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Introduction

Possible subtitle: Initiating the Elliot classification program for group
actions.

Caution: The results are not complete, and even those that are stated
have not been carefully checked. Don’t quote them yet!

All the theorems I have are about actions on purely infinite simple
C*-algebras, but there are related questions for purely infinite simple
Leavitt path algebras (graph algebras), as I will try to make clear during
the talk.

Technical details for C*-algebraists will mostly be suppressed. Come to my
talks in Nottingham in early September and Banff in late September.
(Also, by then, I hope to have made further progress.)
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Some of the work was done here:
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Rough outline

The algebras: purely infinite simple C*-algebras and Leavitt path
algebras.

Classification of purely infinite simple algebras.

Examples of finite group actions on purely infinite simple algebras.

Pointwise outer actions and the Rokhlin property.

Equivariant versions of the three main ingredients for pointwise outer
actions.
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Idempotents and projections

Pure infiniteness is defined in terms of idempotents and projections.

Convention

1 An idempotent in a ring A is any element e ∈ A such that e2 = e.

2 A projection in a *-algebra A over C is a selfadjoint idempotent, that
is, we require in addition e∗ = e.

(In a *-algebra over C, a 7→ a∗ is conjugate linear, reverses multiplication,
and satisfies a∗∗ = a.)

C*-algebraists find it very convenient to “normalize” idempotents to
projections. In fact, if A is a unital C*-algebra, then:

1 Every idempotent is similar to a projection.

2 If two projections p and q are similar, then they are unitarily
equivalent: there is a unitary u ∈ A (unitary means u∗ = u−1, as for
complex matrices) such that upu∗ = q.
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Infinite idempotents

Definition

Let A be a ring, and let e, f ∈ A be idempotents. We write e ∼ f , and say
e and f are Murray-von Neumann equivalent, if there are v ,w ∈ A such
that wv = e and vw = f .

For projections in C*-algebras, the condition is equivalent to the existence
of s ∈ A such that s∗s = e and ss∗ = f .

Definition

Let A be a ring, and let e, f ∈ A be idempotents. We write e ≤ f if
ef = fe = e.

Definition

Let A be a ring, and let e ∈ A be an idempotent. We say e is infinite if
there exists an idempotent f ∈ A such that f ∼ e, f ≤ e, and f 6= e.
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Infinite idempotents (continued)
e is infinite if there exists f such that

f ∼ e, f ≤ e, and f 6= e.

Example: Let V =
⊕∞

n=0 C be the space of all sequences (ξ0, ξ1, . . .) with
ξn ∈ C for all n and ξn = 0 for all but finitely many n. Let L(V ) be the
algebra of all linear maps from V to V . Then 1 is infinite in L(V ).

Indeed, take f to send

(ξ0, ξ1, ξ2, . . .) to (0, ξ1, ξ2, . . .)

(kill the first coordinate), take v to send

(ξ0, ξ1, ξ2, . . .) to (0, ξ0, ξ1, . . .)

(shift everything one space right), and take w to send

(ξ0, ξ1, ξ2, . . .) to (ξ1, ξ2, ξ3, . . .)

(delete first coordinate and shift one space left).
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A more dramatic example of infiniteness

Let V =
⊕∞

n=0 C as before. Define v1, v2,w1,w2 ∈ L(V ) by:

v1(ξ0, ξ1, ξ2, . . .) = (ξ0, 0, ξ1, 0, ξ2, 0, . . .),

v2(ξ0, ξ1, ξ2, . . .) = (0, ξ0, 0, ξ1, 0, ξ2, . . .),

and
w1(ξ0, ξ1, ξ2, . . .) = (ξ0, ξ2, ξ4, ξ6, . . .),

w2(ξ0, ξ1, ξ2, . . .) = (ξ1, ξ3, ξ5, ξ7, . . .).

Then w1v1 = w2v2 = 1, and v1w1 and v2w2 are orthogonal idempotents,
each obviously Murray-von Neumann equivalent to 1, such that
v1w1 + v2w2 = 1.
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Purely infinite simple algebras

Definition

A simple C*-algebra A is called purely infinite if every nonzero hereditary
subalgebra contains an infinite projection.

Definition

A simple ring A is called purely infinite if every nonzero left ideal contains
an infinite idempotent.

I won’t define hereditary subalgebras, but it is known that they are exactly
the subalgebras of the form L ∩ L∗ for closed left ideals L. So a simple
C*-algebra A is purely infinite if and only if every nonzero closed left ideal
contains an infinite projection.
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LC(2) and O2

Recall V =
⊕∞

n=0 C, and v1, v2,w1,w2 ∈ L(V ), given by:

v1(ξ0, ξ1, . . .) = (ξ0, 0, ξ1, 0, . . .) and v2(ξ0, ξ1, . . .) = (0, ξ0, 0, ξ1, . . .),

and

w1(ξ0, ξ1, . . .) = (ξ0, ξ2, ξ4, . . .) and w2(ξ0, ξ1, . . .) = (ξ1, ξ3, ξ5, . . .),

satisfying

w1v1 = w2v2 = 1, w1v2 = w2v1 = 0, and v1w1 + v2w2 = 1.

These generate the Leavitt algebra LC(2). (One can use other fields in
place of C.) It turns out to be purely infinite and simple.

If we replace
⊕∞

n=0 C by l2(Z≥0) (square summable sequences instead of
those that are eventually zero), and use the same formulas, getting
operators s1, s2, s

∗
1 , s

∗
2 , then the generated C*-algebra is the Cuntz

algebra O2, a purely infinite simple C*-algebra.
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LC(d) and Od

For d = 2, 3, 4, . . . , there is a Leavitt algebra LC(d) over C, generated by
elements

v1, v2, . . . , vd and w1,w2, . . . ,wd

such that
w1v1 = w2v2 = · · · = wdvd = 1,

wjvk = 0 for j 6= k, and v1w1, v2w2, . . . , vdwd are orthogonal idempotents
which add up to 1.

Similarly, there is a Cuntz algebra Od generated as a C*-algebra by
s1, s2, . . . , sd satisfying

s∗1 s1 = s∗2 s2 = · · · = s∗dsd = 1 and s1s
∗
1 + s2s

∗
2 + · · ·+ sds∗d = 1.

(The other Leavitt algebra relations are then automatic.)
For d = ∞, one gets LC(∞) and O∞ by omitting the condition that the
vjwj or sjs

∗
j add up to 1, but keeping the requirement that they be

orthogonal.
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LC(d), Od , and generalizations

Relations for Ld(C) for d <∞:

w1v1 = w2v2 = · · · = wdvd = 1,

wjvk = 0 for j 6= k, and v1w1, v2w2, . . . , vdwd are orthogonal idempotents
which add up to 1.

For d = 2, 3, 4, . . . ,∞, the algebras LC(d) and Od are purely infinite and
simple; in fact, they are in some sense the basic examples.

In both the algebraic and C*-algebraic contexts, there are generalizations,
to Cuntz-Krieger algebras, and to algebras made from relations defined by
directed graphs, giving Leavitt path algebras and graph C*-algebras.

In general, graph algebras need be neither simple nor purely infinite. But
there are known criteria for when they are, the same for the algebraic and
C*-algebraic settings, and many purely infinite simple algebras arise this
way.
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Classifiable purely infinite simple C*-algebras

Definition

A Kirchberg algebra is a purely infinite simple separable nuclear C*-algebra.
A UCT Kirchberg algebra is a Kirchberg algebra which satisfies the
Universal Coefficient Theorem.

“Separable” means that it has a countable dense subset. “Nuclear” is a
more subtle way of saying “not too large”. The Universal Coefficient
Theorem is a technical statement about K-theory; no counterexamples are
known to the conjecture that all nuclear C*-algebras satisfy it.

The graph C*-algebra of every countable graph is nuclear, separable, and
satisfies the UCT. Thus, if such an algebra is purely infinite and simple,
then it is a UCT Kirchberg algebra.

In particular, Od is a UCT Kirchberg algebra for d ∈ {2, 3, 4, . . . ,∞}.
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The classification theorem for purely infinite simple
C*-algebras
Here is the classification theorem for purely infinite simple C*-algebras, by
now about 15 years old:

Theorem

Let A and B be two UCT Kirchberg algebras, either both unital or both
nonunital. Suppose K0(A) ∼= K0(B) (with [1A] 7→ [1B ] in the unital case)
and K1(A) ∼= K1(B). Then A ∼= B.

Here, K0(A) is the usual algebraic K0-group: the Grothendieck group
made from finitely generated projective modules over A, or, equivalently,
from Murray-von Neumann equivalence classes of projections in matrix
algebras over A. (C*-algebraists generally talk about projections rather
than finitely generated projective modules.)

K1(A) is the topological K1-group of A. When A is unital and purely
infinite simple (even properly infinite is enough), it happens to be
isomorphic to the algebraic K1-group of A.
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Classification for Leavitt path algebras?

There are many parallels between graph C*-algebras and Leavitt path
algebras, and there are by now about 15 published papers (authors include
Ken Goodearl) on Leavitt path algebras. Several talks at this conference
have been about these algebras.

There are no known counterexamples to either direction of the suggestion
that for countable graphs E and F , one has LC(E ) ∼= LC(F ) if and only if
C ∗(E ) ∼= C ∗(F ). There is work of Abrams, Áhn, Pardo, and Tomforde (in
several papers) which verifies some isomorphisms predicted by combining
this suggestion with the C*-algebra classification theorem above
(K∗(A) ∼= K∗(B) implies A ∼= B).

For example, for any field K , one has Mn(LK (d)) ∼= LK (d) if and only if n
and d − 1 are relatively prime. The C* analog was first obtained in full
generality as a consequence of the classification theorem, which makes
heavy use of analysis.
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Classification for Leavitt path algebras? (continued)

However, there are definite limits on the possibilities for classification of
purely infinite simple rings. For example, let M2∞ be the 2∞ UHF algebra,
the C* direct limit of the system (with unital maps)

C −→ M2(C) −→ M4(C) −→ M8(C) −→ · · · .

Let K be the algebra of compact operators on l2(Z≥0) (the C* analog of
the infinite matrices with only finitely many nonzero entries). Then
K ⊗M2∞ ⊗O2

∼= K ⊗O2, but the algebraic analog of this statement is
false. The right hand side is a graph C*-algebra, and the left hand side is
a tensor product of two graph C*-algebras.

The nonisomorphism is easy to see: if one cuts down by nonzero
idempotents, in the algebraic analog of K ⊗O2 the resulting corners are
finitely generated and in the algebraic analog of K ⊗M2∞ ⊗O2 they are
not.
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Classification for Leavitt path algebras? (continued)

We have
K ⊗M2∞ ⊗O2

∼= K ⊗O2,

but the algebraic analog of this statement is false. The right hand side is a
graph C*-algebra, and the left hand side is a tensor product of two graph
C*-algebras, but its algebraic analog might not be a Leavitt path algebra.

By Elliott’s Theorem (superseded by one of Kirchberg’s absorption
theorems; see below),

O2 ⊗O2
∼= O2.

Open question: Is LC(2)⊗ LC(2) ∼= LC(2)? All known proofs of Elliott’s
Theorem make serious use of analysis, and most operator algebraists
believe LC(2)⊗ LC(2) 6∼= LC(2).
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Three main ingredients
Here are three main ingredients for the analysis part of the proof of the
classification theorem. The first two are Kirchberg’s absorption theorems,
and the third is almost immediate.
Recall that O2 is generated by elements s1 and s2 such that

s∗1 s1 = s∗2 s2 = 1 and s1s
∗
1 + s2s

∗
2 = 1,

and that O∞ is generated by elements s1, s2, . . . such that s∗j sj = 1 for
all j and s1s

∗
1 , s2s

∗
2 , . . . are orthogonal projections.

Theorem

Let A be a simple separable unital nuclear C*-algebra. Then O2⊗A ∼= O2.

Theorem

Let A be a Kirchberg algebra. Then O∞ ⊗ A ∼= A.

(In fact, there is an isomorphism from A to O∞ ⊗ A which is
asymptotically unitarily equivalent to the map a 7→ 1⊗ a.)
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Three main ingredients (continued)

The first two ingredients:

O2 ⊗ A ∼= O2 for A simple separable unital nuclear.

O∞ ⊗ A ∼= A for A a Kirchberg algebra.

Here is the third:

Theorem

Let A be a purely infinite simple C*-algebra, and let p ∈ A be a nonzero
projection such that [p] = 0 in K0(A). Then there exists a unital
homomorphism O2 → pAp.

There are many such projections p. In fact, if q ∈ A is a nonzero
projection, then qAq is a nonzero hereditary subalgebra, so contains an
infinite projection. It easily follows that q itself is infinite. Thus there is e
such that e ≤ q, e 6= q, and e ∼ q. Then p = q − e satisfies [p] = 0 in
K0(A).
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How the ingredients are used

For the C*-algebraists, here is what the ingredients are used for.

Theorem

Let A be a unital Kirchberg algebra, and let D be any unital C*-algebra.
Let ϕ and ψ be two homotopic full asymptotic morphisms from A to
K ⊗O∞ ⊗ D. Then ϕ and ψ are asymptotically unitarily equivalent.

To obtain the classification theorem from this result, one uses the
Universal Coefficient Theorem, the Elliott approximate intertwining
argument, and some additional more algebraic topological material.
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Generalizing to actions of finite groups

We want to generalize the classification theory to actions of finite groups
on Kirchberg algebras. The objective is a theorem to the effect that if two
UCT actions α : G → Aut(A) and β : G → Aut(B) of a finite group G on
Kirchberg algebras A and B have the same K-theoretic invariants, than α
and β are conjugate, that is, there exists an isomorphism ϕ : A → B such
that βg = ϕ ◦ αg ◦ ϕ−1 for all g ∈ G .

As we explain later, we have to restrict to pointwise outer actions. Izumi
has already done this for actions with the Rokhlin property. Moreover,
with the current state of knowledge for the Universal Coefficient Theorem,
at the final step we must assume the group is cyclic of prime order.

Before doing this, we give some examples of actions of finite groups on
UCT Kirchberg algebras, often restricting to the group Z2.
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Permuting and multiplying the generators

Recall that Od is generated as a C*-algebra by s1, s2, . . . , sd satisfying

s∗1 s1 = s∗2 s2 = · · · = s∗dsd = 1 and s1s
∗
1 + s2s

∗
2 + · · ·+ sds∗d = 1,

and LC(d) is generated by v1, v2, . . . , vd and w1,w2, . . . ,wd such that
w1v1 = w2v2 = · · · = wdvd = 1, wjvk = 0 for j 6= k, and
v1w1, v2w2, . . . , vdwd are orthogonal idempotents which add up to 1.

Let Sd be the symmetric group. Then there is an action
α : Sd → Aut(Od) which permutes the generators: ασ(sj) = sσ(j) for
σ ∈ Sd and j = 1, 2, . . . ,m. One can restrict to any subgroup of Sd .

This action also makes sense algebraically: ασ(vj) = vσ(j) and
ασ(wj) = wσ(j) for σ ∈ Sd and j = 1, 2, . . . ,m.

Here is an action of Z2 on Od : Let the nontrivial element send sj to εjsj
with ε1, ε2, . . . , εd ∈ {1, −1}. The algebraic version and the
geneneralization to other cyclic groups work in the obvious way.
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Quasifree actions
Here is a generalization. Let ρ : G → L(Cd) be a unitary representation
of G . Write

ρ(g) =

 ρ1,1(g) · · · ρ1,d(g)
...

. . .
...

ρd ,1(g) · · · ρd ,d(g)


for g ∈ G . Then there exists a unique action α : G → Aut(Od) such that

αg (sk) =
d∑

j=1

ρj ,k(g)sj

for j = 1, 2, . . . , d . (To check this: A computation shows that the
proposed elements αg (sk) satisfy the correct relations, so αg exists, and
another computation shows that αg ◦ αh = αgh.)

The permutation action on the previous page comes from the permutation
representation of Sd on Cd , and the multiplication action on the previous
page comes from the representation sending the nontrivial element of Z2

to diag(ε1, ε2, . . . , εd).
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Quasifree actions also make sense on Leavitt algebras

The quasifree actions on the previous page come from actions on the
corresponding Leavitt algebras. Recall that vj plays the role of sj and wj

plays the role of s∗j . Define

βg (vk) =
d∑

j=1

ρj ,k(g)vj .

To find the formula for βg (wk), take the adjoint of the expression for
αg (sk) and substitute wj for s∗j .

In fact, I presume that there are corresponding formulas for actions on
LK (d) (using inverse instead of adjoint) that work for representations
whose values are merely invertible instead of unitary, and over an arbitrary
field K .
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An action of Z2 on M3 ⊗O4

Let s1, s2, s3, and s4 be the standard generating isometries of O4. Let ej ,k ,
for 1 ≤ j , k ≤ 3, be the standard matrix units of M3, satisfying
ej ,kek,l = ej ,l etc. Then there is an automorphism ϕ of M3 ⊗O4 of order
2 determined by:

e1,1 ⊗ 1 7→ (e2,2 + e3,3)⊗ 1

e2,2 ⊗ 1 7→ e1,1 ⊗ (s1s
∗
1 + s2s

∗
2 )

e3,3 ⊗ 1 7→ e1,1 ⊗ (s3s
∗
3 + s4s

∗
4 )

e1,2 ⊗ 1 7→ e2,1 ⊗ s∗1 + e3,1 ⊗ s∗2

e1,3 ⊗ 1 7→ e2,1 ⊗ s∗3 + e3,1 ⊗ s∗4

e1,1 ⊗ s1 7→ e2,2 ⊗ s1 + e2,3 ⊗ s2

e1,1 ⊗ s2 7→ e2,2 ⊗ s3 + e2,3 ⊗ s4

e1,1 ⊗ s3 7→ e3,2 ⊗ s1 + e3,3 ⊗ s2

e1,1 ⊗ s4 7→ e3,2 ⊗ s3 + e3,3 ⊗ s4
(The proof can be done by computations. It works on M3 ⊗ LK (4) for
any K .)
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Permuting tensor factors

Fix m. Let the symmetric group Sm, or any subgroup, act on O⊗m
d by

ασ(a1 ⊗ a2 ⊗ · · · ⊗ am) = aσ(1) ⊗ aσ(2) ⊗ · · · ⊗ aσ(m)

for σ ∈ Sm and a1, a2, . . . , am ∈ Od .

The tensor product O⊗m
d is a UCT Kirchberg algebra. In the special case

d = 2, we have O⊗m
2

∼= O2, so we have an action on O2.

These actions exist in the algebraic context as well. The algebra LC(d)⊗m

is purely infinite and simple. However, LC(2)⊗m is probably not isomorphic
to LC(2).
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What kind of actions can we classify?

Recall the three main ingredients for classification without the group:

1 O2 ⊗ A ∼= O2 for A simple separable unital nuclear.

2 O∞ ⊗ A ∼= A for A a Kirchberg algebra.

3 If A is purely infinite and p ∈ A is a nonzero projection such that
[p] = 0 in K0(A), then there is a unital homomorphism O2 → pAp.

We want equivariant versions of these. If we allow arbitrary actions, taking
the trivial action on A in (2) forces one to use the trivial action on O∞
and taking a nontrivial action on A in (1) forces one to use a nontrivial
action on O2. These choices make (3) impossible.

The right condition on the action is pointwise outerness.

It seems plausible that one can deal with more general actions, by
including invariants coming from group cohomology and settling for
cocycle conjugacy instead of conjugacy. This has been done for actions on
II1 factors, but here is left for a future project.
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The Universal Coefficient Theorem

Manuel Koehler has proved a Universal Coefficient Theorem for
equivariant KK-theory when the group is cyclic of prime order. It is more
complicated than the usual Universal Coefficient Theorem in KK-theory,
involving both ordinary and equivariant K-theory as well as a third group,
together with various operations. (In spirit, it is similar to Jeff Boersema’s
Universal Coefficient Theorem for real C*-algebras.)

The Universal Coefficient Theorem gets used at the end of the reasoning.
Without it, we should still be able to prove that KKG -equivalence implies
conjugacy. However, until Koehler’s Universal Coefficient Theorem is
generalized, the final form of the classification theorem will only be proved
for actions of cyclic groups of prime order.

The other more topological ingredients for the proof of the classification
theorem have mostly already been generalized to the equivariant case,
leaving, at the start of this project, the equivariant versions of the three
main ingredients above as the most likely source of difficulty. Those have
now been proved.
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Pointwise outer actions

Definition

Let A be a unital C*-algebra. An automorphism α ∈ Aut(A) is inner if
there is a unitary u ∈ A such that α = Ad(u), that is, α(a) = uau∗ for all
a ∈ A. If α is not inner, it is outer.

Recall that a unitary u satisfies u∗ = u−1. We use unitaries rather than
arbitrary invertible elements to preserve the adjoint operation.

Definition

Let A be a unital C*-algebra, and let G be a group. An action
α : G → Aut(A) is said to be pointwise outer if, for every g ∈ G \ {1}, the
automorphism αg is outer.
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Pointwise outer actions (continued)

Definition

Let A be a unital C*-algebra, and let G be a group. An action
α : G → Aut(A) is said to be pointwise outer if, for every g ∈ G \ {1}, the
automorphism αg is outer.

An action α : G → Aut(A) is inner if there exists a homomorphism g 7→ ug

from G to the unitary group of A such that αg (a) = ugau∗g for all g ∈ G
and a ∈ A. With this terminology, there are actions which are not inner
but for which αg is inner for all g ∈ G . (Example omitted; it has G = Z2

2.)

All this makes sense purely algebraically, but, without an adjoint operation,
one should use invertible elements in place of unitaries.
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Pointwise outer actions (continued)

A quasifree action is known to be pointwise outer provided the group
representation it is made from is injective.

The action of Z2 on M3 ⊗O4 with the complicated formulas is pointwise
outer. (It is nontrivial on K-theory.)

Actions obtained by permuting tensor factors are known in some cases to
be pointwise outer; probably this is always true.

It turns out that we also need a stronger condition, the Rokhlin property.
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The Rokhlin property

Definition

Let α : G → Aut(A) be an action of a finite group G on a unital
C*-algebra A. We say that α has the Rokhlin property if for every finite set
F ⊂ A and every ε > 0, there exist orthogonal projections eg ∈ A for
g ∈ G such that:

1
∑

g∈G eg = 1.

2 For all g , h ∈ G , we have αg (eh) = egh.

3 For all g ∈ G and all a ∈ F , we have ‖ega− aeg‖ < ε.

Note to C*-algebraists: The condition in (2) is usually taken to be
‖αg (eh)− egh‖ < ε. The two versions are equivalent, as I discovered while
working on this project.

To make an algebraic version of the Rokhlin property, replace projections
by idempotents, and in (3) ask that ega = aeg .
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The Rokhlin property (continued)
The conditions in the Rokhlin property:

1
∑

g∈G eg = 1.

2 For all g , h ∈ G , we have αg (eh) = egh.

3 For all g ∈ G and all a ∈ F , we have ‖ega− aeg‖ < ε.

Here is the trivial example of an action with the Rokhlin property. Fix a
unital C*-algebra (or algebra) B, set A =

⊕
g∈G B, and let G act by

permuting the summands. Take eg in the definition to be the identity of
the g summand.

Nontrivial examples do exist (see below), but in the algebraic case not if A
is finitely generated. (Take the finite set F to be a generating set, and
conclude that eg commutes with every element of A.)

It is not hard to show that the Rokhlin property implies pointwise
outerness. The converse is false. The quasifree action of Z2 on O2

generated by s1 7→ −s1 and s2 7→ −s2 is pointwise outer, but turns out not
to have the Rokhlin property.
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A nontrivial example of the Rokhlin property
We take G = Z2. Let M2∞ be the 2∞ UHF algebra, the (C* or algebraic)
direct limit of the system (written slightly differently than before)

C −→ M2(C) −→ M2(C)⊗M2(C) −→ M2(C)⊗3 −→ M2(C)⊗4 −→ · · · ,

with maps a 7→ a⊗ 1M2(C) at each stage. The nontrivial group element
acts on M2(C)⊗n by acting on each factor of M2 as Ad (( 0 1

1 0 )) . Call this
automorphism αn, and let α be the corresponding automorphism of M2∞ .

Let F ⊂ A be finite. We need orthogonal projections (idempotents) e0, e1

such that e0 + e1 = 1, α(e0) = e1, and e0 and e1 approximately (in the
C* case) or exactly (in the algebraic case) commute with all the elements
of F .

In the algebraic case, we have F ⊂ M2(C)⊗n for some n. In the C* case,
this is approximately true, and we are allowed to perturb F slightly, so we
can assume it is exactly true. Now take

e0 = 1⊗ 1⊗ · · ·⊗ 1⊗
(

1 0
0 0

)
∈ M2(C)⊗(n+1) ⊂ M2∞ and e1 = 1− e0.
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A nontrivial example of the Rokhlin property (continued)
We have F ⊂ M2(C)⊗n ⊂ M2∞ ,

e0 = 1⊗ 1⊗ · · · ⊗ 1⊗
(

1 0
0 0

)
∈ M2(C)⊗(n+1) ⊂ M2∞

and

e1 = 1− e0 = 1⊗ 1⊗ · · · ⊗ 1⊗
(

0 0
0 1

)
,

and α acts on M2(C)⊗(n+1) ⊂ M2∞ via

αn+1 = Ad

((
0 1
1 0

)⊗(n+1)
)
.

We have e0 + e1 = 1 by definition. One checks immediately that
αn+1(e0) = e1 (and also αn+1(e1) = e0, but this follows from α2

n+1 = id).
Moreover, e0 and e1 commute with everything in M2(C)⊗n and hence with
everything in F .

Thus, our action has the Rokhlin property.
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Actions on purely infinite simple algebras with the Rokhlin
property

The construction above works for any finite group, using the infinite tensor
product of copies of conjugation by the regular representation of the group.

The algebra M2∞ is simple but not purely infinite. However:

Lemma

Let α : G → Aut(A) have the Rokhlin property, and let β : G → Aut(B)
be any action on a unital algebra. Then g 7→ αg ⊗ βg : G → Aut(A⊗ B)
has the Rokhlin property.

In the algebraic case, form the tensor product over C (or whichever field is
being used). In the C* case, use the minimal tensor product.

So we can tensor the action above with any action on any unital purely
infinite simple (C*-) algebra.
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Proof of the lemma

The lemma from the previous slide:

Lemma

Let α : G → Aut(A) have the Rokhlin property, and let β : G → Aut(B)
be any action on a unital algebra. Then g 7→ αg ⊗ βg : G → Aut(A⊗ B)
has the Rokhlin property.

Proof.

In the algebraic case, let F ⊂ A⊗ B be a finite set. Choose a finite set
S ⊂ A such that all elements of F have the form

∑n
k=1 aj ⊗ bj with all

aj ∈ S for all j . Choose Rokhlin idempotents for α and S , say fg for
g ∈ G . Thus,

∑
g∈G fg = 1, αg (fh) = fgh, and fg commutes with all

elements of S . Then take eg ∈ A⊗ B to be eg = fg ⊗ 1.

In the C* case, approximate F by a finite set whose elements are all finite
sums of elementary tensors. Then proceed essentially as above.
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Classification of actions with the Rokhlin property

Izumi has given a K-theoretic classification of Rokhlin actions of finite
groups on Kirchberg algebras. However, such actions are rare, while
pointwise outer actions are common.

For example, if α : G → Aut(A) has the Rokhlin property, then there
exists a projection e1 ∈ A (a Rokhlin projection for 1 ∈ G ) such that in
K0(A) we have ∑

g∈G

(αg )∗([e1]) = [1].

If A = Od (including d = ∞), every automorphism of A is trivial on
K0(A), so we get card(G ) · [e1] = [1]. Since for d finite, K0(Od) ∼= Zd−1,
generated by [1], this can happen only if card(G ) is relatively prime to d .
Since K0(O∞) ∼= Z, generated by [1], this can never happen if d = ∞.
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The action on O2

Recall the first main ingredient: O2⊗A ∼= O2 for A simple separable unital
nuclear. We need an action ζ : G → Aut(O2) such that this isomorphism
holds equivariantly whenever A is purely infinite simple and the action on
it is pointwise outer. Since a tensor product action has the Rokhlin
property if one factor does, our ζ had better have the Rokhlin property.

Start as follows. Set d = card(G ). Take D to be the d∞ UHF algebra, the
C* direct limit of

C −→ Md(C) −→ Md(C)⊗Md(C) −→ Md(C)⊗3 −→ Md(C)⊗4 −→ · · · ,

with maps a 7→ a⊗ 1Md (C) at each stage, and with the action being
conjugation by the regular representation in each tensor factor.

Now take ζ to be the tensor product of this action with the trivial action
on O2. Since O2 ⊗ D ∼= O2, this is a Rokhlin action on O2.
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The absorption theorem for the action on O2

We have an action ζ : G → Aut(O2) which has the Rokhlin property.

Izumi’s classification tells us that there is, up to conjugacy, only one
Rokhlin action on O2.

So let α : G → Aut(A) be any action on a simple separable unital nuclear
C*-algebra A. (It need not even be pointwise outer.) Then the tensor
product action ζ ⊗ α : G → Aut(O2 ⊗ A) has the Rokhlin property, and
O2 ⊗ A ∼= O2, so Izumi tells us that ζ ⊗ α is conjugate to ζ, as desired.
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What happens algebraically

Recall that O2 is generated by s1 and s2 such that s∗1 s1 = s∗2 s2 = 1 and
s1s

∗
1 + s2s

∗
2 = 1. Moreover, O2 ⊗O2

∼= O2 (Elliott’s Theorem).

Algebraically, first, if (as expected) LC(2)⊗ LC(2) 6∼= LC(2), there is no
hope of an equivariant absorption theorem.

Take G = Z2. The following are all Rokhlin actions of G on O2:

1 The action from above, on O2 ⊗M2∞ .

2 The flip action on O2 ⊗O2, generated by a⊗ b 7→ b ⊗ a.

3 The quasifree action on O2 generated by s1 7→ s1 and s2 7→ −s2.

(We omit proofs.) So they are all conjugate.

In (1), the algebraic version has the Rokhlin property, but the algebra is
not isomorphic to LC(2). (It is not finitely generated but LC(2) is.)

In (2) and (3), the algebra is finitely generated, so no action has has the
Rokhlin property. Moreover, these two actions can’t be conjugate to each
other if LC(2)⊗ LC(2) 6∼= LC(2).
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The Rokhlin property and vanishing of cohomology

Izumi considers the Rokhlin property to be a tool for proving vanishing
lemmas for group cohomology. For example, if α, β : G → Aut(A) are
Rokhlin actions of a finite group G on a unital C*-algebra A, and α and β
are cocycle conjugate, then they are conjugate. (Details omitted.)

Probably the Rokhlin property is stronger than needed for this purpose.

I do not know whether this result, or other cohomology vanishing results,
follows in the algebraic situation from the algebraic version of the Rokhlin
property. Nor do I know whether they hold, say, for the algebraic version
of the quasifree action on O2 generated by s1 7→ s1 and s2 7→ −s2.
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The action on O∞
Recall the second main ingredient: O∞⊗A ∼= A for A a Kirchberg algebra.
We need an action ι : G → Aut(O∞) such that this isomorphism holds
equivariantly whenever A is unital and the action on A is pointwise outer.

Rokhlin actions on O∞ do not exist. (If they did, we would only be able to
absorb Rokhlin actions on Kirchberg algebra, and we would then only be
able to classify Rokhlin actions.)

We do, however, want an action that is somehow close to having the
Rokhlin property.

Let G be a finite group, set d = card(G ), and let m ∈ Z>0. Label the
generators of Omd as sg ,j for g ∈ G and j = 1, 2, . . . ,m. Thus, they satisfy
the relations

s∗g ,jsg ,j = 1 and
∑
g∈G

m∑
j=1

sg ,js
∗
g ,j = 1.

Define an action ι(m) : G → Aut(Omd) by ι
(m)
g (sh,j) = sgh,j . This action is

known to have the Rokhlin property.
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The action on O∞ (continued)

d = card(G ), and Omd is generated by sg ,j for g ∈ G and j = 1, 2, . . . ,m,
with

s∗g ,jsg ,j = 1 and
∑
g∈G

m∑
j=1

sg ,js
∗
g ,j = 1.

The action is ι
(m)
g (sh,j) = sgh,j .

(This is the quasifree action from the direct sum of m copies of the regular
representation.)

We want to let m →∞. We take O∞ to be generated by sg ,j for g ∈ G
and j ∈ Z>0, with s∗g ,jsg ,j = 1 for g ∈ G and j ∈ Z>0, and such that the
projections sg ,js

∗
g ,j are mutually orthogonal.

The action ι : G → Aut(O∞) is given by ιg (sh,j) = sgh,j for g ∈ G and
j ∈ Z>0.
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The absorption theorem for the action on O∞
This action does what we want.

Theorem

Let G be a finite group, let A be a unital Kirchberg algebra, and let
α : G → Aut(A) be a pointwise outer action of G on A. Equip O∞ with
the action ι above. Then there is an equivariant isomorphism
ψ : A → O∞ ⊗ A which is equivariantly approximately unitarily equivalent
to the map ϕ(a) = 1⊗ a.

(For equivariant approximate unitary equivalence, we require that the
unitaries in the approximate unitary equivalence be G -invariant.)

The proof is long and uses equivariant versions of ideas from a number of
papers. We need to apply the methods used for the nonequivariant version
of this absorption theorem. In particular, we need to show that the two
maps O∞ → O∞ ⊗O∞ given by a 7→ a⊗ 1 and a 7→ 1⊗ a are
equivariantly approximately unitarily equivalent. (“The half flip is
approximately inner.”)
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The absorption theorem for the action on O∞ (continued)

We need to know that the maps O∞ → O∞ ⊗O∞ given by

a 7→ a⊗ 1 and a 7→ 1⊗ a

are equivariantly approximately unitarily equivalent.

There is no difficulty with getting this for O2. It is known without the
group. Also, if actions α : G → Aut(A) and β : G → Aut(B) are given,
one of which has the Rokhlin property, and two equivariant unital
homomorphisms ϕ,ψ : A → B are approximately unitarily equivalent, then
ϕ and ψ are in fact equivariantly approximately unitarily equivalent.

If A = O∞ and B is a unital Kirchberg algebra with a pointwise outer
action, then any two equivariant unital homomorphisms from A to B are
the same K-theoretically. (Proving this requires calculating KG

∗ (O∞).)
They are therefore expected to be equivariantly approximately unitarily
equivalent.
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The absorption theorem for the action on O∞ (continued)

Suppose two equivariant unital homomorphisms ϕ,ψ : O∞ → B are given,
and B is a Kirchberg algebra with a pointwise outer action of G . We want
to show that ϕ and ψ are equivariantly approximately unitarily equivalent.

Recall that the action: ι : G → Aut(O∞) is given by ιg (sh,j) = sgh,j for
g ∈ G and j ∈ Z>0. Further recall the action ι(m) : G → Aut(Omd) by

ι
(m)
g (sh,j) = sgh,j for g , h ∈ G and j = 1, 2, . . . ,m. (Caution: We have used

the same names for generators of different algebras.)

Adapting some trickery from the case without the group, one can show
that it suffices to consider the case in which [1B ] = 0 in KG

0 (B).

In this case, one can show that there are equivariant unital
homomorphisms σm, τm : O(m+1)d → B which “agree” with ϕ and ψ on
the generators sg ,j of the same name, for g ∈ G and j = 1, 2, . . . ,m (not
m + 1!), and such that σm and τm have the same class in
KK 0(O(m+1)d ,B) (note: ordinary KK-theory, ignoring the group).
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The absorption theorem for the action on O∞ (continued)
Equivariant unital homomorphisms ϕ,ψ : O∞ → B are given, and [1B ] = 0
in KG

0 (B). We want to show that ϕ and ψ are equivariantly approximately
unitarily equivalent.

For each m there are equivariant unital homomorphisms
σm, τm : O(m+1)d → B which “agree” with ϕ and ψ on the generators sg ,j

of the same name, but only through j = m, not for j = m + 1. Moreover,
σm and τm have the same class in nonequivariant KK-theory.

Nonequivariant classification (or, rather, a result used in its proof) implies
that σm and τm are approximately unitarily equivalent (disregarding the
action of G ). Since the action of G on O(m+1)d has the Rokhlin property,
it follows that they are equivariantly approximately unitarily equivalent.

We conclude: For every m and every ε > 0, there is a G -invariant unitary
u ∈ B such that for g ∈ G and j = 1, 2, . . . ,m we have
‖uσm(sg ,j)u

∗ − τm(sg ,j)‖ < ε. That is, ‖uϕ(sg ,j)u
∗ − ψ(sg ,j)‖ < ε. Since

ε > 0 and m ∈ Z>0 are arbitrary, this says that ϕ is equivariantly
approximately unitarily equivalent to ψ.
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