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Quantised coordinate rings

Prime spectrum of quantum matrices

Poisson geometry

Symplectic leaves in Poisson matrix varieties

Total Positivity

Cells in totally nonnegative matrices
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The quantum world
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Quantum plane.

Let q ∈ C∗, qN 6= 1. A := C〈x, y | xy = qyx〉.
A is a noetherian domain.

There is an action of the torus H := (C∗)2 on A

(h, g).x = hx and (h, g).y = gy

Here is the picture of the prime spectrum of A.
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Quantum affine n-space.

T := C〈t1, . . . , tn | titj = λijtjti, i < j〉.

There is an action of the torus H := (C∗)n on T by automor-

phisms

(h1, . . . , hn).ti = hiti

For each w ⊆ {1, . . . , n}, we set Jw := 〈ti〉i∈w.

Then H-Spec(T ) = {Jw}.
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Quantum 2× 2 matrices

The coordinate ring of quantum 2× 2 matrices

Oq(M2(C)) := C
[
a b
c d

]
is generated by four indeterminates a, b, c, d subject to the follow-

ing rules:

ab = qba, cd = qdc

ac = qca, bd = qdb

bc = cb, ad− da = (q − q−1)cb.

The quantum determinant ad− qbc is a central element
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The algebra of m× p quantum matrices.

R = Oq (Mm,p(C)) := C

 Y1,1 . . . Y1,p
... · · · ...
Ym,1 . . . Ym,p

,

where each 2× 2 sub-matrix is a copy of Oq (M2(C)).

Oq (Mm,p(C)) is an iterated Ore extension with the indetermi-

nates Yi,α adjoined in the lexicographic order and so is a noethe-

rian integral domain.

In the square case (m = p = n)

D =
∑
σ∈Sn

(−q)l(σ)Y1,σ(1) . . . Yn,σ(n)

is the quantum determinant, a central element.
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Quantum minors of R = Oq(Mm,p(C)).

They are the quantum determinants of square sub-matrices of

Oq(Mm,p(C)).

More precisely, if I ⊆ [[1,m]] and Λ ⊆ [[1, p]] with | I |=| Λ |, the

quantum minor associated with the rows I and columns Λ is

[I | Λ] := Dq(Oq(MI,Λ(C))).

For example, [12|23] = Y1,2Y2,3− qY1,3Y2,2 is the quantum minor

of R associated with the rows 1,2, and the columns 2,3.
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• The prime spectrum of Oq(Mm,p(C))

We now assume that q ∈ C∗ is not a root of unity, and we set

R := Oq(Mm,p(C)).

• Goodearl-Letzter Prime ideals of R are completely prime.

The torus H := (C∗)m+p acts by automorphisms on R via :

(a1, . . . , am, b1, . . . , bp).Yi,α = aibαYi,α.

This action of H on R induces an action of H on Spec(R). We

denote by H-Spec(R) the set of those prime ideals in R which

are H-invariant.

• Goodearl-Letzter R has at most 2mp H-primes.
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Stratification Theorem (Goodearl-Letzter) :

If J ∈ H-Spec(R), then we set

SpecJ(R) := {P ∈ Spec(R) |
⋂
h∈H

h.P = J}.

1. Spec(R) =
⊔

J∈H-Spec(R)

SpecJ(R)

2. For all J ∈ H-Spec(R), SpecJ(R) is homeomorphic to the
prime spectrum of a (commutative) Laurent polynomial ring
in n(J) indeterminates over C.

3. The primitive ideals of R are precisely the primes maximal in
their H-strata.
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An observation

Recall that in Oq(M2(C))

ad− da = (q − q−1)bc.

As a result, if P is a prime ideal and d ∈ P then this forces bc ∈ P
so either b ∈ P or c ∈ P .

Thus there is no prime ideal P of Oq(M2(C)) for which d is the

only quantum minor in P .
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Cauchon diagrams

A Cauchon diagram on an m×p array is an m×p array of squares

filled either black or white such that if a square is coloured black

then either each square to the left is coloured black, or each

square above is coloured black. Here are an example and a non-

example
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2× 2 Cauchon Diagrams
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Parametrisation of H-Spec(Oq(Mm,p(C)))

• Cauchon (2003) There is a bijection between Cauchon dia-

grams on an m× p array and H− Spec(Oq(Mm,p(C))).

• L. The height of a H-prime is given by the number of black

boxes in the corresponding Cauchon diagram.

n Cn :=| H-Spec(Oq(Mn(C))) |

2 14

3 230

4 6902
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Generators of H-primes

Conjecture (Goodearl-Lenagan): H-primes are generated by

quantum minors.

The conjecture is true for Oq (M2(C)) and Oq (M3(C)) (Goodearl-

Lenagan).

• L. (2004) Assume that q is transcendental. Then H-primes

of R are generated by quantum minors.

• Yakimov (201?) Also, assuming q transcendental, Yakimov

gives explicit generating sets of quantum minors.
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2× 2 quantum matrices

The following 14 H-invariant ideals are all prime and these are
the only H-prime ideals in Oq(M2(C)).

(
a b
c d

)
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Restricted permutations

S = {w ∈ Sm+p | − p ≤ w(i)− i ≤ m for all i = 1,2, . . . ,m+ p}.

In the 2× 2 case, this subposet of the Bruhat poset of S4 is

S = {w ∈ S4 | − 2 ≤ w(i)− i ≤ 2 for all i = 1,2,3,4}.
and is shown below.
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The poset H-Spec(Oq(Mm,p(C)))

Set

S := {σ ∈ Sm+p | −p ≤ σ(i)− i ≤ m, ∀i ∈ [[1,m+ p]]}

and

w0 :=

[
1 2 . . . p p+ 1 p+ 2 . . . p+m

m+ 1 m+ 2 . . . m+ p 1 2 . . . m

]
.

Then

S = {w ∈ Sm+p | w ≤ w0}

and

L. (2007) We have a poset isomorphism

H-Spec(Oq(Mm,p(C))) ' S.
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Pipe dreams

Previous results imply the existence of a bijection between the

set of m × p Cauchon diagrams and the set S of restricted per-

mutations.

This is no coincidence, and the connection between the two

posets can be illuminated by using Pipe Dreams.

The procedure to produce a restricted permutation from a Cau-

chon diagram goes as follows. Given a Cauchon diagram, replace

each black box by a cross, and each white box by an elbow joint,

that is:

↔ ↔
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Pipe dreams: an example

1

2

3

4

5

6

1 2 3

4 5 6

So the restricted permutation associated to this Cauchon dia-

gram is (3 4).

Observe that the all black diagram produces the restricted per-

mutation w0.
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Direct graph associated to a diagram

To a Cauchon diagram C, one can associate a direct graph G(C)

and and skew-symmetric matrix AC as follows.

The vertices of G(C) are the white boxes of C labeled 1 to N .

We draw an arrow between two vertices in the same column

(going from North to South) or on the same row (going from

West to East).

AC is the N × N skew-symmetric matrix whose coefficient aij
(i < j) is the number of arrows going from the vertex labeled i

to the vertex labeled j.
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An example

1 2

3 4 5

6 7 8

G(C): 1 2

3 4 5

6 7 8

; AC =



0 1 0 1 0 0 1 0
−1 0 0 0 1 0 0 1
0 0 0 1 1 1 0 0
−1 0 −1 0 1 0 1 0
0 −1 −1 −1 0 0 0 1
0 0 −1 0 0 0 1 1
−1 0 0 −1 0 −1 0 1
0 −1 0 0 −1 −1 −1 0
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Dimension of strata

Bell-L. (2010). The H-stratum of Oq(Mm,p(C)) associated to

C is a Laurent polynomial ring over C in dim kerAC indetermi-

nates.

Problem: this matrix is huge. It can be mp × mp whereas we

have proved that the dimension of a stratum is always less than

or equal to min(m, p).

Bell-Casteels-L. (201?). Let C be an m× p Cauchon diagram

and w be the corresponding restricted permutation.

dim kerAC = dim ker(Pw + Pw0),

where Pσ denotes the permutation-matrix associated to σ.
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Explicit bijections

We define two bijections

φ : kerAC → ker(Pw + Pw0)

and

ψ : ker(Pw + Pw0)→ kerAC.

To avoid technicalities, we explain their construction on an ex-
ample. Consider the following Cauchon diagram

1 2

3 4 5

6 7 8
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Recall that AC =



0 1 0 1 0 0 1 0
−1 0 0 0 1 0 0 1
0 0 0 1 1 1 0 0
−1 0 −1 0 1 0 1 0
0 −1 −1 −1 0 0 0 1
0 0 −1 0 0 0 1 1
−1 0 0 −1 0 −1 0 1
0 −1 0 0 −1 −1 −1 0


So we have

kerAC = Vect(u =



1
0
0
0
1
−1
0
0


, v =



0
1
−1
0
0
0
−1
0


)
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Recall that in this case we have w = (3 4) and w0 = (1 4)(2 5)(3 6).

So Pw + Pw0 =



1 0 0 1 0 0
0 1 0 0 1 0
0 0 0 1 0 1
1 0 1 0 0 0
0 1 0 0 1 0
0 0 1 0 0 1


So we have

ker(Pw + Pw0) = Vect(α =



1
0
−1
−1
0
1


, β =



0
1
0
0
−1
0


)
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Bijection 1: Image of u

1. Put the coordinates of u in C

1 0

0 0 1

-1 0 01

2

3

4 5 6

2. The image of u is the vector (y1, . . . , y6) with

y1 = −(−1+0+0) = 1, y2 = −(0+0+1) = −1, y3 = −(1+0) = −1

y4 = 0 + (−1) = −1, y5 = 1 + 0 + 0, y6 = 0 + 1 + 0.

One can check that φ(u) = α− β ∈ ker(Pw + Pw0).
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Bijection 2: image of α

1

0

-1

-1 0 1

1 2

3 4 5

6 7 8

The image of α is the vector (x1, . . . , x8).

29



Bijection 2: image of α

1

0

-1

-1 0 1

1 2

3 4 5

6 7 8

The image of α is the vector (x1, . . . , x8).

x5 = −1− 0 = −1

One can easily check that

ψ(α) = (−1,0,1,0,−1,1,1,0) = −(u+ v) ∈ kerAC.

Moreover φ ◦ ψ = −2id and ψ ◦ φ = −2id.
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Dimension of strata: toric permutation

1

2

3

1

2

3

4 5 6

4 5 6

So the toric permutation associated to this Cauchon diagram is

(1 3 6 4)(2 5).

Bell-Casteels-L. (201?) The dimension of the stratum asso-

ciated to C is equal to the number of odd cycles in the decom-

position of the corresponding toric permutation.
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The nonnegative world
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• A matrix is totally positive if each of its minors is positive.

• A matrix is totally nonnegative if each of its minors is non-

negative.
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Examples
1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64




1 1 0 0
1 2 1 0
1 3 3 1
1 4 6 4




5 6 3 0
4 7 4 0
1 4 4 2
0 1 2 3


¿ How much work is involved in checking if a matrix is totally
positive?

Eg. n = 4:

#minors =
n∑

k=1

(n
k

)2
=
(2n
n

)
− 1 ≈

4n
√
πn

by using Stirling’s approximation

n! ≈
√

2πn
nn

en
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2× 2 case

The matrix (
a b
c d

)

has five minors: a, b, c, d,∆ = ad− bc.

If b, c, d,∆ = ad− bc > 0 then

a =
∆ + bc

d
> 0

so it is sufficient to check four minors.

Gasca and Pena: optimal test for total positivity and algorithm

for total nonnegativity.
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Let Mtnn
m,p be the set of totally nonnegative m× p real matrices.

Let Z be a subset of minors. The cell SoZ is the set of matrices

in Mtnn
m,p for which the minors in Z are zero (and those not in Z

are nonzero).

Some cells may be empty. The space Mtnn
m,p is partitioned by the

non-empty cells.

A trivial example In Mtnn
2,1 every cell is non-empty. There are 4

cells:

S◦{∅} = {
(
x
y

)
| x, y > 0} S◦{[1,1]} = {

(
0
y

)
| y > 0}

S◦{[2,1]} = {
(
x
0

)
| x > 0} S◦{[1,1],[2,1]} = {

(
0
0

)
}
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Example In Mtnn
2 the cell S◦{[2,2]} is empty.

For, suppose that

(
a b
c d

)
is tnn and d = 0.

Then a, b, c ≥ 0 and also ad− bc ≥ 0.

Thus, −bc ≥ 0 and hence bc = 0 so that b = 0 or c = 0.

(This is exactly the same reasoning as in the the proof that a

prime in Oq(M2(C)) that contains d must contain either b or c!)

Exercise There are 14 non-empty cells in Mtnn
2 .
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Postnikov (arXiv:math/0609764) defines Le-diagrams: an m×p
array with entries either 0 or 1 is said to be a Le-diagram if it

satisfies the following rule: if there is a 0 in a given square then

either each square to the left is also filled with 0 or each square

above is also filled with 0.

An example and a non-example of a Le-diagram on a 5×5 array

1 1 0 1 0
0 0 0 1 0
1 1 1 1 0
0 0 0 1 0
1 1 1 1 0

1 1 0 1 0
0 0 1 0 1
1 1 1 0 1
0 0 1 1 1
1 1 1 1 1
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• Postnikov (arXiv:math/0609764) There is a bijection be-

tween Le-diagrams on an m× p array and non-empty cells S◦Z in

Mtnn
m,p.

For 2 × 2 matrices, this says that there is a bijection between

Le-diagrams on 2× 2 arrays and non-empty cells in Mtnn
2 .
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2× 2 Le-diagrams

1 1
1 1

0 1
1 1

1 0
1 1

1 1
0 1

1 1
1 0

0 0
1 1

0 1
0 1

0 1
1 0

1 0
0 1

1 0
1 0

1 1
0 0

0 0
0 1

0 0
1 0

0 1
0 0

1 0
0 0

0 0
0 0
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The Link
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Totally nonnegative cells

Totally nonnegative cells are defined by the vanishing of families

of minors. Some of the TNN cells are empty.

We denote by S0
Z the TNN cell associated to the family of minors

Z.

A family of minors is admissible if the corresponding TNN cell is

non-empty.

Question: what are the admissible families of minors?
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Generators of H-primes in quantum matrices.

Assume that q is transcendental.

Then H-primes of Oq(M(m, p)) are generated by quantum mi-

nors.

Question: which families of quantum minors?

43



Conjecture

Let Zq be a family of quantum minors, and Z be the correspond-

ing family of minors.

〈Zq〉 is a H-prime ideal iff the cell S0
Z is non-empty.
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An algorithm to rule them all

Deleting derivations algorithm:

(
a b
c d

)
−→

(
a− bd−1c b

c d

)

Restoration algorithm:

(
a b
c d

)
−→

(
a+ bd−1c b

c d

)
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An algorithm to rule them all

If M = (xi,α) ∈Mm,p(K), then we set

fj,β(M) = (x′i,α) ∈Mm,p(K),

where

x′i,α :=

{
xi,α + xi,βx

−1
j,βxj,α if xj,β 6= 0, i < j and α < β

xi,α otherwise.

We set M(j,β) := fj,β ◦ · · · ◦ f1,2 ◦ f1,1(M).
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An example

Set M =

 1 −1 1
0 2 1
1 1 1

. Then

M(2,2) = M(2,1) = M(1,3) = M(1,2) = M(1,1) = M,

M(3,1) = M(2,3) =

 1 1 1
0 2 1
1 1 1

 , M(3,2) =

 2 1 1
2 2 1
1 1 1


and

M(3,3) =

 3 2 1
3 3 1
1 1 1

 .

Exercise. Is this matrix TNN?
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TNN Matrices and restoration algorithm

Goodearl-L.-Lenagan (201?)

• If the entries of M are nonnegative and its zeros form a Cau-

chon diagram, then M(m,p) is TNN.

• Let M be a matrix with real entries. We can apply the deleting

derivation algorithm to M . Let N denote the resulting matrix.

Then M is TNN iff the matrix N is nonnegative and its zeros

form a Cauchon diagram.
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Main Result

Goodearl-L.-Lenagan (201?) Let F be a family of minors in

the coordinate ring of Mm,p(C), and let Fq be the corresponding

family of quantum minors in Oq(Mm,p(C)). Then the following

are equivalent:

1. The totally nonnegative cell associated to F is non-empty.

2. Fq is the set of quantum minors that belong to torus-invariant

prime in Oq(Mm,p(C)).
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