Deformations of Skew Group Algebras and Orbifolds

Anne V. Shepler
University of North Texas
Sarah Witherspoon
Texas A\&M University

Skew Group Algebras $R \# G$
R - ring
G - group acting by automorphisms on R, $r \mapsto g \cdot r \quad(r \in R, g \in G)$
$R \# G:=$ free R-module with basis G, i.e. $\bigoplus_{g \in G} R g$, with multiplication $(r g)(s h)=r(g \cdot s) g h$

Example of Skew Group Algebra

V - repn. of G (fin. dim. as a vector space)
$S(V)$ - symmetric algebra on V
(i.e. polynomials in a basis v_{1}, \ldots, v_{n})

Then G acts by automorphisms on $S(V)$; $S(V) \# G$ is the resulting skew group algebra

Think: $S(V) \# G$ replaces the ring of functions $S(V)^{G}$ for the orbifold V / G

Deformations

A - algebra over a field k
$A[[t]]:=k[[t]] \otimes_{k} A$ (just extend scalars to $\left.k[[t]]\right)$
A formal deformation of A is an (associative) algebra structure on $A[[t]]$ with multiplication

$$
a * b=a b+\mu_{1}(a, b) t+\mu_{2}(a, b) t^{2}+\cdots
$$

for some bilinear maps $\mu_{i}: A \times A \rightarrow A$, where $a b$ is the product of a and b in A

Deformations

A - algebra over a field k
$A[[t]]:=k[[t]] \otimes_{k} A$ (just extend scalars to $\left.k[[t]]\right)$
A formal deformation of A is an (associative) algebra structure on $A[[t]]$ with multiplication

$$
a * b=a b+\mu_{1}(a, b) t+\mu_{2}(a, b) t^{2}+\cdots
$$

for some bilinear maps $\mu_{i}: A \times A \rightarrow A$, where $a b$ is the product of a and b in A

Remarks
(1) $*$ is associative $\Longrightarrow \mu_{1}$ is a Hochschild 2-cocycle,
i.e. $a \mu_{1}(b, c)+\mu_{1}(a, b c)=\mu_{1}(a, b) c+\mu_{1}(a b, c)$
(2) It can be hard to "lift" a μ_{1} to a formal deformation
(3) Sometimes one may specialize to $t=t_{0} \in k$

Example: Drinfeld's graded Hecke algebras
V - repn. of G as before
Choose $\kappa: V \times V \rightarrow \mathbb{C} G$, a skew-symmetric bilin. form

$$
\text { Let } H:=T(V) \# G /(v w-w v-\kappa(v, w) \mid v, w \in V)
$$

Let $\operatorname{deg} v=1, \quad \operatorname{deg} g=0$ for all $v \in V, g \in G$, so that H is a filtered algebra
Defn (Drinfeld '86) H is a graded Hecke algebra if its associated graded algebra is $S(V) \# G$

Remark
In this case H arises from a formal deformation of $S(V) \# G$ by specializing to $t=1$, and $\kappa \longleftrightarrow$ Hochschild 2-cocycle μ_{1}

Drinfeld (graded) Hecke algebras for reflection groups

- Lusztig '88: for G a real reflection group, gave different definition in terms of roots, related to affine Hecke algebra
- Cherednik '95: used to prove Macdonald's constant term conjecture for root systems
- Etingof-Ginzburg '02: for G a symplectic reflection group, related to orbifold V / G
- Gordon '03: used to prove Haiman's version of n ! conjecture for Weyl groups

In these contexts, graded Hecke algebras have gone by the alternate names: degenerate affine Hecke algebras, rational Cherednik algebras, symplectic reflection algebras

We wish to view the graded Hecke algebras,

$$
H=T(V) \# G /(v w-w v-\kappa(v, w) \mid v, w \in V)
$$

(where $\kappa: V \times V \rightarrow \mathbb{C} G$), as special types of deformations of $S(V) \# G$ coming from a particular subspace of $\mathrm{HH}^{2}(S(V) \# G)$

Structure of Hochschild cohomology of $S(V) \# G$

$$
\begin{aligned}
\mathrm{HH}^{\bullet}(S(V) \# G) & \cong \mathrm{HH}^{\bullet}(S(V), S(V) \# G)^{G} \\
& \cong\left(\bigoplus_{g \in G} \mathrm{HH} \cdot(S(V), S(V) g)\right)^{G} \\
& \subset\left(\bigoplus_{g \in G} S(V) g \otimes \Lambda^{\bullet}\left(V^{*}\right)\right)^{G}
\end{aligned}
$$

Structure of Hochschild cohomology of $S(V) \# G$

$$
\begin{aligned}
\mathrm{HH}^{\bullet}(S(V) \# G) & \cong \mathrm{HH} \cdot(S(V), S(V) \# G)^{G} \\
& \cong\left(\bigoplus_{g \in G} \mathrm{HH}\right. \\
& \subset(S(V), S(V) g))^{G} \\
& \subset\left(\bigoplus_{g \in G} S(V) g \otimes \Lambda^{\bullet}\left(V^{*}\right)\right)^{G}
\end{aligned}
$$

Remark
Graded Hecke algebras correspond to Hochschild 2-cocycles of $S(V) \# G$ living in

$$
\mathbb{C} G \otimes \bigwedge^{2}\left(V^{*}\right) \subset(S(V) \# G) \otimes \bigwedge^{2}\left(V^{*}\right),
$$

that is their polynomial parts are constant

Structure of Hochschild cohomology of $S(V) \# G$

$$
\begin{aligned}
\mathrm{HH}^{\bullet}(S(V) \# G) & \cong \mathrm{HH}^{\bullet}(S(V), S(V) \# G)^{G} \\
& \cong\left(\bigoplus_{g \in G} \mathrm{HH} \cdot(S(V), S(V) g)\right)^{G} \\
& \subset\left(\bigoplus_{g \in G} S(V) g \otimes \Lambda^{\bullet}\left(V^{*}\right)\right)^{G}
\end{aligned}
$$

Remark
Graded Hecke algebras correspond to Hochschild 2-cocycles of $S(V) \# G$ living in

$$
\mathbb{C} G \otimes \bigwedge^{2}\left(V^{*}\right) \subset(S(V) \# G) \otimes \bigwedge^{2}\left(V^{*}\right),
$$

that is their polynomial parts are constant

Question

What about the rest of $\mathrm{HH}^{2}(S(V) \# G)$?
Are there corresponding deformations?

More details (Ginzburg-Kaledin '04, Farinati '05)
$\operatorname{HH}^{i}(S(V) \# G)$
$\cong\left(\bigoplus_{g \in G} S(V) g \otimes \bigwedge^{\operatorname{codim} V^{g}}\left(\left(\left(V^{g}\right)^{\perp}\right)^{*}\right) \otimes \bigwedge^{i-\operatorname{codim} V^{g}}\left(\left(V^{g}\right)^{*}\right)\right)^{G}$
$\subset\left(\bigoplus_{g \in G} S(V) g \otimes \bigwedge^{i}\left(V^{*}\right)\right)^{G}$

More details (Ginzburg-Kaledin '04, Farinati '05)
$\mathrm{HH}^{i}(S(V) \# G)$
$\cong\left(\bigoplus_{g \in G} S(V) g \otimes \bigwedge^{\operatorname{codim} V^{g}}\left(\left(\left(V^{g}\right)^{\perp}\right)^{*}\right) \otimes \bigwedge^{i-\operatorname{codim} V^{g}}\left(\left(V^{g}\right)^{*}\right)\right)^{G}$
$\subset\left(\bigoplus_{g \in G} S(V) g \otimes \bigwedge^{i}\left(V^{*}\right)\right)^{G}$

Known deformations

(1) Polynomial part of degree ≤ 1 : Deformations are filtered algebras with assoc. graded alg. iso. to $S(V) \# G$; Halbout, Oudom, Tang gave conditions for existence Includes graded Hecke algebras as special case
(2) Polynomial part of degree ≥ 2 :

Case $G=1$. Completely known (Kontsevich '03)
Case $G \neq 1$. Isolated examples known arising from
Hopf algebra actions (W. '06, Guccione-Guccione-Valqui)

Noncommutative Poisson structures

Again: A Hochschild 2-cocycle on A is a bilinear map $\mu_{1}: A \times A \rightarrow A$ for which

$$
a \mu_{1}(b, c)+\mu_{1}(a, b c)=\mu_{1}(a, b) c+\mu_{1}(a b, c)
$$

Remark

If μ_{1} is the Hochschild 2-cocycle arising from a deformation of A, then $\left[\mu_{1}, \mu_{1}\right]$ is a coboundary (i.e. it becomes 0 in cohomology) where

$$
\begin{aligned}
{[\nu, \eta](a, b, c):=} & \nu(\eta(a, b), c)-\nu(a, \eta(b, c)) \\
& +\eta(\nu(a, b), c)-\eta(a, \nu(b, c))
\end{aligned}
$$

Noncommutative Poisson structures

Again: A Hochschild 2-cocycle on A is a bilinear map $\mu_{1}: A \times A \rightarrow A$ for which

$$
a \mu_{1}(b, c)+\mu_{1}(a, b c)=\mu_{1}(a, b) c+\mu_{1}(a b, c)
$$

Remark

If μ_{1} is the Hochschild 2-cocycle arising from a deformation of A, then $\left[\mu_{1}, \mu_{1}\right]$ is a coboundary (i.e. it becomes 0 in cohomology) where

$$
\begin{aligned}
{[\nu, \eta](a, b, c):=} & \nu(\eta(a, b), c)-\nu(a, \eta(b, c)) \\
& +\eta(\nu(a, b), c)-\eta(a, \nu(b, c))
\end{aligned}
$$

A noncommutative Poisson structure on A is a $\mu_{1} \in \mathrm{HH}^{2}(A)$ with $\left[\mu_{1}, \mu_{1}\right]=0$ as an element of $\mathrm{HH}^{3}(A)$

Noncommutative Poisson structures

Again: A Hochschild 2-cocycle on A is a bilinear map $\mu_{1}: A \times A \rightarrow A$ for which

$$
a \mu_{1}(b, c)+\mu_{1}(a, b c)=\mu_{1}(a, b) c+\mu_{1}(a b, c)
$$

Remark

If μ_{1} is the Hochschild 2-cocycle arising from a deformation of A, then $\left[\mu_{1}, \mu_{1}\right]$ is a coboundary (i.e. it becomes 0 in cohomology) where

$$
\begin{aligned}
{[\nu, \eta](a, b, c):=} & \nu(\eta(a, b), c)-\nu(a, \eta(b, c)) \\
& +\eta(\nu(a, b), c)-\eta(a, \nu(b, c))
\end{aligned}
$$

A noncommutative Poisson structure on A is a $\mu_{1} \in \operatorname{HH}^{2}(A)$ with $\left[\mu_{1}, \mu_{1}\right]=0$ as an element of $\mathrm{HH}^{3}(A)$

Problem

For an algebra A, find all noncommutative Poisson structures, as a first step towards finding all deformations

Again:
Structure of Hochschild cohomology of $S(V) \# G$

$$
\mathrm{HH} \cdot(S(V) \# G) \subset\left(\bigoplus_{g \in G} S(V) g \otimes \bigwedge^{\bullet}\left(V^{*}\right)\right)^{G}
$$

Cohomology is graded by polynomial degree: This is just the degree of the factor in $S(V)$.
We say a cocycle is constant if it has polynomial deg 0 .

Thm $\alpha, \beta \in \mathrm{HH}^{\bullet}(S(V) \# G)$ constant $\Longrightarrow[\alpha, \beta]=0$
Cor $\alpha \in \mathrm{HH}^{2}(S(V) \# G)$ constant $\Longrightarrow \alpha$ defines a noncommutative Poisson structure

Thm Each constant $\mu_{1} \in \operatorname{HH}^{2}(S(V) \# G)$ defines a graded Hecke algebra, and vice versa.

Again: Structure of Hochschild cohomology of $S(V) \# G$

$$
\mathrm{HH} \cdot(S(V) \# G) \subset\left(\bigoplus_{g \in G} S(V) g \otimes \Lambda^{\bullet}\left(V^{*}\right)\right)^{G}
$$

Cohomology is "graded" by G, i.e. each cocycle is supported on some group elements

The kernel of G on V is $\left\{g \in G \mid V^{g}=V\right\}$.

Thm If $\alpha, \beta \in \mathrm{HH}^{2}(S(V) \# G)$ are supported off the kernel of G on V, then $[\alpha, \beta]=0$.

Cor If $G \subseteq \mathrm{GL}(V)$ and 1_{G} doesn't contribute to $\alpha, \beta \in \mathrm{HH}^{2}(S(V) \# G)$, then $[\alpha, \beta]=0$.

Cor Any 2-cocycle supported off the kernel of G on V defines a noncommutative Poisson structure on $S(V) \# G$.

Proofs require formulas for the bracket [,]
Problem: Bracket is defined via bar resolution, cohomology is computed via Koszul resolution.

Need chain maps converting between the two.
Such chain maps lead to formulas involving Demazure operators/quantum differentiation; e.g.

$$
\partial_{v_{1}, q}\left(v_{1}^{k_{1}} v_{2}^{k_{2}} \cdots v_{n}^{k_{n}}\right)=\left[k_{1}\right]_{q} v_{1}^{k_{1}-1} v_{2}^{k_{2}} \cdots v_{n}^{k_{n}}
$$

where $\left[k_{1}\right]_{q}=1+q+q^{2}+\cdots+q^{k_{1}-1}$
(q is an eigenvalue of a group element acting on v_{1})

Chain map

$$
(S(V) \nexists G) \otimes \bigwedge^{m}\left(V^{*}\right) \xrightarrow{\Upsilon} \operatorname{Hom}_{\mathbb{C}}\left(S(V)^{\otimes m}, S(V) \nVdash G\right)
$$

For $\alpha=f g \otimes v_{j_{1}}^{*} \wedge \cdots \wedge v_{j_{m}}^{*}$,

$$
\Upsilon(\alpha)\left(f_{1} \otimes \cdots \otimes f_{m}\right)=\left(\prod_{i=1}^{m}\left(s_{1} s_{2} \cdots s_{j_{i}-1}\right) \cdot\left(\partial_{j_{i}} f_{i}\right)\right) f g .
$$

where $g=s_{1} \cdots s_{n}$ is a product of reflections s_{i}, specifically

$$
s_{i} \cdot v_{j}=q_{i}^{\delta_{i, j}} v_{j} \text { for a scalar } q_{i}, \quad \partial_{j}:=\partial_{v_{j}, q_{j}}
$$

Chain map

$$
(S(V) \nexists G) \otimes \bigwedge^{m}\left(V^{*}\right) \xrightarrow{\Upsilon} \operatorname{Hom}_{\mathbb{C}}\left(S(V)^{\otimes m}, S(V) \nVdash G\right)
$$

For $\alpha=f g \otimes v_{j_{1}}^{*} \wedge \cdots \wedge v_{j_{m}}^{*}$,

$$
\Upsilon(\alpha)\left(f_{1} \otimes \cdots \otimes f_{m}\right)=\left(\prod_{i=1}^{m}\left(s_{1} s_{2} \cdots s_{j_{i}-1}\right) \cdot\left(\partial_{j_{i}} f_{i}\right)\right) f g .
$$

where $g=s_{1} \cdots s_{n}$ is a product of reflections s_{i}, specifically

$$
s_{i} \cdot v_{j}=q_{i}^{\delta_{i, j}} v_{j} \text { for a scalar } q_{i}, \quad \partial_{j}:=\partial_{v_{j}, q_{j}}
$$

This map is used in computations of brackets [,]

Example: Abelian groups
Diagonalize action: $g \cdot v_{i}=\chi_{i}(g) v_{i}(g \in G ; i=1, \ldots, n)$

$$
\text { Let } \begin{aligned}
\alpha & =v_{1}^{k_{1}} v_{2}^{k_{2}} v_{3}^{k_{3}} g \otimes v_{1}^{*} \wedge v_{2}^{*}, \\
\beta & =v_{1}^{l_{1}} v_{2}^{l_{2}} v_{3}^{l_{3}} h \otimes v_{2}^{*} \wedge v_{3}^{*} .
\end{aligned}
$$

Then

$$
[\alpha, \beta]=c \overline{v_{1}^{k_{1}+l_{1}} v_{2}^{k_{2}+l_{2}-1} v_{3}^{k_{3}+l_{3}} g h \otimes v_{1}^{*} \wedge v_{2}^{*} \wedge v_{3}^{*}}
$$

where

$$
\begin{aligned}
c=\langle & \left.\chi_{1}^{k_{1}-1} \chi_{2}^{k_{2}-1}, \chi_{3}^{-k_{3}}\right\rangle\left\langle\chi_{1}^{l_{1}} \chi_{2}^{1-l_{2}}, \chi_{3}^{1-l_{3}}\right\rangle . \\
& \left(\left[k_{2}\right]_{\chi_{2}(h)} \chi_{1}(h)^{k_{1}}-\left[l_{2}\right]_{\chi_{2}(g)} \chi_{1}(g)^{l_{1}}\right)
\end{aligned}
$$

Here, \langle,$\rangle denotes the inner product of characters on G$
Orthogonality relations $\Longrightarrow[\alpha, \beta]$ is usually 0 , but can be nonzero (when g or h acts trivially on V)

Question
 Of these noncommutative Poisson structures on $S(V) \# G$, which lift to deformations?

Future directions

(1) Quantum symmetric algebra $S_{\mathrm{q}}(V)$:
generators v_{1}, \ldots, v_{n}; relations $v_{i} v_{j}=q_{i j} v_{j} v_{i}$

- Bazlov, Berenstein '09: deformations of $S_{\mathbf{q}}(V) \# G$, called braided Cherednik algebras
- Kirkman, Kuzmanovich, Zhang '10:

Shephard-Todd-Chevalley Theorem for $G, S_{\mathbf{q}}(V)$

- Naidu, Shroff, W.: $\mathrm{HH}^{\bullet}\left(S_{\mathbf{q}}(V) \# G\right)$, diagonal case
(2) Positive characteristic p dividing $|G|$:

Cohomology is more complicated, specifically there is
a spectral sequence converging to $\mathrm{HH}^{\bullet}(S(V) \# G)$ with

$$
E_{2}^{i, j}=\mathrm{H}^{i}\left(G, \mathrm{HH}^{j}(S(V), S(V) \# G)\right)
$$

