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Aims: to present some results from the Poisson side that
can help to predict outcomes on the quantized side for
particular algebras, and to illustrate this with a “new”
example.
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Poisson algebras and ideals

@ Poisson algebra: commutative finitely generated
C-algebra A with {—,—} : AX A — A, such that
e Ais a Lie algebra under {—, -},
@ each {a,—} is a derivation of A.

@ Poisson ideal: ideal I of A with {/, a} € I for all
i€l aeA.
A/l is then a Poisson algebra in the obvious way.
@ Poisson prime ideal: prime and Poisson ideal;

equivalently, Poisson ideal P suchthat I C P, I,J
Poisson=/C PorJC P.

@ Poisson maximal: maximal and Poisson # maximal
Poisson (maximal as a Poisson ideal).



Poisson modules

Let A be a Poisson algebra with Poisson bracket {—, —}.
An A-module a Poisson module if it is also a Lie module,
with

=, =lm:AXM—-> M,

and derivation-like compatibility conditions hold for
(- my:A->M

and
{a, =ty : M- M.

(Farkas, Oh)



Determination of fin. dim. simple Poisson
modules (J, 2009)

Let A be a Poisson algebra and let J be a Poisson
maximal ideal. Then J/J? has a Lie algebra structure
given by

[ + S+ J2] = {i, o} + J2.



Determination of fin. dim. simple Poisson
modules (J, 2009)

Let A be a Poisson algebra and let J be a Poisson
maximal ideal. Then J/J? has a Lie algebra structure
given by

Ui + 2, o + 2] = {ji, o} + S

Theorem Let A be a Poisson algebra. Up to isomorphism
classes, there is a dimension-preserving bijection
between finite-dimensional simple Poisson modules and
pairs (J, M) where J is a Poisson maximal ideal of A and
M is a finite-dimensional simple J/J2-module.



Quantizations and deformations

Let T be a C-algebra with a central non-unit
non-zero-divisor t such that A := T/tT is commutative.
Then [—,—] in T induces a well-defined Poisson bracket
{—,—} on A by the rule

{alg} - t_1 [a’ﬁ]‘



Quantizations and deformations

Let T be a C-algebra with a central non-unit
non-zero-divisor t such that A := T/tT is commutative.
Then [—,—] in T induces a well-defined Poisson bracket
{—,—} on A by the rule

{alg} - t_1 [a’ﬁ]‘

For this half hour, T is a quantization of the Poisson
algebra A and a C-algebra of the form T, := T/(t - A)T,
where A € Cis such that t — A is a non-unitin T, is a
deformation of A.



Let A = Clx, y, z] with the Poisson bracket

x,yb = 2xy-2,
y, z}

V4
{z,x}

2yz -2,
= 2zx - 2.
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Case study

Let A = Clx, y, z] with the Poisson bracket

y} = 2xy -2,
ly,z} = 2yz-2,

{z,x} = 2zx-2.
Call this F3; it is the first in a family Fo,.1, n > 1 discussed

in Fordy, arXiv:1003.3952v1 (in the context of integrable
systems and the Bullough diagram).



Let #3 be the C-algebra generated by x, y, z subject to:

Xy —-q’yx = 1-¢,
yz-qzy = 1-¢,
X —-¢Pxz = 1-¢°,
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Deformation
Let 73 be the C-algebra generated by x, y, z subject to:

Xy-qyx = 1-¢,
yz-qzy = 1-¢,
zx—g?xz = 1-¢2,

equivalently

xy—yx = (g=1)(q+1)(yx-1),
yz—zy = (q-1)(q+1)(zy-1)
zx—-xz = (g-1)(g+1)(xz—-1).
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Deformation
Let 73 be the C-algebra generated by x, y, z subject to:

Xy-qyx = 1-¢,
yz-qzy = 1-¢,
zx—g?xz = 1-¢2,

equivalently
xy—yx = (q=1)(g+1)(yx-1),

yz—zy = (q-1)(q+1)(zy-1)
zx—-xz = (g-1)(g+1)(xz—-1).

This is a deformation of F3 and contains three quantized
2

Weyl algebras A7 in a cyclic pattern.

F3 is the first in a family F2,.1, n > 1.



When g2 # 1, the relations for #3 can, by changing
generators, be rewritten

Xy —qyx = 1,
yz-q’zy = 1,

X —-¢Pxz = 1
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% and A [t]

When g2 # 1, the relations for #3 can, by changing
generators, be rewritten

Xy -qyx =1,
yz-q°zy =1,
zx —g?xz = 1.

When q = 1, F3 is a skew polynomial ring over the Weyl
algebra A; by an inner derivation so it is isomorphic to the
polynomial ring A:[t]. So, in an informal sense, 73 is a
deformation of A [f].
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@ What is the prime spectrum of 737
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Questions for ¥3

From now on g # V1.

@ What is the prime spectrum of #3?
@ What are the finite-dimensional simple ¥3-modules?

We expect these to reflect the Poisson spectrum of F3 and
the finite-dimensional simple Poisson F3-modules.

For R = Aj’z, the prime spectrum is
e 0;
@ dR=Rd (d=xy-1);
@ dR+(x-A)R, 0+ A eC

and the fin. dim simple modules are 1-dimensional
parametrized by C*.



Folklore: Poisson brackets on C[x, y, Z]

Let {—, —} be a Poisson bracket on A = C|x, y, z|. There
exist a completion A of A at a maximal idealand a,be A
such that

x,y} = ba,eA (a,:=daldz),
ly,z} = bayeA,
{z,x} = ba, €A



@ a=Alogx +plogy +ulogz, b= xyz;
X, ¥y} =uxy,y,z} = Ayz,{z,x} = pxz.
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@ a=Alogx +plogy +ulogz, b= xyz;
x,y} = uxy {y, z} = Ayz,{z, x} = pxz.
@ a=y""" b=xy " acC;

{X/y} = 0/ {y,Z} = y,{Z,X} = —aX
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Examples

@ a=Alogx +plogy +ulogz, b= xyz;
x,y} = uxy,\y,z} = Ayz,{z, x} = pxz.
° a:y““,b:xy‘“,ae(ﬁ;
x,y}=01y,z} = y,{z,x} = —ax.
@ a=35/t, s,teA t+0, b=t
{x,y} =ts, — st;, |y, z} = tsx — sy, {z, x} = ts, — st,.

Call the last type rational. When t = 1, so that

x,yl =581y, 2} = sy, 1z, x} = s, itis exact or Jacobian.
In the exact case s is Poisson central, {s,—} = 0.

F; is exact with s = 2(xyz —x -y — z).
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Theorem (J, 2017?): Poisson spectrum for
rational brackets

Let s, t € A\{0} be coprime and let a= st~ € C(x, y, 2).
Then the Poisson prime ideals for A under the rational
bracket determined by a are

@ 0;
@ those prime ideals P of A such that

{x,y},{y, z},{z, x} € P (the Poisson bracket on A/P is
0 for these);

@ the height one prime ideals pA, where p is an
irreducible factor in A of As + ut, for some A, u € C
such that As + ut is a non-unit.



The Poisson prime ideals of F3 are:
e 0,
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The Poisson prime ideals of F3 are:
e 0,

@ heightone: (xyz—x-y-z-21)A, AeC.
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Poisson spectrum of Fj3

The Poisson prime ideals of F3 are:
e 0,
@ heightone: (xyz-x—-y—-z—-A)A, A eC.
@ Two Poisson maximal ideals :
J=(x-1NA+(y-1)A+(z-1)Aand
b= (x+1)A+(y +1)A+(z+1)A



Poisson spectrum of Fj3

The Poisson prime ideals of F3 are:
e 0,
@ heightone: (xyz-x—-y—-z—-A)A, A eC.
@ Two Poisson maximal ideals :
J=(x-1NA+(y-1)A+(z-1)Aand
b= (x+1)A+(y +1)A+(z+1)A

Finite-dimensional simple Poisson modules for F3:
Both J;/J? and J,/J3 are isomorphic to sl; so F3 has two
n-dimensional simple Poisson modules for each n > 1.



Finite-dimensional simple (left) ¥3-modules
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finite-dimensional simple ¥3-module contains one of
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Finite-dimensional simple (left) ¥3-modules

(R:= Aj’z) Every finite-dimensional simple (left) R-module
is isomorphic to R/(R(x — A™") + R(y — A)), A € C*. Every
finite-dimensional simple ¥3-module contains one of
these.
Let My = Fa/(Fa(x — A™") + Faly - A)).
@ As a C[z]-module, M, ~ C[z].
@ If A # +q™ for all m > 0 then M, is simple.
@ lfA=qg™', n>1and
fr(2) = (2-q"")(z2-9"°)..(z— ¢°")(z2— q'™") then
xf, = g ("D, yf, = g™ f, and
Np = Fa/(Fa(x = @) + Fa(y — @) + Fafo(2)) is
simple n-dimensional.
@ If A = —q"" there is a similar n-dimensional simple
N;.
@ Every fin. dim. #3-module is isomorphic to N, or N;.



e 0;
® (D - p)¥s, where p € C and

D = xyz—-x-qg°y -z
yzX —y — q°z — X

Xy —Z—-q’x -y,

which is central.
@ The annihilators of N, and N;, n > 1.
Methods:
@ localization to get a 3-dimensional quantum torus in
x,d=xy—1and D=dz-x-¢q%.
@ checking that any prime containing (xy —1)", (yz—-1)"
and (zx — 1)" for some n has finite codimension.
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o (D - P)%, where p < Cand

D xyz_X_qzy_z
ny_y_qzz_X

Y -Z=qx-Y,
which is central.

Q>



Prime spectrum of ¥3
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@ The annihilators of N,and N/, n > 1.
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Prime spectrum of ¥3

@ 0;
@ (D—-p)¥s, where p € C and

D = xyz—x-q¢°y -z
= yzx—y—-Q?z—-X
= xy-z-G¢x-y,

which is central.
@ The annihilators of N,and N/, n > 1.

Methods:
@ localization to get a 3-dimensional quantum torus in
x,d=xy—1and D= dz-x - g?y.
@ checking that any prime containing (xy —1)", (yz—1)"
and (zx —1)" for some n has finite codimension.



