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Aims: to present some results from the Poisson side that
can help to predict outcomes on the quantized side for
particular algebras, and to illustrate this with a “new”
example.
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Poisson algebras and ideals

Poisson algebra: commutative finitely generated
C-algebra A with {−,−} : A × A→ A, such that

A is a Lie algebra under {−,−},
each {a,−} is a derivation of A.

Poisson ideal: ideal I of A with {i ,a} ∈ I for all
i ∈ I,a ∈ A.
A/I is then a Poisson algebra in the obvious way.
Poisson prime ideal: prime and Poisson ideal;
equivalently, Poisson ideal P such that IJ ⊆ P, I, J
Poisson⇒ I ⊆ P or J ⊆ P.
Poisson maximal: maximal and Poisson . maximal
Poisson (maximal as a Poisson ideal).
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Poisson modules

Let A be a Poisson algebra with Poisson bracket {−,−}.
An A-module a Poisson module if it is also a Lie module,
with

{−,−}M : A ×M → M ,

and derivation-like compatibility conditions hold for

{−,m}M : A→ M

and
{a,−}M : M → M .

(Farkas, Oh)



Determination of fin. dim. simple Poisson
modules (J, 2009)

Let A be a Poisson algebra and let J be a Poisson
maximal ideal. Then J/J2 has a Lie algebra structure
given by
[j1 + J2, j2 + J2] = {ji , j2}+ J2.
Theorem Let A be a Poisson algebra. Up to isomorphism
classes, there is a dimension-preserving bijection
between finite-dimensional simple Poisson modules and
pairs (J ,M) where J is a Poisson maximal ideal of A and
M is a finite-dimensional simple J/J2-module.



Determination of fin. dim. simple Poisson
modules (J, 2009)

Let A be a Poisson algebra and let J be a Poisson
maximal ideal. Then J/J2 has a Lie algebra structure
given by
[j1 + J2, j2 + J2] = {ji , j2}+ J2.
Theorem Let A be a Poisson algebra. Up to isomorphism
classes, there is a dimension-preserving bijection
between finite-dimensional simple Poisson modules and
pairs (J ,M) where J is a Poisson maximal ideal of A and
M is a finite-dimensional simple J/J2-module.



Quantizations and deformations

Let T be a C-algebra with a central non-unit
non-zero-divisor t such that A := T/tT is commutative.
Then [−,−] in T induces a well-defined Poisson bracket
{−,−} on A by the rule

{α, β} = t−1[α, β].

For this half hour, T is a quantization of the Poisson
algebra A and a C-algebra of the form Tλ := T/(t − λ)T ,
where λ ∈ C is such that t − λ is a non-unit in T , is a
deformation of A.



Quantizations and deformations

Let T be a C-algebra with a central non-unit
non-zero-divisor t such that A := T/tT is commutative.
Then [−,−] in T induces a well-defined Poisson bracket
{−,−} on A by the rule

{α, β} = t−1[α, β].

For this half hour, T is a quantization of the Poisson
algebra A and a C-algebra of the form Tλ := T/(t − λ)T ,
where λ ∈ C is such that t − λ is a non-unit in T , is a
deformation of A.



Case study

Let A = C[x , y , z] with the Poisson bracket

{x , y } = 2xy − 2,
{y , z} = 2yz − 2,
{z, x} = 2zx − 2.

Call this F3; it is the first in a family F2n+1, n ≥ 1 discussed
in Fordy, arXiv:1003.3952v1 (in the context of integrable
systems and the Bullough diagram).
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Deformation

Let F3 be the C-algebra generated by x , y , z subject to:

xy − q2yx = 1 − q2,

yz − q2zy = 1 − q2,

zx − q2xz = 1 − q2,

equivalently

xy − yx = (q − 1)(q + 1)(yx − 1),

yz − zy = (q − 1)(q + 1)(zy − 1),

zx − xz = (q − 1)(q + 1)(xz − 1).

This is a deformation of F3 and contains three quantized
Weyl algebras Aq2

1 in a cyclic pattern.
F3 is the first in a family F2n+1, n ≥ 1.
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F3 and A1[t ]

When q2 , 1, the relations for F3 can, by changing
generators, be rewritten

xy − q2yx = 1,
yz − q2zy = 1,
zx − q2xz = 1.

When q = 1, F3 is a skew polynomial ring over the Weyl
algebra A1 by an inner derivation so it is isomorphic to the
polynomial ring A1[t ]. So, in an informal sense, F3 is a
deformation of A1[t ].
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Questions for F3

From now on q ,
√

1.

What is the prime spectrum of F3?
What are the finite-dimensional simple F3-modules?

We expect these to reflect the Poisson spectrum of F3 and
the finite-dimensional simple Poisson F3-modules.

For R = Aq2

1 , the prime spectrum is
0;
dR = Rd (d = xy − 1);
dR + (x − λ)R, 0 , λ ∈ C

and the fin. dim simple modules are 1-dimensional
parametrized by C∗.
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Folklore: Poisson brackets on C[x , y , z]

Let {−,−} be a Poisson bracket on A = C[x , y , z]. There
exist a completion Â of A at a maximal ideal and a,b ∈ Â
such that

{x , y } = baz ∈ A (az := ∂a/∂z),

{y , z} = bax ∈ A,
{z, x} = bay ∈ A.



Examples

a = λ log x + ρ log y + µ log z, b = xyz;
{x , y } = µxy , {y , z} = λyz, {z, x} = ρxz.
a = yα+1, b = xy−α, α ∈ C;
{x , y } = 0, {y , z} = y , {z, x} = −αx .
a = s/t , s, t ∈ A, t , 0, b = t2;
{x , y } = tsz − stz , {y , z} = tsx − stx , {z, x} = tsy − sty .

Call the last type rational. When t = 1, so that
{x , y } = sz , {y , z} = sx , {z, x} = sy , it is exact or Jacobian.
In the exact case s is Poisson central, {s,−} = 0.
F3 is exact with s = 2(xyz − x − y − z).
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Theorem (J, 201?): Poisson spectrum for
rational brackets

Let s, t ∈ A\{0} be coprime and let a = st−1
∈ C(x , y , z).

Then the Poisson prime ideals for A under the rational
bracket determined by a are

0;
those prime ideals P of A such that
{x , y }, {y , z}, {z, x} ∈ P (the Poisson bracket on A/P is
0 for these);
the height one prime ideals pA, where p is an
irreducible factor in A of λs + µt , for some λ, µ ∈ C
such that λs + µt is a non-unit.
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Poisson spectrum of F3

The Poisson prime ideals of F3 are:
0,
height one: (xyz − x − y − z − λ)A, λ ∈ C.
Two Poisson maximal ideals :
J1 := (x − 1)A + (y − 1)A + (z − 1)A and
J2 := (x + 1)A + (y + 1)A + (z + 1)A.

Finite-dimensional simple Poisson modules for F3:
Both J1/J2

1 and J2/J2
2 are isomorphic to sl2 so F3 has two

n-dimensional simple Poisson modules for each n ≥ 1.
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Finite-dimensional simple (left) F3-modules
(R := Aq2

1 ) Every finite-dimensional simple (left) R-module
is isomorphic to R/(R(x − λ−1) + R(y − λ)), λ ∈ C∗. Every
finite-dimensional simple F3-module contains one of
these.
Let Mλ = F3/(F3(x − λ−1) + F3(y − λ)).

As a C[z]-module, Mλ ' C[z].
If λ , ±qm for all m ≥ 0 then Mλ is simple.
If λ = qn−1, n ≥ 1 and
fn(z) = (z − qn−1)(z − qn−3)...(z − q3−n)(z − q1−n) then
xfn = q−(n+1)fn, yfn = qn+1fn and
Nn := F3/(F3(x − q1−n) + F3(y − qn−1) + F3fn(z)) is
simple n-dimensional.
If λ = −qn−1 there is a similar n-dimensional simple
N ′n.
Every fin. dim. F3-module is isomorphic to Nn or N ′n.



Finite-dimensional simple (left) F3-modules
(R := Aq2

1 ) Every finite-dimensional simple (left) R-module
is isomorphic to R/(R(x − λ−1) + R(y − λ)), λ ∈ C∗. Every
finite-dimensional simple F3-module contains one of
these.
Let Mλ = F3/(F3(x − λ−1) + F3(y − λ)).

As a C[z]-module, Mλ ' C[z].
If λ , ±qm for all m ≥ 0 then Mλ is simple.
If λ = qn−1, n ≥ 1 and
fn(z) = (z − qn−1)(z − qn−3)...(z − q3−n)(z − q1−n) then
xfn = q−(n+1)fn, yfn = qn+1fn and
Nn := F3/(F3(x − q1−n) + F3(y − qn−1) + F3fn(z)) is
simple n-dimensional.
If λ = −qn−1 there is a similar n-dimensional simple
N ′n.
Every fin. dim. F3-module is isomorphic to Nn or N ′n.



Finite-dimensional simple (left) F3-modules
(R := Aq2

1 ) Every finite-dimensional simple (left) R-module
is isomorphic to R/(R(x − λ−1) + R(y − λ)), λ ∈ C∗. Every
finite-dimensional simple F3-module contains one of
these.
Let Mλ = F3/(F3(x − λ−1) + F3(y − λ)).

As a C[z]-module, Mλ ' C[z].
If λ , ±qm for all m ≥ 0 then Mλ is simple.
If λ = qn−1, n ≥ 1 and
fn(z) = (z − qn−1)(z − qn−3)...(z − q3−n)(z − q1−n) then
xfn = q−(n+1)fn, yfn = qn+1fn and
Nn := F3/(F3(x − q1−n) + F3(y − qn−1) + F3fn(z)) is
simple n-dimensional.
If λ = −qn−1 there is a similar n-dimensional simple
N ′n.
Every fin. dim. F3-module is isomorphic to Nn or N ′n.



Finite-dimensional simple (left) F3-modules
(R := Aq2

1 ) Every finite-dimensional simple (left) R-module
is isomorphic to R/(R(x − λ−1) + R(y − λ)), λ ∈ C∗. Every
finite-dimensional simple F3-module contains one of
these.
Let Mλ = F3/(F3(x − λ−1) + F3(y − λ)).

As a C[z]-module, Mλ ' C[z].
If λ , ±qm for all m ≥ 0 then Mλ is simple.
If λ = qn−1, n ≥ 1 and
fn(z) = (z − qn−1)(z − qn−3)...(z − q3−n)(z − q1−n) then
xfn = q−(n+1)fn, yfn = qn+1fn and
Nn := F3/(F3(x − q1−n) + F3(y − qn−1) + F3fn(z)) is
simple n-dimensional.
If λ = −qn−1 there is a similar n-dimensional simple
N ′n.
Every fin. dim. F3-module is isomorphic to Nn or N ′n.



Finite-dimensional simple (left) F3-modules
(R := Aq2

1 ) Every finite-dimensional simple (left) R-module
is isomorphic to R/(R(x − λ−1) + R(y − λ)), λ ∈ C∗. Every
finite-dimensional simple F3-module contains one of
these.
Let Mλ = F3/(F3(x − λ−1) + F3(y − λ)).

As a C[z]-module, Mλ ' C[z].
If λ , ±qm for all m ≥ 0 then Mλ is simple.
If λ = qn−1, n ≥ 1 and
fn(z) = (z − qn−1)(z − qn−3)...(z − q3−n)(z − q1−n) then
xfn = q−(n+1)fn, yfn = qn+1fn and
Nn := F3/(F3(x − q1−n) + F3(y − qn−1) + F3fn(z)) is
simple n-dimensional.
If λ = −qn−1 there is a similar n-dimensional simple
N ′n.
Every fin. dim. F3-module is isomorphic to Nn or N ′n.



Finite-dimensional simple (left) F3-modules
(R := Aq2

1 ) Every finite-dimensional simple (left) R-module
is isomorphic to R/(R(x − λ−1) + R(y − λ)), λ ∈ C∗. Every
finite-dimensional simple F3-module contains one of
these.
Let Mλ = F3/(F3(x − λ−1) + F3(y − λ)).

As a C[z]-module, Mλ ' C[z].
If λ , ±qm for all m ≥ 0 then Mλ is simple.
If λ = qn−1, n ≥ 1 and
fn(z) = (z − qn−1)(z − qn−3)...(z − q3−n)(z − q1−n) then
xfn = q−(n+1)fn, yfn = qn+1fn and
Nn := F3/(F3(x − q1−n) + F3(y − qn−1) + F3fn(z)) is
simple n-dimensional.
If λ = −qn−1 there is a similar n-dimensional simple
N ′n.
Every fin. dim. F3-module is isomorphic to Nn or N ′n.



Finite-dimensional simple (left) F3-modules
(R := Aq2

1 ) Every finite-dimensional simple (left) R-module
is isomorphic to R/(R(x − λ−1) + R(y − λ)), λ ∈ C∗. Every
finite-dimensional simple F3-module contains one of
these.
Let Mλ = F3/(F3(x − λ−1) + F3(y − λ)).

As a C[z]-module, Mλ ' C[z].
If λ , ±qm for all m ≥ 0 then Mλ is simple.
If λ = qn−1, n ≥ 1 and
fn(z) = (z − qn−1)(z − qn−3)...(z − q3−n)(z − q1−n) then
xfn = q−(n+1)fn, yfn = qn+1fn and
Nn := F3/(F3(x − q1−n) + F3(y − qn−1) + F3fn(z)) is
simple n-dimensional.
If λ = −qn−1 there is a similar n-dimensional simple
N ′n.
Every fin. dim. F3-module is isomorphic to Nn or N ′n.



Prime spectrum of F3

0;
(D − ρ)F3, where ρ ∈ C and

D = xyz − x − q2y − z
= yzx − y − q2z − x
= zxy − z − q2x − y ,

which is central.
The annihilators of Nn and N ′n, n ≥ 1.

Methods:
localization to get a 3-dimensional quantum torus in
x , d = xy − 1 and D = dz − x − q2y .
checking that any prime containing (xy − 1)n, (yz − 1)n

and (zx − 1)n for some n has finite codimension.
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