Poisson algebras and their deformations: a case study

David Jordan

School of Mathematics and Statistics, University of Sheffield

Context and aims

Poisson algebras	quantized algebras
Poisson	completely
prime spectrum	prime spectrum
fin dim simple	fin dim simple
Poisson modules	modules

> Aims: to present some results from the Poisson side that can help to predict outcomes on the quantized side for particular algebras, and to illustrate this with a "new" example.

Context and aims

Poisson algebras	quantized algebras
Poisson	completely
prime spectrum	prime spectrum
fin dim simple	fin dim simple
Poisson modules	modules

Aims: to present some results from the Poisson side that can help to predict outcomes on the quantized side for particular algebras, and to illustrate this with a "new" example.

Poisson algebras and ideals

- Poisson algebra: commutative finitely generated \mathbb{C}-algebra A with $\{-,-\}: A \times A \rightarrow A$, such that
- A is a Lie algebra under $\{-,-\}$,
- each $\{a,-\}$ is a derivation of A.
- Poisson ideal: ideal I of A with $\{i, a\} \in I$ for all $i \in I, a \in A$. A / I is then a Poisson algebra in the obvious way.
- Poisson prime ideal: prime and Poisson ideal; equivalently, Poisson ideal P such that $I J \subseteq P, I, J$ Poisson $\Rightarrow I \subseteq P$ or $J \subseteq P$.
- Poisson maximal: maximal and Poisson $\neq 1$ maximal Poisson (maximal as a Poisson ideal).

Poisson algebras and ideals

- Poisson algebra: commutative finitely generated \mathbb{C}-algebra A with $\{-,-\}: A \times A \rightarrow A$, such that
- A is a Lie algebra under $\{-,-\}$,
- each $\{a,-\}$ is a derivation of A.
- Poisson ideal: ideal I of A with $\{i, a\} \in I$ for all $i \in I, a \in A$.
A / I is then a Poisson algebra in the obvious way.

Poisson algebras and ideals

- Poisson algebra: commutative finitely generated \mathbb{C}-algebra A with $\{-,-\}: A \times A \rightarrow A$, such that
- A is a Lie algebra under $\{-,-\}$,
- each $\{a,-\}$ is a derivation of A.
- Poisson ideal: ideal I of A with $\{i, a\} \in I$ for all $i \in I, a \in A$.
A / I is then a Poisson algebra in the obvious way.
- Poisson prime ideal: prime and Poisson ideal; equivalently, Poisson ideal P such that $I J \subseteq P, I, J$ Poisson $\Rightarrow I \subseteq P$ or $J \subseteq P$.

Poisson algebras and ideals

- Poisson algebra: commutative finitely generated \mathbb{C}-algebra A with $\{-,-\}: A \times A \rightarrow A$, such that
- A is a Lie algebra under $\{-,-\}$,
- each $\{a,-\}$ is a derivation of A.
- Poisson ideal: ideal I of A with $\{i, a\} \in I$ for all $i \in I, a \in A$.
A / I is then a Poisson algebra in the obvious way.
- Poisson prime ideal: prime and Poisson ideal; equivalently, Poisson ideal P such that $I J \subseteq P, I, J$ Poisson $\Rightarrow I \subseteq P$ or $J \subseteq P$.
- Poisson maximal: maximal and Poisson $\not \equiv$ maximal Poisson (maximal as a Poisson ideal).

Poisson modules

Let A be a Poisson algebra with Poisson bracket $\{-,-\}$. An A-module a Poisson module if it is also a Lie module, with

$$
\{-,-\}_{M}: A \times M \rightarrow M,
$$

and derivation-like compatibility conditions hold for

$$
\{-, m\}_{M}: A \rightarrow M
$$

and

$$
\{a,-\}_{M}: M \rightarrow M .
$$

(Farkas, Oh)

Determination of fin. dim. simple Poisson modules (J, 2009)

Let A be a Poisson algebra and let J be a Poisson maximal ideal. Then J / J^{2} has a Lie algebra structure given by
$\left[j_{1}+J^{2}, j_{2}+J^{2}\right]=\left\{j_{i}, j_{2}\right\}+J^{2}$.
_et A be a Poisson algebra. Up to isomorphism
classes, there is a dimension-preserving bijection
between finite-dimensional simple Poisson modules and pairs (J, M) where J is a Poisson maximal ideal of A and M is a finite-dimensional simple J / J^{2}-module.

Determination of fin. dim. simple Poisson modules (J, 2009)

Let A be a Poisson algebra and let J be a Poisson maximal ideal. Then J / J^{2} has a Lie algebra structure given by
$\left[j_{1}+J^{2}, j_{2}+J^{2}\right]=\left\{j_{i}, j_{2}\right\}+J^{2}$.
Theorem Let A be a Poisson algebra. Up to isomorphism classes, there is a dimension-preserving bijection between finite-dimensional simple Poisson modules and pairs (J, M) where J is a Poisson maximal ideal of A and M is a finite-dimensional simple J / J^{2}-module.

Quantizations and deformations

Let T be a \mathbb{C}-algebra with a central non-unit non-zero-divisor t such that $A:=T / t T$ is commutative. Then [-,-] in T induces a well-defined Poisson bracket $\{-,-\}$ on A by the rule

$$
\{\bar{\alpha}, \bar{\beta}\}=\overline{t^{-1}[\alpha, \beta]} .
$$

Quantizations and deformations

Let T be a \mathbb{C}-algebra with a central non-unit non-zero-divisor t such that $A:=T / t T$ is commutative. Then [-,-] in T induces a well-defined Poisson bracket $\{-,-\}$ on A by the rule

$$
\{\bar{\alpha}, \bar{\beta}\}=\overline{t^{-1}[\alpha, \beta]} .
$$

For this half hour, T is a quantization of the Poisson algebra A and a \mathbb{C}-algebra of the form $T_{\lambda}:=T /(t-\lambda) T$, where $\lambda \in \mathbb{C}$ is such that $t-\lambda$ is a non-unit in T, is a deformation of A.

Case study

Let $A=\mathbb{C}[x, y, z]$ with the Poisson bracket

$$
\begin{aligned}
\{x, y\} & =2 x y-2, \\
\{y, z\} & =2 y z-2, \\
\{z, x\} & =2 z x-2 .
\end{aligned}
$$

Call this F_{3}; it is the first in a family $F_{2 n+1}, n \geq 1$ discussed in Fordy, arXiv:1003.3952v1 (in the context of integrable systems and the Bullough diagram).

Case study

Let $A=\mathbb{C}[x, y, z]$ with the Poisson bracket

$$
\begin{aligned}
& \{x, y\}=2 x y-2, \\
& \{y, z\}=2 y z-2, \\
& \{z, x\}=2 z x-2 .
\end{aligned}
$$

Call this F_{3}; it is the first in a family $F_{2 n+1}, n \geq 1$ discussed in Fordy, arXiv:1003.3952v1 (in the context of integrable systems and the Bullough diagram).

Deformation

Let \mathcal{F}_{3} be the \mathbb{C}-algebra generated by x, y, z subject to:

$$
\begin{aligned}
x y-q^{2} y x & =1-q^{2}, \\
y z-q^{2} z y & =1-q^{2}, \\
z x-q^{2} x z & =1-q^{2},
\end{aligned}
$$

equivalently

$$
\begin{aligned}
& x y-y x=(q-1)(q+1)(y x-1), \\
& y z-z y=(q-1)(q+1)(z y-1) \\
& z x-x z=(q-1)(q+1)(x z-1)
\end{aligned}
$$

This is a deformation of F_{3} and contains three quantized Weyl algebras $A_{1}^{q^{2}}$ in a cyclic pattern. \mathcal{F}_{3} is the first in a family $\mathcal{F}_{2 n+1}, n \geq 1$.

Deformation

Let \mathcal{F}_{3} be the \mathbb{C}-algebra generated by x, y, z subject to:

$$
\begin{aligned}
& x y-q^{2} y x=1-q^{2} \\
& y z-q^{2} z y=1-q^{2}, \\
& z x-q^{2} x z=1-q^{2},
\end{aligned}
$$

equivalently

$$
\begin{aligned}
& x y-y x=(q-1)(q+1)(y x-1), \\
& y z-z y=(q-1)(q+1)(z y-1), \\
& z x-x z=(q-1)(q+1)(x z-1) .
\end{aligned}
$$

This is a deformation of F_{3} and contains three quantized Weyl algebras $A_{1}^{q^{2}}$ in a cyclic pattern. \mathcal{F}_{3} is the first in a family $\mathcal{F}_{2 n+1}, n \geq 1$.

Deformation

Let \mathcal{F}_{3} be the \mathbb{C}-algebra generated by x, y, z subject to:

$$
\begin{aligned}
x y-q^{2} y x & =1-q^{2}, \\
y z-q^{2} z y & =1-q^{2}, \\
z x-q^{2} x z & =1-q^{2},
\end{aligned}
$$

equivalently

$$
\begin{aligned}
& x y-y x=(q-1)(q+1)(y x-1), \\
& y z-z y=(q-1)(q+1)(z y-1), \\
& z x-x z=(q-1)(q+1)(x z-1) .
\end{aligned}
$$

This is a deformation of F_{3} and contains three quantized Weyl algebras $A_{1}^{q^{2}}$ in a cyclic pattern.

Deformation

Let \mathcal{F}_{3} be the \mathbb{C}-algebra generated by x, y, z subject to:

$$
\begin{aligned}
& x y-q^{2} y x=1-q^{2} \\
& y z-q^{2} z y=1-q^{2} \\
& z x-q^{2} x z=1-q^{2}
\end{aligned}
$$

equivalently

$$
\begin{aligned}
& x y-y x=(q-1)(q+1)(y x-1) \\
& y z-z y=(q-1)(q+1)(z y-1) \\
& z x-x z=(q-1)(q+1)(x z-1)
\end{aligned}
$$

This is a deformation of F_{3} and contains three quantized Weyl algebras $A_{1}^{q^{2}}$ in a cyclic pattern.
\mathcal{F}_{3} is the first in a family $\mathcal{F}_{2 n+1}, n \geq 1$.

\mathcal{F}_{3} and $A_{1}[t]$

When $q^{2} \neq 1$, the relations for \mathcal{F}_{3} can, by changing generators, be rewritten

$$
\begin{aligned}
& x y-q^{2} y x=1, \\
& y z-q^{2} z y=1, \\
& z x-q^{2} x z=1 .
\end{aligned}
$$

When $q=1, \mathcal{F}_{3}$ is a skew polynomial ring over the Weyl algebra A_{1} by an inner derivation so it is isomorphic to the polynomial ring $A_{1}[t]$. So, in an informal sense, \mathcal{F}_{3} is a deformation of $A_{1}[t]$.

\mathcal{F}_{3} and $A_{1}[t]$

When $q^{2} \neq 1$, the relations for \mathcal{F}_{3} can, by changing generators, be rewritten

$$
\begin{aligned}
x y-q^{2} y x & =1, \\
y z-q^{2} z y & =1, \\
z x-q^{2} x z & =1 .
\end{aligned}
$$

When $q=1, \mathcal{F}_{3}$ is a skew polynomial ring over the Weyl algebra A_{1} by an inner derivation so it is isomorphic to the polynomial ring $A_{1}[t]$. So, in an informal sense, \mathcal{F}_{3} is a deformation of $A_{1}[t]$.

Questions for \mathcal{F}_{3}

From now on $q \neq \sqrt{1}$.

- What is the prime spectrum of \mathcal{F}_{3} ?
- What are the finite-dimensional simple \mathcal{F}_{3}-modules?

We expect these to reflect the Poisson spectrum of F_{3} and the finite-dimensional simple Poisson F_{3}-modules.

For $R=A_{1}^{q^{2}}$, the prime spectrum is

- 0;
- $d R=R d(d=x y-1)$;
- $d R+(x-\lambda) R, 0 \neq \lambda \in \mathbb{C}$
and the fin. dim simple modules are 1-dimensional
parametrized by \mathbb{C}^{*}.

Questions for \mathcal{F}_{3}

From now on $q \neq \sqrt{1}$.

- What is the prime spectrum of \mathcal{F}_{3} ?
- What are the finite-dimensional simple \mathcal{F}_{3}-modules?

We expect these to reflect the Poisson spectrum of F_{3} and the finite-dimensional simple Poisson F_{3}-modules.

For $R=A_{1}^{q^{2}}$, the prime spectrum is

- $d R=R d(d=x y-1)$;
- $d R+(x-\lambda) R, 0 \neq \lambda \in \mathbb{C}$
and the fin dim simple modules are 1-dimensional
parametrized by \mathbb{C}^{*}.

Questions for \mathcal{F}_{3}

From now on $q \neq \sqrt{1}$.

- What is the prime spectrum of \mathcal{F}_{3} ?
- What are the finite-dimensional simple \mathcal{F}_{3}-modules?

We expect these to reflect the Poisson spectrum of F_{3} and the finite-dimensional simple Poisson F_{3}-modules.

For $R=A_{1}^{q^{2}}$, the prime spectrum is

and the fin. dim simple modules are 1-dimensional
parametrized by \mathbb{C}^{*}.

Questions for \mathcal{F}_{3}

From now on $q \neq \sqrt{1}$.

- What is the prime spectrum of \mathcal{F}_{3} ?
- What are the finite-dimensional simple \mathcal{F}_{3}-modules?

We expect these to reflect the Poisson spectrum of F_{3} and the finite-dimensional simple Poisson F_{3}-modules.

For $R=A_{1}^{q^{2}}$, the prime spectrum is

- 0;
- $d R=R d(d=x y-1)$;
- $d R+(x-\lambda) R, 0 \neq \lambda \in \mathbb{C}$
and the fin. dim simple modules are 1-dimensional parametrized by \mathbb{C}^{*}.

Folklore: Poisson brackets on $\mathbb{C}[x, y, z]$

Let $\{-,-\}$ be a Poisson bracket on $A=\mathbb{C}[x, y, z]$. There exist a completion \hat{A} of A at a maximal ideal and $a, b \in \hat{A}$ such that

$$
\begin{aligned}
& \{x, y\}=b a_{z} \in A \quad\left(a_{z}:=\partial a / \partial z\right), \\
& \{y, z\}=b a_{x} \in A \\
& \{z, x\}=b a_{y} \in A .
\end{aligned}
$$

Examples

- $a=\lambda \log x+\rho \log y+\mu \log z, \quad b=x y z ;$ $\{x, y\}=\mu x y,\{y, z\}=\lambda y z,\{z, x\}=\rho x z$.
$\{x, y\}=0,\{y, z\}=y,\{z, x\}=-\alpha x$.
- $a=s / t, s, t \in A, t \neq 0, b=t^{2}$;
$\{x, y\}=t s_{z}-s t_{z},\{y, z\}=t s_{x}-s t_{x},\{z, x\}=t s_{y}-s t_{y}$.
Call the last type rational. When $t=1$, so that
$\{x, y\}=s_{z},\{y, z\}=s_{x},\{z, x\}=s_{y}$, it is exact or Jacobian.
In the exact case s is Poisson central, $\{s,-\}=0$.
F_{3} is exact with $s=2(x y z-x-y-z)$.

Examples

- $a=\lambda \log x+\rho \log y+\mu \log z, \quad b=x y z ;$
$\{x, y\}=\mu x y,\{y, z\}=\lambda y z,\{z, x\}=\rho x z$.
- $a=y^{\alpha+1}, b=x y^{-\alpha}, \alpha \in \mathbb{C}$;
$\{x, y\}=0,\{y, z\}=y,\{z, x\}=-\alpha x$.
$\{x, y\}=t s_{z}-s t_{z},\{y, z\}=t s_{x}-s t_{x},\{z, x\}=t s_{y}-s t_{y}$.
Call the last tyne rational. When $t=1$, so that
$\{x, y\}=s_{z},\{y, z\}=s_{x},\{z, x\}=s_{y}$, it is exact or Jacobian.
In the exact case s is Poisson central, $\{s,-\}=0$.
F_{3} is exact with $s=2(x y z-x-y-z)$.

Examples

- $a=\lambda \log x+\rho \log y+\mu \log z, \quad b=x y z ;$
$\{x, y\}=\mu x y,\{y, z\}=\lambda y z,\{z, x\}=\rho x z$.
- $a=y^{\alpha+1}, b=x y^{-\alpha}, \alpha \in \mathbb{C}$;
$\{x, y\}=0,\{y, z\}=y,\{z, x\}=-\alpha x$.
- $a=s / t, s, t \in A, t \neq 0, b=t^{2}$;
$\{x, y\}=t s_{z}-s t_{z},\{y, z\}=t s_{x}-s t_{x},\{z, x\}=t s_{y}-s t_{y}$.

In the exact case s is Poisson central, $\{s,-\}=0$.
F_{3} is exact with $s=2(x y z-x-y-z)$.

Examples

- $a=\lambda \log x+\rho \log y+\mu \log z, \quad b=x y z ;$
$\{x, y\}=\mu x y,\{y, z\}=\lambda y z,\{z, x\}=\rho x z$.
- $a=y^{\alpha+1}, b=x y^{-\alpha}, \alpha \in \mathbb{C}$;
$\{x, y\}=0,\{y, z\}=y,\{z, x\}=-\alpha x$.
- $a=s / t, s, t \in A, t \neq 0, b=t^{2}$;
$\{x, y\}=t s_{z}-s t_{z},\{y, z\}=t s_{x}-s t_{x},\{z, x\}=t s_{y}-s t_{y}$.
Call the last type rational.
In the exact case s is Poisson central, $\{s,-\}=0$.
F_{3} is exact with $s=2(x y z-x-y-z)$.

Examples

- $a=\lambda \log x+\rho \log y+\mu \log z, \quad b=x y z ;$

$$
\{x, y\}=\mu x y,\{y, z\}=\lambda y z,\{z, x\}=\rho x z
$$

- $a=y^{\alpha+1}, b=x y^{-\alpha}, \alpha \in \mathbb{C}$;

$$
\{x, y\}=0,\{y, z\}=y,\{z, x\}=-\alpha x
$$

- $a=s / t, s, t \in A, t \neq 0, b=t^{2}$;
$\{x, y\}=t s_{z}-s t_{z},\{y, z\}=t s_{x}-s t_{x},\{z, x\}=t s_{y}-s t_{y}$.
Call the last type rational. When $t=1$, so that $\{x, y\}=s_{z},\{y, z\}=s_{x},\{z, x\}=s_{y}$, it is exact or Jacobian. In the exact case s is Poisson central, $\{s,-\}=0$.

Examples

- $a=\lambda \log x+\rho \log y+\mu \log z, \quad b=x y z ;$

$$
\{x, y\}=\mu x y,\{y, z\}=\lambda y z,\{z, x\}=\rho x z
$$

- $a=y^{\alpha+1}, b=x y^{-\alpha}, \alpha \in \mathbb{C}$;

$$
\{x, y\}=0,\{y, z\}=y,\{z, x\}=-\alpha x
$$

- $a=s / t, s, t \in A, t \neq 0, b=t^{2}$;
$\{x, y\}=t s_{z}-s t_{z},\{y, z\}=t s_{x}-s t_{x},\{z, x\}=t s_{y}-s t_{y}$.
Call the last type rational. When $t=1$, so that $\{x, y\}=s_{z},\{y, z\}=s_{x},\{z, x\}=s_{y}$, it is exact or Jacobian. In the exact case s is Poisson central, $\{s,-\}=0$.
F_{3} is exact with $s=2(x y z-x-y-z)$.

Theorem (J, 201?): Poisson spectrum for rational brackets

Let $s, t \in A \backslash\{0\}$ be coprime and let $a=s t^{-1} \in \mathbb{C}(x, y, z)$. Then the Poisson prime ideals for A under the rational bracket determined by a are

- those prime ideals P of A such that $\{x, y\},\{y, z\},\{z, x\} \in P$ (the Poisson bracket on A/P is
0 for these):
- the height one prime ideals $p A$, where p is an irreducible factor in A of $\lambda s+\mu t$, for some $\lambda, \mu \in \mathbb{C}$ such that $\lambda s+\mu t$ is a non-unit.

Theorem (J, 201?): Poisson spectrum for rational brackets

Let $s, t \in A \backslash\{0\}$ be coprime and let $a=s t^{-1} \in \mathbb{C}(x, y, z)$. Then the Poisson prime ideals for A under the rational bracket determined by a are

- 0;
- those prime ideals P of A such that $\{x, y\},\{y, z\},\{z, x\} \in P$ (the Poisson bracket on A / P is
0 for these);
- the height one prime ideals $p A$, where p is an irreducible factor in A of $\lambda s+\mu t$, for some $\lambda, \mu \in \mathbb{C}$ such that $\lambda s+\mu t$ is a non-unit.

Theorem (J, 201?): Poisson spectrum for rational brackets

Let $s, t \in A \backslash\{0\}$ be coprime and let $a=s t^{-1} \in \mathbb{C}(x, y, z)$. Then the Poisson prime ideals for A under the rational bracket determined by a are

- 0;
- those prime ideals P of A such that $\{x, y\},\{y, z\},\{z, x\} \in P$ (the Poisson bracket on A / P is 0 for these);
- the height one prime ideals $p A$, where p is an
irreducible factor in A of $\lambda s+\mu t$, for some $\lambda, \mu \in \mathbb{C}$
such that $\lambda s+\mu t$ is a non-unit.

Theorem (J, 201?): Poisson spectrum for rational brackets

Let $s, t \in A \backslash\{0\}$ be coprime and let $a=s t^{-1} \in \mathbb{C}(x, y, z)$. Then the Poisson prime ideals for A under the rational bracket determined by a are

- 0;
- those prime ideals P of A such that $\{x, y\},\{y, z\},\{z, x\} \in P$ (the Poisson bracket on A / P is 0 for these);
- the height one prime ideals $p A$, where p is an irreducible factor in A of $\lambda s+\mu t$, for some $\lambda, \mu \in \mathbb{C}$ such that $\lambda s+\mu t$ is a non-unit.

Poisson spectrum of F_{3}

The Poisson prime ideals of F_{3} are:

- 0,
- height one: $(x y z-x-y-z-\lambda) A, \lambda \in \mathbb{C}$
- Two Poisson maximal ideals :

Finite-dimensional simple Poisson modules for F_{3} :
Both J_{1} / J_{1}^{2} and J_{2} / J_{2}^{2} are isomorphic to s_{2} so F_{3} has two n-dimensional simple Poisson modules for each $n \geq 1$.

Poisson spectrum of F_{3}

The Poisson prime ideals of F_{3} are:

- 0,
- height one: $(x y z-x-y-z-\lambda) A, \lambda \in \mathbb{C}$.
- Two Poisson maximal ideals

Finite-dimensional simple Poisson modules for F_{3}
Both J_{1} / J_{1}^{2} and J_{2} / J_{2}^{2} are isomorphic to s_{2} so F_{3} has two n-dimensional simple Poisson modules for each $n \geq 1$.

Poisson spectrum of F_{3}

The Poisson prime ideals of F_{3} are:

- 0,
- height one: $(x y z-x-y-z-\lambda) A, \lambda \in \mathbb{C}$.
- Two Poisson maximal ideals :

$$
\begin{aligned}
& J_{1}:=(x-1) A+(y-1) A+(z-1) A \text { and } \\
& J_{2}:=(x+1) A+(y+1) A+(z+1) A .
\end{aligned}
$$

Finite-dimensional simple Poisson modules for F_{3} :
Both J_{1} / J_{1}^{2} and J_{2} / J_{2}^{2} are isomorphic to s_{2} so F_{3} has two n-dimensional simple Poisson modules for each $n \geq 1$.

Poisson spectrum of F_{3}

The Poisson prime ideals of F_{3} are:

- 0,
- height one: $(x y z-x-y-z-\lambda) A, \lambda \in \mathbb{C}$.
- Two Poisson maximal ideals :

$$
\begin{aligned}
& J_{1}:=(x-1) A+(y-1) A+(z-1) A \text { and } \\
& J_{2}:=(x+1) A+(y+1) A+(z+1) A .
\end{aligned}
$$

Finite-dimensional simple Poisson modules for F_{3} :
Both J_{1} / J_{1}^{2} and J_{2} / J_{2}^{2} are isomorphic to s_{2} so F_{3} has two n-dimensional simple Poisson modules for each $n \geq 1$.

Finite-dimensional simple (left) \mathcal{F}_{3}-modules

($R:=A_{1}^{q^{2}}$) Every finite-dimensional simple (left) R-module is isomorphic to $R /\left(R\left(x-\lambda^{-1}\right)+R(y-\lambda)\right), \lambda \in \mathbb{C}^{*}$. Every finite-dimensional simple \mathcal{F}_{3}-module contains one of these.
Let $M_{\lambda}=\mathcal{F}_{3} /\left(\mathcal{F}_{3}\left(x-\lambda^{-1}\right)+\mathcal{F}_{3}(y-\lambda)\right)$.

$$
\text { simple } n \text {-dimensional. }
$$

- If $\lambda=-q^{n-1}$ there is a similar n-dimensional simple

Finite-dimensional simple (left) \mathcal{F}_{3}-modules

($R:=A_{1}^{q^{2}}$) Every finite-dimensional simple (left) R-module is isomorphic to $R /\left(R\left(x-\lambda^{-1}\right)+R(y-\lambda)\right), \lambda \in \mathbb{C}^{*}$. Every finite-dimensional simple \mathcal{F}_{3}-module contains one of these.
Let $M_{\lambda}=\mathcal{F}_{3} /\left(\mathcal{F}_{3}\left(x-\lambda^{-1}\right)+\mathcal{F}_{3}(y-\lambda)\right)$.

Finite-dimensional simple (left) \mathcal{F}_{3}-modules

($R:=A_{1}^{q^{2}}$) Every finite-dimensional simple (left) R-module is isomorphic to $R /\left(R\left(x-\lambda^{-1}\right)+R(y-\lambda)\right), \lambda \in \mathbb{C}^{*}$. Every finite-dimensional simple \mathcal{F}_{3}-module contains one of these.
Let $M_{\lambda}=\mathcal{F}_{3} /\left(\mathcal{F}_{3}\left(x-\lambda^{-1}\right)+\mathcal{F}_{3}(y-\lambda)\right)$.

- As a $\mathbb{C}[z]$-module, $M_{\lambda} \simeq \mathbb{C}[z]$.

Finite-dimensional simple (left) \mathcal{F}_{3}-modules

($R:=A_{1}^{q^{2}}$) Every finite-dimensional simple (left) R-module is isomorphic to $R /\left(R\left(x-\lambda^{-1}\right)+R(y-\lambda)\right), \lambda \in \mathbb{C}^{*}$. Every finite-dimensional simple \mathcal{F}_{3}-module contains one of these.
Let $M_{\lambda}=\mathcal{F}_{3} /\left(\mathcal{F}_{3}\left(x-\lambda^{-1}\right)+\mathcal{F}_{3}(y-\lambda)\right)$.

- As a $\mathbb{C}[z]$-module, $M_{\lambda} \simeq \mathbb{C}[z]$.
- If $\lambda \neq \pm q^{m}$ for all $m \geq 0$ then M_{λ} is simple.

$$
\text { simple } n \text {-dimensional. }
$$

Finite-dimensional simple (left) \mathcal{F}_{3}-modules

($R:=A_{1}^{q^{2}}$) Every finite-dimensional simple (left) R-module is isomorphic to $R /\left(R\left(x-\lambda^{-1}\right)+R(y-\lambda)\right), \lambda \in \mathbb{C}^{*}$. Every finite-dimensional simple \mathcal{F}_{3}-module contains one of these.
Let $M_{\lambda}=\mathcal{F}_{3} /\left(\mathcal{F}_{3}\left(x-\lambda^{-1}\right)+\mathcal{F}_{3}(y-\lambda)\right)$.

- As a $\mathbb{C}[z]$-module, $M_{\lambda} \simeq \mathbb{C}[z]$.
- If $\lambda \neq \pm q^{m}$ for all $m \geq 0$ then M_{λ} is simple.
- If $\lambda=q^{n-1}, n \geq 1$ and
$f_{n}(z)=\left(z-q^{n-1}\right)\left(z-q^{n-3}\right) \ldots\left(z-q^{3-n}\right)\left(z-q^{1-n}\right)$ then
$x f_{n}=q^{-(n+1)} f_{n}, y f_{n}=q^{n+1} f_{n}$ and
$N_{n}:=\mathcal{F}_{3} /\left(\mathcal{F}_{3}\left(x-q^{1-n}\right)+\mathcal{F}_{3}\left(y-q^{n-1}\right)+\mathcal{F}_{3} f_{n}(z)\right)$ is
simple n-dimensional.

Finite-dimensional simple (left) \mathcal{F}_{3}-modules

($R:=A_{1}^{q^{2}}$) Every finite-dimensional simple (left) R-module is isomorphic to $R /\left(R\left(x-\lambda^{-1}\right)+R(y-\lambda)\right), \lambda \in \mathbb{C}^{*}$. Every finite-dimensional simple \mathcal{F}_{3}-module contains one of these.
Let $M_{\lambda}=\mathcal{F}_{3} /\left(\mathcal{F}_{3}\left(x-\lambda^{-1}\right)+\mathcal{F}_{3}(y-\lambda)\right)$.

- As a $\mathbb{C}[z]$-module, $M_{\lambda} \simeq \mathbb{C}[z]$.
- If $\lambda \neq \pm q^{m}$ for all $m \geq 0$ then M_{λ} is simple.
- If $\lambda=q^{n-1}, n \geq 1$ and
$f_{n}(z)=\left(z-q^{n-1}\right)\left(z-q^{n-3}\right) \ldots\left(z-q^{3-n}\right)\left(z-q^{1-n}\right)$ then
$x f_{n}=q^{-(n+1)} f_{n}, y f_{n}=q^{n+1} f_{n}$ and
$N_{n}:=\mathcal{F}_{3} /\left(\mathcal{F}_{3}\left(x-q^{1-n}\right)+\mathcal{F}_{3}\left(y-q^{n-1}\right)+\mathcal{F}_{3} f_{n}(z)\right)$ is
simple n-dimensional.
- If $\lambda=-q^{n-1}$ there is a similar n-dimensional simple N_{n}^{\prime}.

Finite-dimensional simple (left) \mathcal{F}_{3}-modules

($R:=A_{1}^{q^{2}}$) Every finite-dimensional simple (left) R-module is isomorphic to $R /\left(R\left(x-\lambda^{-1}\right)+R(y-\lambda)\right), \lambda \in \mathbb{C}^{*}$. Every finite-dimensional simple \mathcal{F}_{3}-module contains one of these.
Let $M_{\lambda}=\mathcal{F}_{3} /\left(\mathcal{F}_{3}\left(x-\lambda^{-1}\right)+\mathcal{F}_{3}(y-\lambda)\right)$.

- As a $\mathbb{C}[z]$-module, $M_{\lambda} \simeq \mathbb{C}[z]$.
- If $\lambda \neq \pm q^{m}$ for all $m \geq 0$ then M_{λ} is simple.
- If $\lambda=q^{n-1}, n \geq 1$ and
$f_{n}(z)=\left(z-q^{n-1}\right)\left(z-q^{n-3}\right) \ldots\left(z-q^{3-n}\right)\left(z-q^{1-n}\right)$ then
$x f_{n}=q^{-(n+1)} f_{n}, y f_{n}=q^{n+1} f_{n}$ and
$N_{n}:=\mathcal{F}_{3} /\left(\mathcal{F}_{3}\left(x-q^{1-n}\right)+\mathcal{F}_{3}\left(y-q^{n-1}\right)+\mathcal{F}_{3} f_{n}(z)\right)$ is
simple n-dimensional.
- If $\lambda=-q^{n-1}$ there is a similar n-dimensional simple N_{n}^{\prime}.
- Every fin. dim. \mathcal{F}_{3}-module is isomorphic to N_{n} or N_{n}^{\prime}.

Prime spectrum of \mathcal{F}_{3}

－0；
－$(D-\rho) \mathcal{F}_{3}$ ，where $\rho \in \mathbb{C}$ and

$$
\begin{aligned}
D & =x y z-x-q^{2} y-z \\
& =y z x-y-q^{2} z-x \\
& =z x y-z-q^{2} x-y
\end{aligned}
$$

which is central．
－The annihilators of N_{n} and $N_{n}^{\prime}, n \geq 1$ ．

Methods：

－localization to get a 3－dimensional quantum torus in $x, d=x y-1$ and $D=d z-x-q^{2} y$ ．
－checking that any prime containing $(x y-1)^{n},(y z-1)^{n}$ and $(z x-1)^{n}$ for some n has finite codimension．

Prime spectrum of \mathcal{F}_{3}

- 0;
- $(D-\rho) \mathcal{F}_{3}$, where $\rho \in \mathbb{C}$ and

$$
\begin{aligned}
D & =x y z-x-q^{2} y-z \\
& =y z x-y-q^{2} z-x \\
& =z x y-z-q^{2} x-y
\end{aligned}
$$

which is central.

- The annihilators of N_{n} and $N_{n}^{\prime}, n \geq 1$.

Methods:

- Iocalization to get a 3-dimensional quantum torus in
- checking that any prime containing $(x y-1)^{n},(y z-1)^{n}$ and $(z x-1)^{n}$ for some n has finite codimension.

Prime spectrum of \mathcal{F}_{3}

- 0;
- $(D-\rho) \mathcal{F}_{3}$, where $\rho \in \mathbb{C}$ and

$$
\begin{aligned}
D & =x y z-x-q^{2} y-z \\
& =y z x-y-q^{2} z-x \\
& =z x y-z-q^{2} x-y
\end{aligned}
$$

which is central.

- The annihilators of N_{n} and $N_{n}^{\prime}, n \geq 1$.

Methods:

- localization to get a 3-dimensional quantum torus in
- checking that any prime containing $(x y-1)^{n},(y z-1)^{n}$ and $(z x-1)^{n}$ for some n has finite codimension.

Prime spectrum of \mathcal{F}_{3}

- 0;
- $(D-\rho) \mathcal{F}_{3}$, where $\rho \in \mathbb{C}$ and

$$
\begin{aligned}
D & =x y z-x-q^{2} y-z \\
& =y z x-y-q^{2} z-x \\
& =z x y-z-q^{2} x-y
\end{aligned}
$$

which is central.

- The annihilators of N_{n} and $N_{n}^{\prime}, n \geq 1$.

Methods:

- localization to get a 3-dimensional quantum torus in
- checking that any prime containing $(x y-1)^{n},(y z-1)^{n}$ and $(z x-1)^{n}$ for some n has finite codimension.

Prime spectrum of \mathcal{F}_{3}

- 0;
- $(D-\rho) \mathcal{F}_{3}$, where $\rho \in \mathbb{C}$ and

$$
\begin{aligned}
D & =x y z-x-q^{2} y-z \\
& =y z x-y-q^{2} z-x \\
& =z x y-z-q^{2} x-y
\end{aligned}
$$

which is central.

- The annihilators of N_{n} and $N_{n}^{\prime}, n \geq 1$.

Methods:

- localization to get a 3-dimensional quantum torus in $x, d=x y-1$ and $D=d z-x-q^{2} y$.

Prime spectrum of \mathcal{F}_{3}

- 0;
- $(D-\rho) \mathcal{F}_{3}$, where $\rho \in \mathbb{C}$ and

$$
\begin{aligned}
D & =x y z-x-q^{2} y-z \\
& =y z x-y-q^{2} z-x \\
& =z x y-z-q^{2} x-y
\end{aligned}
$$

which is central.

- The annihilators of N_{n} and $N_{n}^{\prime}, n \geq 1$.

Methods:

- localization to get a 3-dimensional quantum torus in $x, d=x y-1$ and $D=d z-x-q^{2} y$.
- checking that any prime containing $(x y-1)^{n},(y z-1)^{n}$ and $(z x-1)^{n}$ for some n has finite codimension.

