a row-finite quiver E, let M(E) be the abelian monoid
generated by {av | v ∈ E0}, with the relations

av =
∑

{e∈E1|s(e)=v}

ar(e) for every v ∈ E0 with s−1(v) 6= ∅.

Theorem (Ara, Moreno, Pardo’07)
For every row-finite graph E there is a natural isomorphism

M(E) ∼= V(LK(E)).
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Examples

For the quiver An, we have M(An) = 〈a |〉 = Z+.

More generally, if E if finite and has no oriented cycles, then

M(E) = (Z+)r,

where r is the number of sinks of E.

For the quiver Rn, we have M(Rn) = 〈a | a = na〉.
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Examples

For the quiver An, we have M(An) = 〈a |〉 = Z+.

More generally, if E if finite and has no oriented cycles, then

M(E) = (Z+)r,

where r is the number of sinks of E.

For the quiver Rn, we have M(Rn) = 〈a | a = na〉.
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Theorem (Ara, Moreno, Pardo’07)

The monoid M(E) is a conical refinement monoid.

However LK(E) is in general not a regular ring. In fact by
results of Abrams and Rangaswami,

LK(E) regular ⇐⇒ E is acyclic .

Idea: To embed LK(E) into a “quotient ring" which is regular.
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The Diagram

K //

��

K[x]

K[x−1]

K(E0) //

��

P(E)

P(E∗)
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The Algebra of Formal Power Series of a Quiver

The augmentation homomorphism ε : P(E)→ K(E0) ⊆ P(E) is
defined by ε

(∑
γ∈E∗ λγγ

)
=
∑

γ∈E0 λγγ.

Definition
Let I = ker(ε) be the augmentation ideal of P(E). Then the
formal power series algebra of the quiver E, P ((E)), is the
I-adic completion of P(E), that is P ((E)) ∼= lim←−P(E)/In.

Remark
An element in P ((E)) can be written in a unique way as a
possibly infinite sum

∑
γ∈Path(E) λγγ with λγ ∈ K.

We will identify P(E) with its image in P ((E)).
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Examples

Examples

For the n-rose quiver we have that P ((Rn)) is the (usual)
formal power series algebra K〈〈e1, . . . , en〉〉.
For the n-line quiver the augmentation ideal is:

0 K . . . K
...

. . .
...

...
. . . K

0 . . . . . . 0

 ,

which is a nilpotent ideal, so P ((An)) = P(An).
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The Algebra of Rational Series of a Quiver

Given a ring S and a subring R ⊆ S, we denote by Σ(R ⊆ S)
the set of all square matrices over R which are invertible over S.

Definition
A subring R ⊆ S is rationally closed in S if
Σ(R ⊆ S) = GL(R), that is, if GL(R) = M(R) ∩GL(S).
Given a subring R ⊆ S the rational closure of R in S is the
smallest subring of S containing R and rationally closed.

Definition
The algebra of rational series of the quiver E, Prat(E), is the
rational closure of P(E) in P ((E)).
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Examples

Examples

For the n-rose quiver we have that Prat(Rn) is the algebra
of non-commutative rational series Krat〈e1, . . . , en〉.
For the n-line quiver we have that Prat(An) = P(An).
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The Universal Localization

Let R be a ring and Σ a set of homomorphisms in the category
of finitely generated projective left R-modules. We say that a
ring homomorphism f : R→ S is Σ-inverting if for every α ∈ Σ,
α⊗f S is invertible.

Definition
Let R be a ring and Σ a set of homomorphisms in the category
of f.g. projective left R-modules. The universal localization of R
is a ring Σ−1R with a ring homomorphism λΣ : R→ Σ−1R such
that is universal Σ-inverting.

Theorem (A-Brustenga 2007)

Let Σ = Σ (P(E) ⊆ P ((E))). Then Prat(E) coincides with the
universal localization of P(E) with respect to Σ.
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The Diagram II

We have a commutative diagram:

K(E0) //

��

P (E)
ιΣ //

��

Prat(E) //

��

P ((E))

��
P (E∗) // L(E)

ιΣ // Q(E) // U(E),

Q(E) = Σ−1L(E) is the regular algebra of the quiver E

U(E) is the Tyukavkin algebra of the quiver E.
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The Regular Algebra of a Quiver

Theorem (A-Brustenga, 2007)

Let E be a row-finite quiver. Then Q(E) and U(E) are von
Neumann regular rings.

Theorem (A-Brustenga 2007)

There are canonical isomorphisms M(E) ∼= V(Q(E)) and
M(E) ∼= V(U(E)).
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The Diagram of Monoids

In summary, we have the following:

(Z+)d ∼=V(P(E))
∼=−−−−→ V(Prat(E))

∼=−−−−→ V(P ((E)))y y y
M(E) ∼=V(L(E))

∼=−−−−→ V(Q(E))
∼=−−−−→ V(U(E))
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Graph monoids: a large class, but not big enough

Theorem (Brookfield 2001)
If M is a finitely generated refinement monoid then M is
separative.

Since every graph monoid (of a row-finite graph) is a direct limit
of finitely generated graph monoids, we get

Corollary
Every graph monoid is separative.

But there are even finitely generated conical refinement
monoids which are not graph monoids.
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An example

The simplest refinement monoid which is not a graph monoid is
the following [A, Perera, Wehrung, 2008]:

M = 〈p, a, b | p = p+ a = p+ b〉.

p

����������

��=======

a b

Nevertheless, this example (and many other f.g. examples) can
be realized by regular rings [A, 2010]
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Separated graphs (joint work with Ken Goodearl)

Definition
A separated graph is a pair (E,C) where E is a graph,
C =

⊔
v∈E0 Cv, and Cv is a partition of s−1(v) (into pairwise

disjoint nonempty subsets) for every vertex v:

s−1(v) =
⊔

X∈Cv

X.

(In case v is a sink, we take Cv to be the empty family of
subsets of s−1(v).)
The constructions we introduce revert to existing ones in case
Cv = {s−1(v)} for each v ∈ E0. We refer to a non-separated
graph in that situation.
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The Leavitt path algebra of a separated graph

Definition

The Leavitt path algebra of the separated graph (E,C) with
coefficients in the field K, is the K-algebra LK(E,C) with
generators {v, e, e∗ | v ∈ E0, e ∈ E1}, subject to the following
relations:

(V) vv′ = δv,v′v for all v, v′ ∈ E0 ,
(E1) s(e)e = er(e) = e for all e ∈ E1 ,
(E2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1 ,
(SCK1) e∗e′ = δe,e′r(e) for all e, e′ ∈ X, X ∈ C, and
(SCK2) v =

∑
e∈X ee

∗ for every finite set X ∈ Cv, v ∈ E0.
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For a row-finite quiver E, the Leavitt path algebra LK(E) is just
LK(E,C) where Cv = {s−1(v)} if s−1(v) 6= ∅ and Cv = ∅ if
s−1(v) = ∅.

Despite the great similarity in the definitions, the Leavitt path
algebras of separated graphs encompase a much larger class
of algebras than Leavitt path algebras do, for instance free
products of Leavitt path algebras and algebras closely related
to the Leavitt algebras LK(m,n) for 1 < m ≤ n.
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Example

Assume that (E,C) is a separated graph and that |E0| = 1.
Then we have

LK(E,C) ∼= ∗X∈C LK(|X|),

that is, LK(E,C) is a free product over K of classical Leavitt
algebras of type (1, |X|), for X ∈ C.
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Leavitt (1962) defined algebras LK(m,n) for 1 ≤ m ≤ n in the
following way:
LK(m,n) is the K-algebra with generators

{Xji, X
∗
ji : 1 ≤ j ≤ m, 1 ≤ i ≤ n}

and defining relations:

XX∗ = Im, X∗X = In,

where X = (Xji).
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Example
Let 1 ≤ m ≤ n. Let us consider the separated graph
(E(m,n), C(m,n)), where E(m,n) is the graph consisting of
two vertices v, w and with

E(m,n)1 = {α1, . . . , αn, β1, . . . , βm},

with s(αi) = s(βj) = v and r(αi) = r(βj) = w for all i, j, and
C(m,n) consists of two elements X = {α1, . . . , αn} and
Y = {β1, . . . , βm}.

Write
Am,n := L(E(m,n), C(m,n)).
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v

w

Figure: The separated graph (E(2, 3), C(2, 3))
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As remarked by E. Pardo, we have

Lemma
There is a natural isomorphism

γ : L(m,n)→ wAm,nw

given by
γ(Xji) = β∗jαi, γ(X∗ji) = α∗i βj

Note that

γ(
n∑
i=1

XjiX
∗
ki) =

n∑
i=1

β∗jαiα
∗
i βk = β∗j βk = δjkw

and similarly γ(
∑m

j=1X
∗
jiXjk) = δikw so γ is a well-defined

homomorphism, which is shown to be an isomorphism.
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Since v ∼ n · w ∼ m · w, we get from the above

Am,n ∼= Mn+1(wAm,nw) ∼= Mn+1(L(m,n)) ∼= Mm+1(L(m,n)).
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Definition
(E,C) is finitely separated in case |X| <∞ for all X ∈ C.

Definition
Let (E,C) be a finitely separated graph. The monoid of (E,C)
is the abelian monoid M(E,C) with generators {av | v ∈ E0}
and relations

av =
∑
e∈X

ar(e), ∀X ∈ Cv,∀v ∈ E0.

Theorem
If (E,C) is a finitely separated graph then

V(LK(E,C)) ∼= M(E,C).
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Proposition
If M is any conical abelian monoid, then there exists a finitely
separated graph (E,C) such that

M ∼= M(E,C) ∼= V(LK(E,C)).
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Example

In the example M = 〈a, b | 2a = a+ 2b〉, we have two
generators a, b and one relation R : 2a = a+ 2b.

R

a b

Figure: M(E,C) = 〈R, a, b | R = 2a,R = a+ 2b〉 ∼= M .
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Definition (Wehrung)
A monoid homomorphism ψ : M → F is unitary provided

1 ψ is injective;
2 ψ(M) is cofinal in F , that is, for each u ∈ F there is some
v ∈M with u ≤ ψ(v);

3 whenever u, u′ ∈M and v ∈ F with ψ(u) + v = ψ(u′), we
have v ∈ ψ(M).
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Embedding separated graph monoids into refinement
separated graph monoids

Theorem
Given a finitely separated graph (E,C) there exists another
separated graph (E+, C

+) and a suitable embedding of
separated graphs ι : (E,C)→ (E+, C

+) such that:
1 M(E+, C

+) is a refinement monoid.
2 M(ι) : M(E,C)→M(E+, C

+) is a unitary embedding.
3 L(ι) : LK(E,C)→ LK(E+, C

+) is an algebra embedding.
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Unfortunately, LK(E,C) is not a regular ring even when
M(E,C) ∼= V(LK(E,C)) is a refinement monoid.

What about embedding it into a suitable universal localization?

We don’t know, but a first difficulty is that although LK(E,C) is
generated by partial isometries (elements w such that
w = ww∗w), since e = ee∗e and e∗ = e∗ee∗ ∀e ∈ E1, the
products of these generators are not partial isometries in
general. (Although are so in the non-separated case.)
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Strategy:
1 To create a new algebra R from LK(E,C) such that all

monomials of R are partial isometries.
2 To find a suitable set Σ so that the universal localization

Σ−1R is regular.
3 Of course, with controlled monoids!
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Thank you very much for your attention!!!
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