Quantised coordinate rings and total positivity

Stéphane Launois (University of Kent)

New Trends in Noncommutative Algebra
A conference in honor of Ken Goodearl's 65th birthday Seattle, August 2010

The quantum world

Quantum plane.

Let $q \in \mathbb{C}^{*}, q^{N} \neq 1 . A:=\mathbb{C}\langle x, y \mid x y=q y x\rangle$.
A is a noetherian domain.

There is an action of the torus $H:=\left(\mathbb{C}^{*}\right)^{2}$ on A

$$
(h, g) \cdot x=h x \text { and }(h, g) \cdot y=g y
$$

Here is the picture of the prime spectrum of A.

$$
(\alpha, \beta \neq 0)
$$

Quantum affine n-space.

$$
T:=\mathbb{C}\left\langle t_{1}, \ldots, t_{n} \mid t_{i} t_{j}=\lambda_{i j} t_{j} t_{i}, i<j\right\rangle .
$$

There is an action of the torus $H:=\left(\mathbb{C}^{*}\right)^{n}$ on T by automorphisms

$$
\left(h_{1}, \ldots, h_{n}\right) \cdot t_{i}=h_{i} t_{i}
$$

For each $w \subseteq\{1, \ldots, n\}$, we set $J_{w}:=\left\langle t_{i}\right\rangle_{i \in w}$.

Then $H-\operatorname{Spec}(T)=\left\{J_{w}\right\}$.

Quantum 2×2 matrices

The coordinate ring of quantum 2×2 matrices

$$
\mathcal{O}_{q}\left(\mathcal{M}_{2}(\mathbb{C})\right):=\mathbb{C}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is generated by four indeterminates a, b, c, d subject to the following rules:

$$
\begin{gathered}
a b=q b a, \quad c d=q d c \\
a c=q c a, \quad b d=q d b \\
b c=c b, \quad a d-d a=\left(q-q^{-1}\right) c b
\end{gathered}
$$

The quantum determinant $a d-q b c$ is a central element

The algebra of $m \times p$ quantum matrices.

$R=O_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right):=\mathbb{C}\left[\begin{array}{lll}Y_{1,1} & \ldots & Y_{1, p} \\ \vdots & \ldots & : \\ Y_{m, 1} & \ldots & Y_{m, p}\end{array}\right]$,
where each 2×2 sub-matrix is a copy of $O_{q}\left(\mathcal{M}_{2}(\mathbb{C})\right)$.
$O_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$ is an iterated Ore extension with the indeterminates $Y_{i, \alpha}$ adjoined in the lexicographic order and so is a noetherian integral domain.

In the square case ($m=p=n$)

$$
D=\sum_{\sigma \in S_{n}}(-q)^{l(\sigma)} Y_{1, \sigma(1)} \ldots Y_{n, \sigma(n)}
$$

is the quantum determinant, a central element.

Quantum minors of $R=\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$.

They are the quantum determinants of square sub-matrices of $\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$.

More precisely, if $I \subseteq \llbracket 1, m \rrbracket$ and $\wedge \subseteq \llbracket 1, p \rrbracket$ with $|I|=|\wedge|$, the quantum minor associated with the rows I and columns Λ is

$$
[I \mid \wedge]:=D_{q}\left(\mathcal{O}_{q}\left(M_{I, \wedge}(\mathbb{C})\right)\right)
$$

For example, [12|23] $=Y_{1,2} Y_{2,3}-q Y_{1,3} Y_{2,2}$ is the quantum minor of R associated with the rows 1,2 , and the columns 2,3 .

- The prime spectrum of $\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$

We now assume that $q \in \mathbb{C}^{*}$ is not a root of unity, and we set $R:=\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$.

- Goodearl-Letzter Prime ideals of R are completely prime.

The torus $\mathcal{H}:=\left(\mathbb{C}^{*}\right)^{m+p}$ acts by automorphisms on R via :

$$
\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{p}\right) \cdot Y_{i, \alpha}=a_{i} b_{\alpha} Y_{i, \alpha} .
$$

This action of \mathcal{H} on R induces an action of \mathcal{H} on $\operatorname{Spec}(R)$. We denote by $\mathcal{H}-\operatorname{Spec}(R)$ the set of those prime ideals in R which are \mathcal{H}-invariant.

- Goodearl-Letzter R has at most $2^{m p} \mathcal{H}$-primes.

Stratification Theorem (Goodearl-Letzter) :

If $J \in \mathcal{H}-\operatorname{Spec}(R)$, then we set

$$
\operatorname{Spec}_{J}(R):=\left\{P \in \operatorname{Spec}(R) \mid \bigcap_{h \in \mathcal{H}} h . P=J\right\} .
$$

1. $\operatorname{Spec}(R)=\underset{J \in \mathcal{H}-\operatorname{Spec}(R)}{\bigsqcup} \operatorname{Spec}_{J}(R)$
2. For all $J \in \mathcal{H}-\operatorname{Spec}(R), \operatorname{Spec}_{J}(R)$ is homeomorphic to the prime spectrum of a (commutative) Laurent polynomial ring in $n(J)$ indeterminates over \mathbb{C}.
3. The primitive ideals of R are precisely the primes maximal in their \mathcal{H}-strata.

An observation

Recall that in $\mathcal{O}_{q}\left(\mathcal{M}_{2}(\mathbb{C})\right)$

$$
a d-d a=\left(q-q^{-1}\right) b c .
$$

As a result, if P is a prime ideal and $d \in P$ then this forces $b c \in P$ so either $b \in P$ or $c \in P$.

Thus there is no prime ideal P of $\mathcal{O}_{q}\left(\mathcal{M}_{2}(\mathbb{C})\right)$ for which d is the only quantum minor in P.

Cauchon diagrams

A Cauchon diagram on an $m \times p$ array is an $m \times p$ array of squares filled either black or white such that if a square is coloured black then either each square to the left is coloured black, or each square above is coloured black. Here are an example and a nonexample

2×2 Cauchon Diagrams

Parametrisation of $\mathcal{H}-\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)\right)$

- Cauchon (2003) There is a bijection between Cauchon diagrams on an $m \times p$ array and $\mathcal{H}-\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)\right)$.
- L. The height of a \mathcal{H}-prime is given by the number of black boxes in the corresponding Cauchon diagram.

n	$C_{n}:=\left\|\mathcal{H}-\operatorname{Spec}\left(O_{q}\left(\mathcal{M}_{n}(\mathbb{C})\right)\right)\right\|$
2	14
3	230
4	6902

Generators of \mathcal{H}-primes

Conjecture (Goodearl-Lenagan): \mathcal{H}-primes are generated by quantum minors.

The conjecture is true for $O_{q}\left(\mathcal{M}_{2}(\mathbb{C})\right)$ and $O_{q}\left(\mathcal{M}_{3}(\mathbb{C})\right.$) (GoodearlLenagan).

- L. (2004) Assume that q is transcendental. Then \mathcal{H}-primes of R are generated by quantum minors.
- Yakimov (201?) Also, assuming q transcendental, Yakimov gives explicit generating sets of quantum minors.
2×2 quantum matrices
The following $14 \mathcal{H}$-invariant ideals are all prime and these are the only \mathcal{H}-prime ideals in $\mathcal{O}_{q}\left(\mathcal{M}_{2}(\mathbb{C})\right)$.

Restricted permutations

$$
\mathcal{S}=\left\{w \in S_{m+p} \mid-p \leq w(i)-i \leq m \text { for all } i=1,2, \ldots, m+p\right\}
$$

In the 2×2 case, this subposet of the Bruhat poset of S_{4} is

$$
\mathcal{S}=\left\{w \in S_{4} \mid-2 \leq w(i)-i \leq 2 \text { for all } i=1,2,3,4\right\}
$$

and is shown below.

The poset $\mathcal{H}-\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)\right)$

Set

$$
\mathcal{S}:=\left\{\sigma \in S_{m+p} \mid-p \leq \sigma(i)-i \leq m, \forall i \in \llbracket 1, m+p \rrbracket\right\}
$$

and

$$
w_{0}:=\left[\begin{array}{cccccccc}
1 & 2 & \ldots & p & p+1 & p+2 & \ldots & p+m \\
m+1 & m+2 & \ldots & m+p & 1 & 2 & \ldots & m
\end{array}\right]
$$

Then

$$
\mathcal{S}=\left\{w \in S_{m+p} \mid w \leq w_{0}\right\}
$$

and
L. (2007) We have a poset isomorphism

$$
\mathcal{H}-\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)\right) \simeq \mathcal{S}
$$

Pipe dreams

Previous results imply the existence of a bijection between the set of $m \times p$ Cauchon diagrams and the set \mathcal{S} of restricted permutations.

This is no coincidence, and the connection between the two posets can be illuminated by using Pipe Dreams.

The procedure to produce a restricted permutation from a Cauchon diagram goes as follows. Given a Cauchon diagram, replace each black box by a cross, and each white box by an elbow joint, that is:

Pipe dreams: an example

So the restricted permutation associated to this Cauchon diagram is (3 4).

Observe that the all black diagram produces the restricted permutation w_{0}.

Direct graph associated to a diagram

To a Cauchon diagram C, one can associate a direct graph $G(C)$ and and skew-symmetric matrix A_{C} as follows.

The vertices of $G(C)$ are the white boxes of C labeled 1 to N. We draw an arrow between two vertices in the same column (going from North to South) or on the same row (going from West to East).
A_{C} is the $N \times N$ skew-symmetric matrix whose coefficient $a_{i j}$ ($i<j$) is the number of arrows going from the vertex labeled i to the vertex labeled j.

An example

$\leadsto A_{C}=\left(\begin{array}{cccccccc}0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -1 & -1 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & 1 \\ -1 & 0 & 0 & -1 & 0 & -1 & 0 & 1 \\ 0 & -1 & 0 & 0 & -1 & -1 & -1 & 0\end{array}\right)$

Dimension of strata

Bell-L. (2010). The \mathcal{H}-stratum of $\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$ associated to C is a Laurent polynomial ring over \mathbb{C} in dim ker A_{C} indeterminates.

Problem: this matrix is huge. It can be $m p \times m p$ whereas we have proved that the dimension of a stratum is always less than or equal to $\min (m, p)$.

Bell-Casteels-L. (201?). Let C be an $m \times p$ Cauchon diagram and w be the corresponding restricted permutation.

$$
\operatorname{dim} \operatorname{ker} A_{C}=\operatorname{dim} \operatorname{ker}\left(P_{w}+P_{w_{0}}\right)
$$

where P_{σ} denotes the permutation-matrix associated to σ.

Explicit bijections

We define two bijections

$$
\phi: \operatorname{ker} A_{C} \rightarrow \operatorname{ker}\left(P_{w}+P_{w_{0}}\right)
$$

and

$$
\psi: \operatorname{ker}\left(P_{w}+P_{w_{0}}\right) \rightarrow \operatorname{ker} A_{C}
$$

To avoid technicalities, we explain their construction on an example. Consider the following Cauchon diagram

Recall that $A_{C}=\left(\begin{array}{cccccccc}0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -1 & -1 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & 1 \\ -1 & 0 & 0 & -1 & 0 & -1 & 0 & 1 \\ 0 & -1 & 0 & 0 & -1 & -1 & -1 & 0\end{array}\right)$
So we have

$$
\operatorname{ker} A_{C}=\operatorname{Vect}\left(u=\left(\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
1 \\
-1 \\
0 \\
0
\end{array}\right), v=\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0 \\
0 \\
0 \\
-1 \\
0
\end{array}\right)\right)
$$

Recall that in this case we have $w=(34)$ and $w_{0}=(14)(25)(36)$.
So $P_{w}+P_{w_{0}}=\left(\begin{array}{cccccc}1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right)$
So we have

$$
\operatorname{ker}\left(P_{w}+P_{w_{0}}\right)=\operatorname{Vect}\left(\alpha=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
-1 \\
0 \\
1
\end{array}\right), \beta=\left(\begin{array}{c}
0 \\
1 \\
0 \\
0 \\
-1 \\
0
\end{array}\right)\right)
$$

Bijection 1: Image of u

1. Put the coordinates of u in C
$\left.\begin{array}{|c|c|c|}\hline 4 & 5 & 6 \\ \hline 3 & 1 & 0 \\ \hline 2 & 0 & 0\end{array}\right] 1$
2. The image of u is the vector $\left(y_{1}, \ldots, y_{6}\right)$ with

$$
y_{1}=-(-1+0+0)=1, y_{2}=-(0+0+1)=-1, y_{3}=-(1+0)=-1
$$

$$
y_{4}=0+(-1)=-1, y_{5}=1+0+0, y_{6}=0+1+0
$$

One can check that $\phi(u)=\alpha-\beta \in \operatorname{ker}\left(P_{w}+P_{w_{0}}\right)$.

Bijection 2: image of α

The image of α is the vector $\left(x_{1}, \ldots, x_{8}\right)$.

Bijection 2: image of α

The image of α is the vector $\left(x_{1}, \ldots, x_{8}\right)$.

$$
x_{5}=-1-0=-1
$$

One can easily check that

$$
\psi(\alpha)=(-1,0,1,0,-1,1,1,0)=-(u+v) \in \operatorname{ker} A_{C}
$$

Moreover $\phi \circ \psi=-2$ id and $\psi \circ \phi=-2 \mathrm{id}$.

Dimension of strata: toric permutation

So the toric permutation associated to this Cauchon diagram is (1364)(25).

Bell-Casteels-L. (201?) The dimension of the stratum associated to C is equal to the number of odd cycles in the decomposition of the corresponding toric permutation.

The nonnegative world

- A matrix is totally positive if each of its minors is positive.
- A matrix is totally nonnegative if each of its minors is nonnegative.

Examples

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27 \\
1 & 4 & 16 & 64
\end{array}\right) \quad\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4
\end{array}\right) \quad\left(\begin{array}{llll}
5 & 6 & 3 & 0 \\
4 & 7 & 4 & 0 \\
1 & 4 & 4 & 2 \\
0 & 1 & 2 & 3
\end{array}\right)
$$

¿ How much work is involved in checking if a matrix is totally positive?

Eg. $n=4$:

$$
\text { \#minors }=\sum_{k=1}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}-1 \approx \frac{4^{n}}{\sqrt{\pi n}}
$$

by using Stirling's approximation

$$
n!\approx \sqrt{2 \pi n} \frac{n^{n}}{e^{n}}
$$

2×2 case

The matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

has five minors: $a, b, c, d, \Delta=a d-b c$.
If $b, c, d, \Delta=a d-b c>0$ then

$$
a=\frac{\Delta+b c}{d}>0
$$

so it is sufficient to check four minors.

Gasca and Pena: optimal test for total positivity and algorithm for total nonnegativity.

Let $\mathcal{M}_{m, p}^{\mathrm{tnn}}$ be the set of totally nonnegative $m \times p$ real matrices.
Let Z be a subset of minors. The cell S_{Z}^{o} is the set of matrices in $\mathcal{M}_{m, p}^{\mathrm{tnn}}$ for which the minors in Z are zero (and those not in Z are nonzero).

Some cells may be empty. The space $\mathcal{M}_{m, p}^{\mathrm{tnn}}$ is partitioned by the non-empty cells.

A trivial example In $\mathcal{M}_{2,1}^{\mathrm{tn}}$ every cell is non-empty. There are 4 cells:

$$
\begin{gathered}
S_{\{\emptyset\}}^{\circ}=\left\{\left.\binom{x}{y} \right\rvert\, x, y>0\right\} \quad S_{\{[1,1]\}}^{\circ}=\left\{\left.\binom{0}{y} \right\rvert\, y>0\right\} \\
S_{\{[2,1]\}}^{\circ}=\left\{\left.\binom{x}{0} \right\rvert\, x>0\right\} \quad S_{\{[1,1],[2,1]\}}^{\circ}=\left\{\binom{0}{0}\right\}
\end{gathered}
$$

Example In $\mathcal{M}_{2}^{\text {tnn }}$ the cell $S_{\{[2,2]\}}^{\circ}$ is empty.
For, suppose that $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is tnn and $d=0$.
Then $a, b, c \geq 0$ and also $a d-b c \geq 0$.
Thus, $-b c \geq 0$ and hence $b c=0$ so that $b=0$ or $c=0$.
(This is exactly the same reasoning as in the the proof that a prime in $\mathcal{O}_{q}\left(\mathcal{M}_{2}(\mathbb{C})\right)$ that contains d must contain either b or c !)

Exercise There are 14 non-empty cells in $\mathcal{M}_{2}^{\mathrm{tnn}}$.

Postnikov (arXiv:math/0609764) defines Le-diagrams: an $m \times p$ array with entries either 0 or 1 is said to be a Le-diagram if it satisfies the following rule: if there is a 0 in a given square then either each square to the left is also filled with 0 or each square above is also filled with 0 .

An example and a non-example of a Le-diagram on a 5×5 array

1	1	0	1	0
0	0	0	1	0
1	1	1	1	0
0	0	0	1	0
1	1	1	1	0

1	1	0	1	0
0	0	1	0	1
1	1	1	0	1
0	0	1	1	1
1	1	1	1	1

- Postnikov (arXiv:math/0609764) There is a bijection between Le-diagrams on an $m \times p$ array and non-empty cells S_{Z}° in $\mathcal{M}_{m, p}^{\text {tnn }}$.

For 2×2 matrices, this says that there is a bijection between Le-diagrams on 2×2 arrays and non-empty cells in $\mathcal{M}_{2}^{\text {tnn }}$.
2×2 Le-diagrams

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline 1 & 1 \\
\hline 1 & 1
\end{array} \quad \quad \begin{array}{|l|l|}
\hline 0 & 1 \\
\hline 1 & 1 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 1 & 0 \\
\hline 1 & 1 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 1 & 1 \\
\hline 0 & 1 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 1 & 1 \\
\hline 1 & 0 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 0 & 0 \\
\hline 1 & 1 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 0 & 1 \\
\hline 0 & 1 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 0 & 1 \\
\hline 1 & 0 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 1 & 0 \\
\hline 0 & 1 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 1 & 0 \\
\hline 1 & 0 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 1 & 1 \\
\hline 0 & 0 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 0 & 0 \\
\hline 0 & 1 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 0 & 0 \\
\hline 1 & 0 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 0 & 1 \\
\hline 0 & 0 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 1 & 0 \\
\hline 0 & 0 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 0 & 0 \\
\hline 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

The Link

Totally nonnegative cells

Totally nonnegative cells are defined by the vanishing of families of minors. Some of the TNN cells are empty.

We denote by S_{Z}^{0} the TNN cell associated to the family of minors Z.

A family of minors is admissible if the corresponding TNN cell is non-empty.

Question: what are the admissible families of minors?

Generators of \mathcal{H}-primes in quantum matrices.

Assume that q is transcendental.

Then \mathcal{H}-primes of $\mathcal{O}_{q}(\mathcal{M}(m, p))$ are generated by quantum minors.

Question: which families of quantum minors?

Conjecture

Let Z_{q} be a family of quantum minors, and Z be the corresponding family of minors.
$\left\langle Z_{q}\right\rangle$ is a \mathcal{H}-prime ideal iff the cell S_{Z}^{0} is non-empty.

An algorithm to rule them all

Deleting derivations algorithm:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \longrightarrow\left(\begin{array}{cc}
a-b d^{-1} c & b \\
c & d
\end{array}\right)
$$

Restoration algorithm:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \longrightarrow\left(\begin{array}{cc}
a+b d^{-1} c & b \\
c & d
\end{array}\right)
$$

An algorithm to rule them all

If $M=\left(x_{i, \alpha}\right) \in \mathcal{M}_{m, p}(K)$, then we set

$$
f_{j, \beta}(M)=\left(x_{i, \alpha}^{\prime}\right) \in \mathcal{M}_{m, p}(K),
$$

where

$$
x_{i, \alpha}^{\prime}:= \begin{cases}x_{i, \alpha}+x_{i, \beta} x_{j, \beta}^{-1} x_{j, \alpha} & \text { if } x_{j, \beta} \neq 0, i<j \text { and } \alpha<\beta \\ x_{i, \alpha} & \text { otherwise } .\end{cases}
$$

We set $M^{(j, \beta)}:=f_{j, \beta} \circ \cdots \circ f_{1,2} \circ f_{1,1}(M)$.

An example

$$
\begin{gathered}
\text { Set } M=\left(\begin{array}{rrr}
1 & -1 & 1 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{array}\right) . \text { Then } \\
M^{(2,2)}=M^{(2,1)}=M^{(1,3)}=M^{(1,2)}=M^{(1,1)}=M \\
M^{(3,1)}=M^{(2,3)}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{array}\right), \quad M^{(3,2)}=\left(\begin{array}{lll}
2 & 1 & 1 \\
2 & 2 & 1 \\
1 & 1 & 1
\end{array}\right)
\end{gathered}
$$

and

$$
M^{(3,3)}=\left(\begin{array}{lll}
3 & 2 & 1 \\
3 & 3 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Exercise. Is this matrix TNN?

TNN Matrices and restoration algorithm

Goodearl-L.-Lenagan (201?)

- If the entries of M are nonnegative and its zeros form a Cauchon diagram, then $M^{(m, p)}$ is TNN.
- Let M be a matrix with real entries. We can apply the deleting derivation algorithm to M. Let N denote the resulting matrix.

Then M is TNN iff the matrix N is nonnegative and its zeros form a Cauchon diagram.

Main Result

Goodearl-L.-Lenagan (201?) Let \mathcal{F} be a family of minors in the coordinate ring of $\mathcal{M}_{m, p}(\mathbb{C})$, and let \mathcal{F}_{q} be the corresponding family of quantum minors in $\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$. Then the following are equivalent:

1. The totally nonnegative cell associated to \mathcal{F} is non-empty.
2. \mathcal{F}_{q} is the set of quantum minors that belong to torus-invariant prime in $\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$.
