Deformations of Skew Group Algebras and Orbifolds

Anne V. Shepler University of North Texas

Sarah Witherspoon Texas A&M University Skew Group Algebras R # G

 $R\#G:=\text{free R-module with basis G, i.e.} \bigoplus_{g\in G} Rg,$ with multiplication $(rg)(sh)=r(g\cdot s)gh$

Example of Skew Group Algebra

V - repn. of G (fin. dim. as a vector space) S(V) - symmetric algebra on V(i.e. polynomials in a basis v_1, \ldots, v_n)

Then G acts by automorphisms on S(V); S(V) # G is the resulting skew group algebra

Think: S(V) # G replaces the ring of functions $S(V)^G$ for the orbifold V/G

Deformations

A - algebra over a field k $A[[t]] := k[[t]] \otimes_k A$ (just extend scalars to k[[t]])

A <u>formal deformation</u> of A is an (associative) algebra structure on A[[t]] with multiplication

 $a * b = ab + \mu_1(a, b)t + \mu_2(a, b)t^2 + \cdots$

for some bilinear maps $\mu_i : A \times A \to A$, where ab is the product of a and b in A

Deformations

A - algebra over a field k $A[[t]] := k[[t]] \otimes_k A$ (just extend scalars to k[[t]])

A <u>formal deformation</u> of A is an (associative) algebra structure on A[[t]] with multiplication

$$a * b = ab + \mu_1(a, b)t + \mu_2(a, b)t^2 + \cdots$$

for some bilinear maps $\mu_i : A \times A \to A$, where ab is the product of a and b in A

<u>Remarks</u>

- (1) * is associative $\implies \mu_1$ is a Hochschild 2-cocycle, i.e. $a\mu_1(b,c) + \mu_1(a,bc) = \mu_1(a,b)c + \mu_1(ab,c)$
- (2) It can be hard to "lift" a μ_1 to a formal deformation

(3) Sometimes one may specialize to $t = t_0 \in k$

Example: Drinfeld's graded Hecke algebras

V - repn. of G as before Choose $\kappa: V \times V \to \mathbb{C}G$, a skew-symmetric bilin. form

Let
$$H := T(V) \# G/(vw - wv - \kappa(v, w) \mid v, w \in V)$$

Let $\deg v = 1$, $\deg g = 0$ for all $v \in V$, $g \in G$, so that H is a filtered algebra <u>Defn</u> (Drinfeld '86) H is a graded Hecke algebra if its associated graded algebra is S(V) # G

<u>Remark</u>

In this case H arises from a formal deformation of S(V) # G by specializing to t = 1, and $\kappa \iff$ Hochschild 2-cocycle μ_1

Drinfeld (graded) Hecke algebras for reflection groups

- Lusztig '88: for G a real reflection group, gave different definition in terms of roots, related to affine Hecke algebra
- Cherednik '95: used to prove Macdonald's constant term conjecture for root systems
- Etingof-Ginzburg '02: for G a symplectic reflection group, related to orbifold V/G
- Gordon '03: used to prove Haiman's version of n! conjecture for Weyl groups

In these contexts, graded Hecke algebras have gone by the alternate names: degenerate affine Hecke algebras, rational Cherednik algebras, symplectic reflection algebras We wish to view the graded Hecke algebras,

$$H = T(V) \# G/(vw - wv - \kappa(v, w) \mid v, w \in V)$$

(where $\kappa : V \times V \to \mathbb{C}G$), as special types of deformations of S(V) # Gcoming from a particular subspace of $HH^2(S(V) \# G)$ Structure of Hochschild cohomology of S(V) # G

$$\begin{aligned} \mathrm{HH}^{\bullet}(S(V) \# G) &\cong \mathrm{HH}^{\bullet}(S(V), S(V) \# G)^{G} \\ &\cong \left(\bigoplus_{g \in G} \mathrm{HH}^{\bullet}\left(S(V), S(V)g\right) \right)^{G} \\ &\subset \left(\bigoplus_{g \in G} S(V)g \otimes \bigwedge^{\bullet}(V^{*}) \right)^{G} \end{aligned}$$

Structure of Hochschild cohomology of S(V) # G

$$\begin{aligned} \mathrm{HH}^{\bullet}(S(V) \# G) &\cong \mathrm{HH}^{\bullet}(S(V), S(V) \# G)^{G} \\ &\cong \left(\bigoplus_{g \in G} \mathrm{HH}^{\bullet}\left(S(V), S(V)g\right) \right)^{G} \\ &\subset \left(\bigoplus_{g \in G} S(V)g \otimes \bigwedge^{\bullet}(V^{*}) \right)^{G} \end{aligned}$$

<u>Remark</u>

Graded Hecke algebras correspond to Hochschild 2-cocycles of S(V) # G living in

$$\mathbb{C}G\otimes \bigwedge^2(V^*)\ \subset\ (S(V) \# G)\otimes \bigwedge^2(V^*),$$

that is their polynomial parts are constant

Structure of Hochschild cohomology of S(V) # G

$$\begin{aligned} \mathrm{HH}^{\bullet}(S(V) \# G) &\cong \mathrm{HH}^{\bullet}(S(V), S(V) \# G)^{G} \\ &\cong \left(\bigoplus_{g \in G} \mathrm{HH}^{\bullet}\left(S(V), S(V)g\right) \right)^{G} \\ &\subset \left(\bigoplus_{g \in G} S(V)g \otimes \bigwedge^{\bullet}(V^{*}) \right)^{G} \end{aligned}$$

<u>Remark</u>

Graded Hecke algebras correspond to Hochschild 2-cocycles of S(V) # G living in

$$\mathbb{C} G\otimes {\textstyle\bigwedge}^2(V^*)\ \subset\ (S(V) \# G)\otimes {\textstyle\bigwedge}^2(V^*),$$

that is their polynomial parts are constant

Question What about the rest of $HH^2(S(V) \# G)$? Are there corresponding deformations? More details (Ginzburg-Kaledin '04, Farinati '05)

$$\begin{aligned} & \operatorname{HH}^{i}(S(V) \# G) \\ & \cong \left(\bigoplus_{g \in G} S(V)g \otimes \bigwedge^{\operatorname{codim} V^{g}} (((V^{g})^{\perp})^{*}) \otimes \bigwedge^{i - \operatorname{codim} V^{g}} ((V^{g})^{*}) \right)^{G} \\ & \subset \left(\bigoplus_{g \in G} S(V)g \otimes \bigwedge^{i} (V^{*}) \right)^{G} \end{aligned}$$

More details (Ginzburg-Kaledin '04, Farinati '05)

$$\begin{aligned} & \operatorname{HH}^{i}(S(V) \# G) \\ & \cong \left(\bigoplus_{g \in G} S(V)g \otimes \bigwedge^{\operatorname{codim} V^{g}} (((V^{g})^{\perp})^{*}) \otimes \bigwedge^{i - \operatorname{codim} V^{g}} ((V^{g})^{*}) \right)^{G} \\ & \subset \left(\bigoplus_{g \in G} S(V)g \otimes \bigwedge^{i} (V^{*}) \right)^{G} \end{aligned}$$

Known deformations

(1) Polynomial part of degree ≤ 1 : Deformations are filtered algebras with assoc. graded alg. iso. to S(V) # G; Halbout, Oudom, Tang gave conditions for existence Includes graded Hecke algebras as special case

(2) Polynomial part of degree ≥ 2:
Case G = 1. Completely known (Kontsevich '03)
Case G ≠ 1. Isolated examples known arising from Hopf algebra actions (W. '06, Guccione-Guccione-Valqui)

Noncommutative Poisson structures

Again: A Hochschild 2-cocycle on A is a bilinear map

$$\mu_1 : A \times \overline{A \to A}$$
 for which
 $a\mu_1(b,c) + \mu_1(a,bc) = \mu_1(a,b)c + \mu_1(ab,c)$

Remark

If μ_1 is the Hochschild 2-cocycle arising from a deformation of A, then $[\mu_1, \mu_1]$ is a coboundary (i.e. it becomes 0 in cohomology) where

$$\begin{split} [\boldsymbol{\nu},\eta](a,b,c) &:= \boldsymbol{\nu}(\eta(a,b),c) - \boldsymbol{\nu}(a,\eta(b,c)) \\ &+ \eta(\boldsymbol{\nu}(a,b),c) - \eta(a,\boldsymbol{\nu}(b,c)) \end{split}$$

Noncommutative Poisson structures

Again: A Hochschild 2-cocycle on A is a bilinear map

$$\mu_1 : A \times \overline{A} \to A$$
 for which
 $a\mu_1(b,c) + \mu_1(a,bc) = \mu_1(a,b)c + \mu_1(ab,c)$

<u>Remark</u>

If μ_1 is the Hochschild 2-cocycle arising from a deformation of A, then $[\mu_1, \mu_1]$ is a coboundary (i.e. it becomes 0 in cohomology) where

$$\begin{split} [\boldsymbol{\nu},\eta](a,b,c) &:= \boldsymbol{\nu}(\eta(a,b),c) - \boldsymbol{\nu}(a,\eta(b,c)) \\ &+ \eta(\boldsymbol{\nu}(a,b),c) - \eta(a,\boldsymbol{\nu}(b,c)) \end{split}$$

A <u>noncommutative Poisson structure</u> on A is a $\mu_1 \in HH^2(A)$ with $[\mu_1, \mu_1] = 0$ as an element of $HH^3(A)$

Noncommutative Poisson structures

Again: A Hochschild 2-cocycle on A is a bilinear map

$$\mu_1 : A \times \overline{A} \to A$$
 for which
 $a\mu_1(b,c) + \mu_1(a,bc) = \mu_1(a,b)c + \mu_1(ab,c)$

<u>Remark</u>

If μ_1 is the Hochschild 2-cocycle arising from a deformation of A, then $[\mu_1, \mu_1]$ is a coboundary (i.e. it becomes 0 in cohomology) where

$$\begin{split} [\boldsymbol{\nu},\eta](a,b,c) &:= \boldsymbol{\nu}(\eta(a,b),c) - \boldsymbol{\nu}(a,\eta(b,c)) \\ &+ \eta(\boldsymbol{\nu}(a,b),c) - \eta(a,\boldsymbol{\nu}(b,c)) \end{split}$$

A <u>noncommutative Poisson structure</u> on A is a $\mu_1 \in HH^2(A)$ with $[\mu_1, \mu_1] = 0$ as an element of $HH^3(A)$

Problem

For an algebra A, find all noncommutative Poisson structures, as a first step towards finding all deformations

Again: Structure of Hochschild cohomology of S(V) # G

$$\operatorname{HH}^{\bullet}(S(V) \# G) \subset \left(\bigoplus_{g \in G} S(V) g \otimes \bigwedge^{\bullet}(V^*) \right)^G$$

Cohomology is graded by polynomial degree: This is just the degree of the factor in ${\cal S}(V)$.

We say a cocycle is <u>constant</u> if it has polynomial deg 0.

 $\underline{\mathsf{Thm}} \ \alpha,\beta \in \mathrm{HH}^{\bullet}(S(V) \# G) \text{ constant } \Longrightarrow \ [\alpha,\beta] = 0$

 $\underline{\mathrm{Cor}} \ \alpha \in \mathrm{HH}^2(S(V) \# G) \text{ constant } \Longrightarrow \ \alpha \ \text{ defines}$ a noncommutative Poisson structure

<u>Thm</u> Each constant $\mu_1 \in HH^2(S(V) \# G)$ defines a graded Hecke algebra, and vice versa.

Again: Structure of Hochschild cohomology of S(V) # G

$$\operatorname{HH}^{\bullet}(S(V) \# G) \subset \left(\bigoplus_{g \in G} S(V) g \otimes \bigwedge^{\bullet}(V^*) \right)^G$$

Cohomology is "graded" by G, i.e. each cocycle is supported on some group elements

The kernel of G on V is $\{g \in G \mid V^g = V\}$.

<u>Thm</u> If $\alpha, \beta \in HH^2(S(V) \# G)$ are supported <u>off</u> the kernel of G on V, then $[\alpha, \beta] = 0$.

<u>Cor</u> If $G \subseteq GL(V)$ and 1_G doesn't contribute to $\alpha, \beta \in HH^2(S(V) \# G)$, then $[\alpha, \beta] = 0$.

<u>Cor</u> Any 2-cocycle supported <u>off</u> the kernel of G on V defines a noncommutative Poisson structure on S(V) # G.

Proofs require formulas for the bracket [,]

Problem: Bracket is defined via bar resolution, cohomology is computed via Koszul resolution.

Need chain maps converting between the two.

Such chain maps lead to formulas involving Demazure operators/quantum differentiation; e.g.

$$\partial_{v_1,q}(v_1^{k_1}v_2^{k_2}\cdots v_n^{k_n}) = [k_1]_q v_1^{k_1-1}v_2^{k_2}\cdots v_n^{k_n}$$

where $[k_1]_q = 1 + q + q^2 + \cdots + q^{k_1-1}$ (q is an eigenvalue of a group element acting on v_1)

Chain map

$$(S(V) \# G) \otimes \bigwedge^m (V^*) \xrightarrow{\Upsilon} \operatorname{Hom}_{\mathbb{C}}(S(V)^{\otimes m}, S(V) \# G)$$

For $\alpha = fg \otimes v_{j_1}^* \wedge \dots \wedge v_{j_m}^*$, $\Upsilon(\alpha)(f_1 \otimes \dots \otimes f_m) = \left(\prod_{i=1}^m (s_1 s_2 \dots s_{j_i-1}) \cdot (\partial_{j_i} f_i)\right) fg$.

where $g = s_1 \cdots s_n$ is a product of reflections s_i , specifically

 $s_i \cdot v_j = q_i^{\delta_{i,j}} v_j$ for a scalar q_i , $\partial_j := \partial_{v_j,q_j}$

Chain map

$$(S(V) \# G) \otimes \bigwedge^m (V^*) \xrightarrow{\Upsilon} \operatorname{Hom}_{\mathbb{C}}(S(V)^{\otimes m}, S(V) \# G)$$

For $\alpha = fg \otimes v_{j_1}^* \wedge \dots \wedge v_{j_m}^*$,

$$\Upsilon(\alpha)(f_1 \otimes \cdots \otimes f_m) = \left(\prod_{i=1}^m (s_1 s_2 \cdots s_{j_i-1}) \cdot (\partial_{j_i} f_i)\right) fg.$$

where $g = s_1 \cdots s_n$ is a product of reflections s_i , specifically

$$s_i \cdot v_j = q_i^{\delta_{i,j}} v_j$$
 for a scalar q_i , $\partial_j := \partial_{v_j,q_j}$

This map is used in computations of brackets $[\ ,\]$

Example: Abelian groups

Diagonalize action: $g \cdot v_i = \chi_i(g)v_i \ (g \in G; i = 1, ..., n)$

Let
$$\alpha = v_1^{k_1} v_2^{k_2} v_3^{k_3} g \otimes v_1^* \wedge v_2^*,$$

 $\beta = v_1^{l_1} v_2^{l_2} v_3^{l_3} h \otimes v_2^* \wedge v_3^*.$

Then

$$[\alpha,\beta] = c \ \overline{v_1^{k_1+l_1}v_2^{k_2+l_2-1}v_3^{k_3+l_3}gh \otimes v_1^* \wedge v_2^* \wedge v_3^*},$$

where

$$c = \langle \chi_1^{k_1 - 1} \chi_2^{k_2 - 1}, \chi_3^{-k_3} \rangle \langle \chi_1^{l_1} \chi_2^{1 - l_2}, \chi_3^{1 - l_3} \rangle \cdot \\ ([k_2]_{\chi_2(h)} \chi_1(h)^{k_1} - [l_2]_{\chi_2(g)} \chi_1(g)^{l_1})$$

Here, $\langle \ , \ \rangle$ denotes the inner product of characters on G

Orthogonality relations $\implies [\alpha, \beta]$ is usually 0, but can be nonzero (when g or h acts trivially on V)

Question

 $\overline{\rm Of\ these}$ noncommutative Poisson structures on S(V)#G , which lift to deformations?

Future directions

- (1) Quantum symmetric algebra $S_{\mathbf{q}}(V)$: generators v_1, \ldots, v_n ; relations $v_i v_j = q_{ij} v_j v_i$
 - Bazlov, Berenstein '09: deformations of $S_{\mathbf{q}}(V) \# G$, called braided Cherednik algebras
 - Kirkman, Kuzmanovich, Zhang '10: Shephard-Todd-Chevalley Theorem for G, $S_{\mathbf{q}}(V)$
 - Naidu, Shroff, W.: $HH^{\bullet}(S_{\mathbf{q}}(V) \# G)$, diagonal case

(2) Positive characteristic p dividing |G|:

Cohomology is more complicated, specifically there is a spectral sequence converging to $HH^{\bullet}(S(V) \# G)$ with $E_2^{i,j} = H^i(G, HH^j(S(V), S(V) \# G))$