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The definition of a C*-algebra

A C*-algebra A is, first, a complex Banach algebra (a complete normed
algebra over C, in which ‖ab‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ A). Second, it has,
in addition, an adjoint operation, written a 7→ a∗, such that:

(λa + µb)∗ = λa∗ + µb∗ for all a, b ∈ A and λ, µ ∈ C (conjugate
linearity).

(ab)∗ = b∗a∗ for all a, b ∈ A (reverses multiplication).

(a∗)∗ = a for all a ∈ A (involutive).

‖a∗‖ = ‖a‖ for all a ∈ A.

So far, what we have defined is a Banach *-algebra. Third, the C* relation
must be satisfied:

‖a∗a‖ = ‖a‖2 for all a ∈ A.

The C* relation looks innocuous but is actually very powerful.
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The basic examples of C*-algebras

Let X be a compact Hausdorff space. Let C (X ) be the set of all
continuous functions from X to C, with the usual (pointwise) vector space
operations, pointwise multiplication, ‖f ‖ = supx∈X |f (x)|, and
f ∗(x) = f (x). Then C (X ) is a commutative unital C*-algebra.

Every commutative unital C*-algebra is isomorphic to one of these.

The algebra Mn = Mn(C) for complex n × n matrices over C is a
C*-algebra, with the usual algebra operations, adjoint being conjugate
transpose, and the operator norm

‖a‖ = sup
({
‖aξ‖2 : ξ ∈ Cn with ‖ξ‖2 ≤ 1

})
.

Here ‖ξ‖2 is the usual Euclidean norm on Cn.

The adjoint is determined by the equation 〈a∗ξ, η〉 = 〈ξ, aη〉 for all
ξ, η ∈ Cn. Also, it turns out that ‖a‖ is the square root of the largest
eigenvalue of a∗a.
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The basic examples of C*-algebras (continued)

Let H be a complex Hilbert space. Let L(H) be the set of all bounded
linear maps a : H → H. “Bounded” means that the operator norm

‖a‖ = sup
({
‖aξ‖ : ξ ∈ H with ‖ξ‖ ≤ 1

})
is finite; equivalently, a is continuous. Then A is a complex algebra in the
obvious way, and with this norm it is a Banach algebra. The adjoint
operation is determined by 〈a∗ξ, η〉 = 〈ξ, ηa〉 for all ξ, η ∈ H (just as for
matrices). With this adjoint operation, L(H) is a C*-algebra.

Every C*-algebra is isomorphic to a *-closed (“selfadjoint”), norm closed
subalgebra of one of these.
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The definition of the Leavitt path algebra of a graph

We consider a countable directed graph E = (E 0,E 1, r , s), in which:

E 0 is the set of vertices.

E1 is the set of (oriented) edges.

r : E 1 → E 0 is the map which assigns to each edge the vertex at
which it begins.

s : E 1 → E 0 is the map which assigns to each edge the vertex at
which it begins.

Parallel edges are allowed, and edges which start and end at the same
vertex are allowed.
Then for any field K (probably any commutative unital ring will do),
LK (E ) is the K -algebra (not necessarily unital) on generators pv for each
v ∈ E 0 and ye and y∗e for each e ∈ E 1 (with ye and y∗e simply taken to be
distinct symbols) subject to the relations on the next slide.
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Relations for the Leavitt path algebra of a graph
E = (E 0,E 1, r , s), with vertices E 0, edges E 1, range map r , and source
map s.

LK (E ) is the K -algebra (not necessarily unital) on generators pv for each
v ∈ E 0 and ye and y∗e for each e ∈ E 1 (with ye and y∗e simply taken to be
distinct symbols) subject to the relations:

ps(e)ye = yepr(e) = ye for all edges e.

pr(e)y
∗
e = y∗e ps(e) = y∗e for all edges e.

For edges e and f , we have y∗e yf = 0 if e 6= f and y∗e ye = pr(e).

Foe every vertex v for which the set s−1(v) of edges which start at v
is finite and nonempty, we have pv =

∑
e∈s−1(v) yey

∗
e .

The C*-algebra C ∗(E ) is gotten to taking K = C, specifying that y∗e is the
adjoint of ye (rather than just some other symbol), and forming the
universal C*-algebra on the given relations.

Notice that ye is a partial isometry from ps(e) to some subprojection of
pr(e).
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Examples of graph algebras

Example

For d = 2, 3, 4, . . . , the Cuntz algebra Od is the C*-algebra of the graph
with one vertex and d edges.

Example

The graph with two vertices and an edge going from one to the other gives
M2(K ).

Example

The C*-algebra of the graph with one vertex and one edge is C (S1), the
algebra of continuous complex valued functions on the circle S1. The
Leavitt path algebra over K is the Laurent polynomial algebra K [x , x−1].
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The Rokhlin property and vanishing of cohomology

Definition

Let α : G → Aut(A) be an action of a finite group G on a unital
C*-algebra A. An α-cocycle is a function g 7→ ug from G to the unitary
group of A such that ugh = ugαg (uh) for all g , h ∈ G .

The cocycle equation is the obvious sufficient condition for the formula
βg (a) = ugαg (a)u∗g to define an action of G on A.

Definition

Let the notation be as in the previous definition. Then u is an
α-coboundary if there exists a unitary v ∈ A such that ug = vαg (v∗) for
all g ∈ G .
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The Rokhlin property and vanishing of cohomology
(continued)

Coboundary: There is a unitary v such that ug = vαg (v∗) for all g ∈ G .

The coboundary equation is the obvious sufficient condition for the action
β above to be conjugate to α. Indeed, it implies that
βg = Ad(v) ◦ αg ◦Ad(v)−1 for all g ∈ G .

Proposition (Herman and Jones)

Let α : G → Aut(A) be a Rokhlin action of a finite group G on a unital
C*-algebra A. Then every α-cocycle is an α-coboundary.
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Izumi’s classification of Rokhlin actions

The following is Theorem 4.2 of M. Izumi, Finite group actions on
C*-algebras with the Rohlin property. II, Adv. Math. 184(2004), 119–160.

Theorem

Let A be a unital UCT Kirchberg algebra, and let G be a finite group. Let
α, β : G → Aut(A) be Rokhlin actions. Then α is conjugate to β if and
only if the actions of G they induce on K∗(A) are equal.

Interpreted as a theorem about conjugacy of dynamical systems, the
invariant involved includes A, equivalently, it includes K∗(A) and
[1A] ∈ K0(A).

There are severe restrictions on the possible actions of G on K∗(A).

The same result holds if “Kirchberg algebra” is replaced by “C*-algebra
with tracial rank zero (in the sense of Lin)”.
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Izumi’s classification of actions of Z2 on O2

The following is essentially a restatement of part of Theorem 4.8 of
M. Izumi, Finite group actions on C*-algebras with the Rohlin property. I,
Duke Math. J. 122(2004), 233–280.

Theorem

Let α, β : Z2 → Aut(O2) be actions which are pointwise outer but strongly
approximately inner. Then α is conjugate to β if and only if
KG ,α
∗ (O2) ∼= KG ,β

∗ (O2) via an isomorphism which sends [1] to [1].

K∗(O2) isn’t needed in the invariant, since it is zero.

An action α : G → Aut(A) of a finite abelian group G on a unital
C*-algebra A is trongly approximately inner if for all g ∈ G , the
automorphism αg is the pointwise norm limit of inner automorphisms
Ad(un) using α-invariant unitaries un.

KG ,α
∗ (A) (usually written KG

∗ (A)) is the equivariant K-theory of A (with
respect to the group action α).
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