

"New Trends in Noncommutative Algebra" – UW 08/10/2010

Martin Lorenz Temple University, Philadelphia

MR744454 (85j:16027) 16A46 (16A54 18F25) Goodearl, K. R. (1-UT)

Simple Noetherian rings not isomorphic to matrix rings over domains.

Comm. Algebra 12 (1984), no. 11-12, 1421–1434.

Let L be a field of characteristic zero containing a primitive nth root ξ of unity, where n > 1 is an integer. Let $S = A_1(L)$ be the Weil algebra over L, that is, the algebra over L generated by symbols x and θ subject to the sole relation $\theta x - x\theta = 1$. Let α be the automorphism of S which sends x into ξx and θ into $\xi^{-1}\theta$. Finally let R be the skew group ring $S^*\langle\alpha\rangle$. It is known that R is a simple Noetherian ring. The author proves that R is not isomorphic to a $k \times k$ matrix ring for any k > 1. He mentions that the first example of a simple Noetherian ring not isomorphic to a matrix ring over a domain was constructed by the reviewer and O. M. Neroslavskii [Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 1975, no. 5, 38–42; MR0389968 (52 #10797)] and produced the ring R above for n = 2. Thus the author's construction extends that example. It is more important however that the author uses a new machinery for his proof. Namely he uses a theorem of Quillen on the functor K_0 for rings with a nonnegative filtration.

Reviewed by A. E. Zalesskii

© Copyright American Mathematical Society 1985, 2010

 Background: quantized coordinate algebras and enveloping algebras

- Background: quantized coordinate algebras and enveloping algebras
- **Tool**: the Amitsur-Martindale ring of quotients

- Background: quantized coordinate algebras and enveloping algebras
- **Tool**: the Amitsur-Martindale ring of quotients
- Some noncommutative spectra: Spec R, Rat R, ...

- Background: quantized coordinate algebras and enveloping algebras
- Tool: the Amitsur-Martindale ring of quotients
- Some noncommutative spectra: Spec R, Rat R, ...
- Stratification of Spec *R*

- "Group actions and rational ideals", Algebra and Number Theory 2 (2008), 467-499
- "Algebraic group actions on noncommutative spectra", Transformation Groups 14 (2009) 649-675

Papers & pdf file of this talk available on my web page:

http://math.temple.edu/~lorenz/

Group actions and stratifications of prime spectra

Background

Quantized coordinate rings

Goal: For $R = \mathcal{O}_q(\mathbb{k}^n)$, $\mathcal{O}_q(\mathcal{M}_n)$, $\mathcal{O}_q(G)$... a quantized coordinate ring, describe

Spec $R = \{ \text{prime ideals of } R \}$

Goal: For $R = \mathcal{O}_q(\mathbb{k}^n)$, $\mathcal{O}_q(\mathcal{M}_n)$, $\mathcal{O}_q(G)$... a quantized coordinate ring, describe

Spec
$$R = \{ \text{prime ideals of } R \}$$

Typically, some algebraic torus T acts rationally by \Bbbk -algebra automorphisms on R; so have

Spec
$$R \longrightarrow$$
 Spec^T $R = \{T\text{-stable primes of } R\}$
 $P \longmapsto$ $P:T = \bigcap_{def} \bigcap_{g \in T} g.P$

Group actions and stratifications of prime spectra

 $\sim \rightarrow$

T-stratification of $\operatorname{Spec} R$

(Goodearl & Letzter; see also the monograph by Brown & Goodearl)

Spec
$$R = \bigsqcup_{I \in \operatorname{Spec}^{T} R}$$

Spec $R \mid P : T = I$

Group actions and stratifications of prime spectra

 $\sim \rightarrow$

T-stratification of $\operatorname{Spec} R$

(Goodearl & Letzter; see also the monograph by Brown & Goodearl)

Group actions and stratifications of prime spectra

For $R = \Bbbk G$, the group algebra of a finite group G, one has

$$\operatorname{Spec} R \xleftarrow{1-1} \operatorname{IrrRep} R$$

Group actions and stratifications of prime spectra

For $R = \Bbbk G$, the group algebra of a finite group G, one has

$$\operatorname{Spec} R \xleftarrow{1-1} \operatorname{IrrRep} R$$

Clifford's Thm Given $P \in \operatorname{Spec} R$ and $N \leq G$, there is a unique, up to G-conjugacy, $Q \in \operatorname{Spec} \mathbb{k}N$ with

 $P \cap \Bbbk N = Q \colon G$

Group actions and stratifications of prime spectra

Goal: For $R = U(\mathfrak{g})$, the enveloping algebra of a finite-dim'l Lie algebra \mathfrak{g} over an algebraically closed field \Bbbk , describe

Dixmier's Problem 11 (from Algèbres enveloppantes, 1974) aims for an analog of Clifford's Thm:

334

PROBLÈMES

9. On suppose que ir ad x = 0 pour tout $x \in \mathfrak{g}$. Est ce que $Z(\mathfrak{g}) \neq k$?

11. Soient f un idéal de g, I un idéal primitif de U (g). Les propriétés suivantes sont-elles vraies : (a) il existe un idéal primitif de U (f) générique pour U (f) \cap I; (b) deux tels idéaux sont conjugués par le groupe adjoint algébrique de g; (c) soit L un tel idéal; il existe une représentation simple σ de f de noyau L, et une représentation simple ρ de st (σ , g), telles que $\rho | f$ soit un multiple de σ et que ind (ρ , g) soit simple de noyau I. Cf. 4.5.9, 5.4.3, 5.4.4, 5.6.5.

Group actions and stratifications of prime spectra

Enveloping algebras

solved for char k = 0 by Mæglin & Rentschler, even for noetherian or Goldie algebras R

Orbites d'un groupe algébrique dans l'espace des idéaux rationnels d'une algèbre enveloppante, Bull. Soc. Math. France **109** (1981), 403–426.

Sur la classification des idéaux primitifs des algèbres enveloppantes, Bull. Soc. Math. France **112** (1984), 3–40.

Sous-corps commutatifs ad-stables des anneaux de fractions des quotients des algèbres enveloppantes; espaces homogènes et induction de Mackey, J. Funct. Anal. **69** (1986), 307–396.

Idéaux G-rationnels, rang de Goldie, preprint, 1986.

Enveloping algebras

solved for char k = 0 by Mæglin & Rentschler, even for noetherian or Goldie algebras R

Orbites d'un groupe algébrique dans l'espace des idéaux rationnels d'une algèbre enveloppante, Bull. Soc. Math. France **109** (1981), 403–426.

Sur la classification des idéaux primitifs des algèbres enveloppantes, Bull. Soc. Math. France **112** (1984), 3–40.

Sous-corps commutatifs ad-stables des anneaux de fractions des quotients des algèbres enveloppantes; espaces homogènes et induction de Mackey, J. Funct. Anal. **69** (1986), 307–396.

Idéaux G-rationnels, rang de Goldie, preprint, 1986.

for char k arbitrary and under weaker Goldie hypotheses by
 N. Vonessen

Actions of algebraic groups on the spectrum of rational ideals, J. Algebra **182** (1996), 383–400.

Actions of algebraic groups on the spectrum of rational ideals. II, J. Algebra **208** (1998), 216–261.

Group actions and stratifications of prime spectra

Throughout the remainder of this talk,

- k denotes an **algebraically closed** base field
- R is an associative \Bbbk -algebra (with 1)
- *G* is an affine algebraic \Bbbk -group acting rationally on *R*; so *R* is a $\Bbbk[G]$ -comodule algebra.

Equivalently, we have a rational representation

$$\rho = \rho_R \colon G \to \operatorname{Aut}_{\Bbbk\text{-alg}}(R)$$

Group actions and stratifications of prime spectra

Occasionally, I will assume that R sat^s the weak Nullstellensatz:

 $\operatorname{End}_R(V) = \Bbbk \quad \text{for all } V \in \operatorname{IrrRep} R$

Example: R any affine \Bbbk -algebra, \Bbbk uncountable

Amitsur

Occasionally, I will assume that R sat^s the weak Nullstellensatz:

 $\operatorname{End}_R(V) = \Bbbk \quad \text{for all } V \in \operatorname{IrrRep} R$

... or even the Nullstellensatz:

weak Nullstellensatz & Jacobson property

- semiprime $\equiv \bigcap$ primitives

Occasionally, I will assume that R sat^s the weak Nullstellensatz:

 $\operatorname{End}_R(V) = \Bbbk \quad \text{for all } V \in \operatorname{IrrRep} R$

... or even the Nullstellensatz:

weak Nullstellensatz & Jacobson property

Examples:R affine noetherian / uncountable kAmitsurR an affine PI-algebraKaplansky, Procesi $R = U(\mathfrak{g})$ Quillen, Duflo $R = \Bbbk \Gamma$ with Γ polycyclic-by-finiteHall, L., Goldie & Michler $\mathfrak{O}_q(\Bbbk^n), \mathcal{O}_q(M_n(\Bbbk)), \mathcal{O}_q(G), \ldots$

Group actions and stratifications of prime spectra

Tool: The Amitsur-Martindale ring of quotients

$$Q_{\mathbf{r}}(R) = \varinjlim_{I \in \mathscr{E}} \operatorname{Hom}(I_R, R_R)$$

where $\mathscr{E} = \{I \leq R \mid 1. \operatorname{ann}_R I = 0\}$, a filter of ideals of R.

Group actions and stratifications of prime spectra

$$Q_{\mathbf{r}}(R) = \varinjlim_{I \in \mathscr{E}} \operatorname{Hom}(I_R, R_R)$$

where $\mathscr{E} = \{ I \leq R \mid 1. \operatorname{ann}_R I = 0 \}$, a filter of ideals of R.

• Elements are equivalence classes of right *R*-module maps

$$f: I_R \to R_R \quad (I \in \mathscr{E}) ,$$

with $f \sim f' \colon I'_R \to R_R$ if f = f' on some $J \subseteq I \cap I'$, $J \in \mathscr{E}$.

Group actions and stratifications of prime spectra

$$Q_{\mathbf{r}}(R) = \varinjlim_{I \in \mathscr{E}} \operatorname{Hom}(I_R, R_R)$$

where $\mathscr{E} = \{I \leq R \mid 1. \operatorname{ann}_R I = 0\}$, a filter of ideals of R.

• Elements are equivalence classes of right *R*-module maps

$$f: I_R \to R_R \quad (I \in \mathscr{E}) ,$$

with $f \sim f' \colon I'_R \to R_R$ if f = f' on some $J \subseteq I \cap I'$, $J \in \mathscr{E}$.

 \bullet + and \cdot come from addition and composition of maps.

Group actions and stratifications of prime spectra

$$Q_{\mathbf{r}}(R) = \varinjlim_{I \in \mathscr{E}} \operatorname{Hom}(I_R, R_R)$$

where $\mathscr{E} = \{I \leq R \mid 1. \operatorname{ann}_R I = 0\}$, a filter of ideals of R.

• Elements are equivalence classes of right *R*-module maps

$$f: I_R \to R_R \quad (I \in \mathscr{E}) ,$$

with $f \sim f' \colon I'_R \to R_R$ if f = f' on some $J \subseteq I \cap I'$, $J \in \mathscr{E}$.

 \bullet + and \cdot come from addition and composition of maps.

•
$$R \hookrightarrow Q_r(R)$$
 via $r \mapsto (x \mapsto rx)$.

Group actions and stratifications of prime spectra

Def^s & Facts: • The extended center of *R* is defined by

$$\mathcal{C}(R) = \mathcal{Z}\operatorname{Q_r}(R)$$
 f R is prime then $\mathcal{C}(R)$ is a $\Bbbk\text{-field.}$

Group actions and stratifications of prime spectra

Def^s & Facts: • The extended center of *R* is defined by

$$\mathcal{C}(R) = \mathcal{Z}\operatorname{Q_r}(R)$$
 If R is prime then $\mathcal{C}(R)$ is a $\Bbbk\text{-field.}$

• *R* is said to be centrally closed if

 $R = \widetilde{R} := R\mathcal{C}(R) \subseteq Q_{\mathbf{r}}(R)$

If R is semiprime then \widetilde{R} is centrally closed.

Group actions and stratifications of prime spectra

for prime rings R:

W. S. Martindale, III, *Prime rings satisfying a generalized polynomial identity*, J. Algebra **12** (1969), 576–584.

for general R:

S. A. Amitsur, *On rings of quotients*, Symposia Math., Vol. VIII, Academic Press, London, 1972, pp. 149–164.

• *R* a finite product of **simple** rings \implies $Q_r(R) = R$.

Group actions and stratifications of prime spectra

Examples (*R* semiprime)

- *R* a finite product of **simple** rings \implies $Q_r(R) = R$.
- R rt Goldie $\Longrightarrow Q_r(R) = \{q \in Q_{cl}(R) \mid qI \subseteq R \text{ for some } I \in \mathscr{E}\}.$ In particular,

 $\mathcal{C}(R) = \mathcal{Z} \mathbf{Q}_{cl}(R)$

Examples (*R* semiprime)

- *R* a finite product of **simple** rings \implies $Q_r(R) = R$.
- R rt Goldie $\Longrightarrow Q_r(R) = \{q \in Q_{cl}(R) \mid qI \subseteq R \text{ for some } I \in \mathscr{E}\}.$ In particular, $\mathcal{C}(R) = \mathcal{Z}Q_{cl}(R)$

• If $U(\mathfrak{g}) \twoheadrightarrow R$ then $Q_r(R) = \{ \text{ ad } \mathfrak{g}\text{-finite elements of } Q_{cl}(R) \}.$

Group actions and stratifications of prime spectra

Want: an intrinsic characterization of "primitivity", ideally

in detail ...

Group actions and stratifications of prime spectra

• Put Rat $R = \{P \in \operatorname{Spec} R \mid P \text{ is rational }\};$ so

$$\operatorname{Rat} R \subseteq \operatorname{Spec} R$$

Group actions and stratifications of prime spectra

Lemma (Martindale) Given $V \in \operatorname{IrrRep} R$, let $P = \operatorname{ann}_R V \in \operatorname{Prim} R$. There is an embedding of \Bbbk -fields

 $\mathcal{C}(R/P) \hookrightarrow \mathcal{Z}(\operatorname{End}_R(V))$

Group actions and stratifications of prime spectra

Consequently, if R sat^s the weak Nullstellensatz then

 $\operatorname{Prim} R \subseteq \operatorname{Rat} R$

Group actions and stratifications of prime spectra

Consequently, if R sat^s the weak Nullstellensatz then

 $\operatorname{Prim} R \subseteq \operatorname{Rat} R$

In fact, in most of the aforementioned examples, it has been shown that **equality** holds under mild restrictions on \Bbbk or q.

G-action on $R \rightsquigarrow G$ -actions on { ideals of R }, Spec R, Rat R, ...

$G \setminus ?$ denotes the orbit sets in question.

Group actions and stratifications of prime spectra

Definition:

A proper *G*-stable ideal $I \lhd R$ is called *G*-prime if $A, B \underset{G-\text{stab}}{\trianglelefteq} R$, $AB \subseteq I \Longrightarrow A \subseteq I$ or $B \subseteq I$. Put

G-Spec $R = \{G$ -prime ideals of $R\}$

Group actions and stratifications of prime spectra

Definition:

A proper *G*-stable ideal $I \lhd R$ is called *G*-prime if $A, B \underset{G-\text{stab}}{\trianglelefteq} R$, $AB \subseteq I \Longrightarrow A \subseteq I$ or $B \subseteq I$. Put

G-Spec $R = \{G$ -prime ideals of $R\}$

Group actions and stratifications of prime spectra

Given $I \in G$ -Spec R, the group G acts on $\mathcal{C}(R/I)$ and the invariants $\mathcal{C}(R/I)^G$ are a \Bbbk -field.

Definition: We call I *G*-rational if $C(R/I)^G = \Bbbk$ and put

G-Rat $R = \{G$ -rational ideals of $R\}$

Given $I \in G$ -Spec R, the group G acts on $\mathcal{C}(R/I)$ and the invariants $\mathcal{C}(R/I)^G$ are a \Bbbk -field.

Definition: We call I *G*-rational if $C(R/I)^G = \mathbb{k}$ and put

G-Rat $R = \{G$ -rational ideals of $R\}$

The following result solves Dixmier's Problem # 11 (a),(b) for arbitrary algebras.

Theorem 1
$$G \setminus \operatorname{Rat} R$$
 $\stackrel{\textit{bij.}}{\longrightarrow}$ G -Rat R ψ ψ ψ $G.P$ \mapsto $P:G$

Group actions and stratifications of prime spectra

Spec *R* carries the Jacobson-Zariski topology: closed subsets are those of the form $V(I) = \{P \in \text{Spec } R \mid P \supseteq I\}$ where $I \subseteq R$.

Group actions and stratifications of prime spectra

- \rightarrow is a surjection whose target has the final topology,
- \hookrightarrow is an inclusion whose source has the induced topology, and
- $\square \cong$ is a homeomorphism

Next, we turn to Spec R and the map $\gamma \dots$

Group actions and stratifications of prime spectra

Stratification of the prime spectrum

Recall: the map γ : Spec $R \twoheadrightarrow G$ -Spec $R, P \mapsto P : G = \bigcap_{g \in G} g.P$, yields the *G*-stratification

$$\operatorname{Spec} R = \bigsqcup_{I \in G\operatorname{-Spec} R} \operatorname{Spec}_{I} R$$

with G-strata

For simplicity, I assume G to be **connected**; so $\mathbb{k}[G]$ is a domain. In particular,

G-Spec $R = \operatorname{Spec}^{G} R = \{G$ -stable primes of $R\}$

For a given $I \in G$ -Spec R, put $T_I = \mathcal{C}(R/I) \otimes_{\Bbbk} \Bbbk(G)$

This is a commutative domain, a tensor product of two fields.

Group actions and stratifications of prime spectra

For a given $I \in G$ -Spec R, put $T_I = C(R/I) \otimes_{\mathbb{k}} \mathbb{k}(G)$

This is a commutative domain, a tensor product of two fields.

G-actions:

- on $\mathcal{C}(R/I)$ via the given action on R, $\rho \colon G \to \operatorname{Aut}_{\Bbbk-\operatorname{alg}}(R)$
- on $\Bbbk(G)$ by the right and left regular actions $\rho_r \colon (x.f)(y) = f(yx)$ and $\rho_\ell \colon (x.f)(y) = f(x^{-1}y)$

• on
$$T_I$$
 by $\rho \otimes \rho_r$ and $\mathrm{Id} \otimes \rho_\ell \qquad \longleftarrow \mathsf{commute}!$

Group actions and stratifications of prime spectra

For a given $I \in G$ -Spec R, put $T_I = \mathcal{C}(R/I) \otimes_{\Bbbk} \Bbbk(G)$

This is a commutative domain, a tensor product of two fields.

Put

Spec^G
$$T_I = \{(\rho \otimes \rho_r)(G) \text{-stable primes of } T_I\}$$

Group actions and stratifications of prime spectra

Theorem 2 Given $I \in G$ -Spec R, there is a bijection

$$c: \operatorname{Spec}_{I} R \longrightarrow \operatorname{Spec}^{G} T_{I}$$

having the following properties:

(a) G-equivariance:
$$c(g.P) = (\mathrm{Id} \otimes \rho_{\ell})(g)(c(P));$$

(b) inclusions: $P \subseteq P' \iff c(P) \subseteq c(P')$;

(c) hearts: $\mathcal{C}(T_I/c(P)) \cong \mathcal{C}(R/P \otimes \Bbbk(G))$ as $\Bbbk(G)$ -fields;

(d) rationality: P is rational
$$\iff T_I/c(P) = \Bbbk(G)$$
.

Theorem 2 Given $I \in G$ -Spec R, there is a bijection

$$c: \operatorname{Spec}_I R \longrightarrow \operatorname{Spec}^G T_I$$

having the following properties:

(a) G-equivariance:
$$c(g.P) = (\mathrm{Id} \otimes \rho_{\ell})(g)(c(P));$$

(b) inclusions:
$$P \subseteq P' \iff c(P) \subseteq c(P')$$
;
(c) hearts: $\mathcal{C}(T_I/c(P)) \cong \mathcal{C}(R/P \otimes \Bbbk(G))$ as $\Bbbk(G)$ -fields;

d) rationality: P is rational
$$\iff T_I/c(P) = \Bbbk(G)$$
.

Cor: Rational ideals are maximal in their strata

Group actions and stratifications of prime spectra

Recall: locally closed = open \cap closed

Theorem 3 Let $P \in \operatorname{Rat} R$. Then $\{P\}$ is loc. closed in $\operatorname{Spec} R$ iff $\{P:G\}$ is loc. closed in G- $\operatorname{Spec} R$.

Group actions and stratifications of prime spectra

Recall: locally closed = open \cap closed

Theorem 3	Let $P \in \operatorname{Rat} R$. Then $\{P\}$ is loc. closed in $\operatorname{Spec} R$
	iff $\{P:G\}$ is loc. closed in G-Spec R.

Pf of easy direction: Suppose I = P : G is loc. closed in G-Spec R. Then the preimage $\gamma^{-1}(I) = \operatorname{Spec}_I R$ under the continuous map $\gamma : \operatorname{Spec} R \to G$ -Spec R is locally closed in $\operatorname{Spec} R$, and hence so is $\operatorname{Spec}_I R \cap \overline{\{P\}}$. Finally, by the Corollary, $\operatorname{Spec}_I R \cap \overline{\{P\}} = \{P\}$.

Group actions and stratifications of prime spectra

Recall: locally closed = open \cap closed

Theorem 3	Let $P \in \operatorname{Rat} R$. Then $\{P\}$ is loc. closed in $\operatorname{Spec} R$
	iff $\{P:G\}$ is loc. closed in G -Spec R .

Cor If $P \in \operatorname{Rat} R$ is loc. closed in Spec R then the orbit G.P is open in its closure in $\operatorname{Rat} R$.

Pf: By Thm 3, $\{P:G\}$ is loc. closed in G-Spec R. Hence the fiber of $f: \operatorname{Rat} R \hookrightarrow \operatorname{Spec} R \xrightarrow{\gamma} G$ -Spec R over P:G is loc. closed in $\operatorname{Rat} R$. Finally $f^{-1}(P:G) = G.P$ by Thm 1.

Group actions and stratifications of prime spectra

The following result is an application of Thms 1 - 3 ...

Group actions and stratifications of prime spectra

Propⁿ Assume that R sat^s the Nullstellensatz. Then the following are equivalent:

- (a) G-Spec R is finite;
- (b) $G \setminus \operatorname{Rat} R$ is finite;
- (c) R sat^s (1) ACC for G-stable semiprime ideals, (2) the Dixmier-Mæglin-equivalence, and (3) G-Rat R = G-Spec R.

If these conditions are satisfied then rational ideals of R are exactly the primes that are maximal in their G-strata.

Group actions and stratifications of prime spectra

UW-Seattle 08/10/2010

locally closed = primitive = rational

Example: If G is an algebraic torus then a sufficient condition for the equality G-Spec R = G-Rat R is

$$\dim_{\Bbbk} R_{\lambda} \le 1 \quad \text{ for all } \lambda \in X(G)$$

Group actions and stratifications of prime spectra

Example: If G is an algebraic torus then a sufficient condition for the equality G-Spec R = G-Rat R is

$$\dim_{\Bbbk} R_{\lambda} \le 1 \quad \text{ for all } \lambda \in X(G)$$

For a commutative domain *R*, this is also necessary. Thus:

Cor (classical) Let R be an affine commutative domain / \Bbbk and let G be an algebraic \Bbbk -torus acting rationally on R. Then:

 $G \setminus \operatorname{Rat} R \text{ is finite } \iff \dim_{\Bbbk} R_{\lambda} \leq 1 \text{ for all } \lambda \in X(G).$

Group actions and stratifications of prime spectra

Example: If G is an algebraic torus then a sufficient condition for the equality G-Spec R = G-Rat R is

$$\dim_{\Bbbk} R_{\lambda} \le 1 \quad \text{ for all } \lambda \in X(G)$$

In general, this condition is not necessary, however, and I do not yet understand when G-Spec R = G-Rat R.

Group actions and stratifications of prime spectra

• We have a notion of rationality for arbitrary algebras.

Group actions and stratifications of prime spectra

- We have a notion of rationality for arbitrary algebras.
- The principal features of the theory carry over from earlier special cases to the general setting.

- We have a notion of rationality for arbitrary algebras.
- The principal features of the theory carry over from earlier special cases to the general setting.
- **Proofs** become more natural and streamlined.

- We have a notion of rationality for arbitrary algebras.
- The principal features of the theory carry over from earlier special cases to the general setting.
- **Proofs** become more natural and streamlined.
- To do:
 - apply to interesting new examples
 - finiteness of *G*-Spec

• • • •

