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Skew Group Algebras R#G

R - ring
G - group acting by automorphisms on R,

r 7→ g · r (r ∈ R, g ∈ G)

R#G := free R-module with basis G, i.e.
⊕

g∈G

Rg,

with multiplication (rg)(sh) = r(g · s)gh



Example of Skew Group Algebra

V - repn. of G (fin. dim. as a vector space)

S(V ) - symmetric algebra on V
(i.e. polynomials in a basis v1, . . . , vn)

Then G acts by automorphisms on S(V );
S(V )#G is the resulting skew group algebra

Think: S(V )#G replaces the ring of functions
S(V )G for the orbifold V/G



Deformations

A - algebra over a field k
A[[t]] := k[[t]] ⊗k A (just extend scalars to k[[t]])

A formal deformation of A is an (associative) algebra
structure on A[[t]] with multiplication

a ∗ b = ab + µ1(a, b)t + µ2(a, b)t2 + · · ·

for some bilinear maps µi : A × A → A, where
ab is the product of a and b in A
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A[[t]] := k[[t]] ⊗k A (just extend scalars to k[[t]])

A formal deformation of A is an (associative) algebra
structure on A[[t]] with multiplication

a ∗ b = ab + µ1(a, b)t + µ2(a, b)t2 + · · ·

for some bilinear maps µi : A × A → A, where
ab is the product of a and b in A

Remarks
(1) ∗ is associative =⇒ µ1 is a Hochschild 2-cocycle,

i.e. aµ1(b, c) + µ1(a, bc) = µ1(a, b)c + µ1(ab, c)

(2) It can be hard to “lift” a µ1 to a formal deformation

(3) Sometimes one may specialize to t = t0 ∈ k



Example: Drinfeld’s graded Hecke algebras

V - repn. of G as before
Choose κ : V × V → CG, a skew-symmetric bilin. form

Let H := T (V )#G/(vw − wv − κ(v, w) | v, w ∈ V )

Let deg v = 1, deg g = 0 for all v ∈ V , g ∈ G, so
that H is a filtered algebra

Defn (Drinfeld ’86) H is a graded Hecke algebra if
its associated graded algebra is S(V )#G

Remark
In this case H arises from a formal deformation of
S(V )#G by specializing to t = 1, and

κ ←→ Hochschild 2-cocycle µ1



Drinfeld (graded) Hecke algebras for reflection groups

• Lusztig ’88: for G a real reflection group,
gave different definition in terms of roots,
related to affine Hecke algebra

• Cherednik ’95: used to prove Macdonald’s
constant term conjecture for root systems

• Etingof-Ginzburg ’02: for G a symplectic
reflection group, related to orbifold V/G

• Gordon ’03: used to prove Haiman’s version
of n! conjecture for Weyl groups

In these contexts, graded Hecke algebras have gone by
the alternate names: degenerate affine Hecke algebras,
rational Cherednik algebras, symplectic reflection algebras



We wish to view the graded Hecke algebras,

H = T (V )#G/(vw − wv − κ(v, w) | v, w ∈ V )

(where κ : V × V → CG),
as special types of deformations of S(V )#G
coming from a particular subspace of HH2(S(V )#G)



Structure of Hochschild cohomology of S(V )#G

HH•(S(V )#G) ∼= HH•(S(V ), S(V )#G)G

∼=





⊕

g∈G

HH• (S(V ), S(V )g)





G

⊂





⊕

g∈G

S(V )g ⊗
∧•(V ∗)





G
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Remark
Graded Hecke algebras correspond to Hochschild 2-cocycles
of S(V )#G living in

CG ⊗
∧2(V ∗) ⊂ (S(V )#G) ⊗

∧2(V ∗),

that is their polynomial parts are constant



Structure of Hochschild cohomology of S(V )#G

HH•(S(V )#G) ∼= HH•(S(V ), S(V )#G)G

∼=





⊕

g∈G

HH• (S(V ), S(V )g)





G

⊂





⊕

g∈G

S(V )g ⊗
∧•(V ∗)





G

Remark
Graded Hecke algebras correspond to Hochschild 2-cocycles
of S(V )#G living in

CG ⊗
∧2(V ∗) ⊂ (S(V )#G) ⊗

∧2(V ∗),

that is their polynomial parts are constant

Question
What about the rest of HH2(S(V )#G)?
Are there corresponding deformations?



More details (Ginzburg-Kaledin ’04, Farinati ’05)

HHi(S(V )#G)

∼=





⊕

g∈G

S(V )g ⊗
∧codim V g

(((V g)⊥)∗) ⊗
∧i−codim V g

((V g)∗)





G

⊂





⊕

g∈G

S(V )g ⊗
∧i(V ∗)





G
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Known deformations
(1) Polynomial part of degree ≤ 1: Deformations are
filtered algebras with assoc. graded alg. iso. to S(V )#G;
Halbout, Oudom, Tang gave conditions for existence
Includes graded Hecke algebras as special case

(2) Polynomial part of degree ≥ 2:

Case G = 1. Completely known (Kontsevich ’03)
Case G 6= 1. Isolated examples known arising from
Hopf algebra actions (W. ’06, Guccione-Guccione-Valqui)



Noncommutative Poisson structures

Again: A Hochschild 2-cocycle on A is a bilinear map
µ1 : A × A → A for which

aµ1(b, c) + µ1(a, bc) = µ1(a, b)c + µ1(ab, c)

Remark
If µ1 is the Hochschild 2-cocycle arising from a
deformation of A, then [µ1, µ1] is a coboundary
(i.e. it becomes 0 in cohomology) where

[ν, η](a, b, c) := ν(η(a, b), c) − ν(a, η(b, c))

+η(ν(a, b), c) − η(a, ν(b, c))
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with [µ1, µ1] = 0 as an element of HH3(A)



Noncommutative Poisson structures

Again: A Hochschild 2-cocycle on A is a bilinear map
µ1 : A × A → A for which

aµ1(b, c) + µ1(a, bc) = µ1(a, b)c + µ1(ab, c)

Remark
If µ1 is the Hochschild 2-cocycle arising from a
deformation of A, then [µ1, µ1] is a coboundary
(i.e. it becomes 0 in cohomology) where

[ν, η](a, b, c) := ν(η(a, b), c) − ν(a, η(b, c))

+η(ν(a, b), c) − η(a, ν(b, c))

A noncommutative Poisson structure on A is a µ1 ∈ HH2(A)
with [µ1, µ1] = 0 as an element of HH3(A)

Problem
For an algebra A, find all noncommutative Poisson
structures, as a first step towards finding all deformations



Again:
Structure of Hochschild cohomology of S(V )#G

HH•(S(V )#G) ⊂





⊕

g∈G

S(V )g ⊗
∧•(V ∗)





G

Cohomology is graded by polynomial degree: This is
just the degree of the factor in S(V ).
We say a cocycle is constant if it has polynomial deg 0.



Thm α, β ∈ HH•(S(V )#G) constant =⇒ [α, β] = 0

Cor α ∈ HH2(S(V )#G) constant =⇒ α defines
a noncommutative Poisson structure

Thm Each constant µ1 ∈ HH2(S(V )#G) defines
a graded Hecke algebra, and vice versa.



Again:
Structure of Hochschild cohomology of S(V )#G

HH•(S(V )#G) ⊂





⊕

g∈G

S(V )g ⊗
∧•(V ∗)





G

Cohomology is “graded” by G, i.e. each cocycle is
supported on some group elements



The kernel of G on V is {g ∈ G | V g = V }.

Thm If α, β ∈ HH2(S(V )#G) are supported off the
kernel of G on V , then [α, β] = 0.

Cor If G ⊆ GL(V ) and 1G doesn’t contribute to
α, β ∈ HH2(S(V )#G), then [α, β] = 0.

Cor Any 2-cocycle supported off the kernel of G
on V defines a noncommutative Poisson structure
on S(V )#G.



Proofs require formulas for the bracket [ , ]

Problem: Bracket is defined via bar resolution,
cohomology is computed via Koszul resolution.

Need chain maps converting between the two.

Such chain maps lead to formulas involving
Demazure operators/quantum differentiation; e.g.

∂v1,q(v
k1
1 vk2

2 · · · vkn
n ) = [k1]qv

k1−1
1 vk2

2 · · · vkn
n

where [k1]q = 1 + q + q2 + · · · + qk1−1

(q is an eigenvalue of a group element acting on v1)



Chain map

(S(V )#G) ⊗
∧m(V ∗)

Υ
→ HomC(S(V )⊗m, S(V )#G)

For α = fg ⊗ v∗j1 ∧ · · · ∧ v∗jm,

Υ(α)(f1 ⊗ · · · ⊗ fm) =

(

m
∏

i=1

(s1s2 · · · sji−1) · (∂jifi)

)

fg .

where g = s1 · · · sn is a product of reflections si,
specifically

si · vj = q
δi,j

i vj for a scalar qi, ∂j := ∂vj,qj



Chain map

(S(V )#G) ⊗
∧m(V ∗)

Υ
→ HomC(S(V )⊗m, S(V )#G)

For α = fg ⊗ v∗j1 ∧ · · · ∧ v∗jm,

Υ(α)(f1 ⊗ · · · ⊗ fm) =

(

m
∏

i=1

(s1s2 · · · sji−1) · (∂jifi)

)

fg .

where g = s1 · · · sn is a product of reflections si,
specifically

si · vj = q
δi,j

i vj for a scalar qi, ∂j := ∂vj,qj

This map is used in computations of brackets [ , ]



Example: Abelian groups

Diagonalize action: g ·vi =χi(g)vi (g ∈ G; i = 1, . . . , n)

Let α = vk1
1 vk2

2 vk3
3 g ⊗ v∗1 ∧ v∗2,

β = vl1
1 vl2

2 vl3
3 h ⊗ v∗2 ∧ v∗3.

Then

[α, β] = c vk1+l1
1 vk2+l2−1

2 vk3+l3
3 gh ⊗ v∗1 ∧ v∗2 ∧ v∗3,

where

c = 〈χk1−1
1 χk2−1

2 , χ−k3
3 〉〈χl1

1 χ1−l2
2 , χ1−l3

3 〉·

([k2]χ2(h)χ1(h)k1 − [l2]χ2(g)χ1(g)l1)

Here, 〈 , 〉 denotes the inner product of characters on G

Orthogonality relations =⇒ [α, β] is usually 0,
but can be nonzero (when g or h acts trivially on V )



Question
Of these noncommutative Poisson structures
on S(V )#G, which lift to deformations?



Future directions

(1) Quantum symmetric algebra Sq(V ):
generators v1, . . . , vn; relations vivj = qijvjvi

• Bazlov, Berenstein ’09: deformations of Sq(V )#G,
called braided Cherednik algebras

• Kirkman, Kuzmanovich, Zhang ’10:
Shephard-Todd-Chevalley Theorem for G, Sq(V )

• Naidu, Shroff, W.: HH•(Sq(V )#G), diagonal case

(2) Positive characteristic p dividing |G|:

Cohomology is more complicated, specifically there is
a spectral sequence converging to HH•(S(V )#G) with

Ei,j
2 = Hi(G, HHj(S(V ), S(V )#G))


