Hopf Actions on Calabi-Yau Algebras

Q. -S. Wu

Joint with Can Zhu

School of Mathematical Sciences, Fudan University, Shanghai, China

Conference in honor of Ken Goodearl's 65th birthday Seattle, August 9, 2010

< 日 > < 回 > < 回 > < 回 > < 回 > <

э.

Notation

Notation

Notation

- *k* is a field of characteristic 0;
- algebras will be k-algebras
- graded algebras will mean connected graded algebras generated in degree 1;
- modules are left (graded) modules;

•
$$A^e := A \otimes A^o;$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Calabi-Yau algebras

Calabi-Yau algebras

Definition (Ginzburg, 2006)

A graded algebra A is called a Calabi-Yau algebra if the following conditions hold.

- (1) *A* is homologically smooth, i.e., *A* has a finitely generated A^{e} -projective resolution of finite length;
- (2) there exists integers d, l such that

$$\operatorname{Ext}_{A^{e}}^{i}(A, A^{e}) = \begin{cases} A(l) & \text{if } i = d, \\ 0 & \text{if } i \neq d \end{cases}$$
(0.1)

as A^e-modules.

Calabi-Yau Categories

Definition (Konsevich, 1998)

A hom-finite triangulated category C is called *n*-Calabi-Yau for some integer *n* if

$$\operatorname{Hom}_{\mathcal{C}}(A,B) \stackrel{iso}{\cong} \operatorname{Hom}_{\mathcal{C}}(B,A(n))^*$$

for any $A, B \in ob \mathcal{C}$, and the "iso" is natural.

3

Calabi-Yau algebras

$Calabi-Yau \Rightarrow Derived \ Calabi-Yau$

Theorem (Keller, VdB, 2009)

If A is a Calabi-Yau algebra, then $D^b_{f.dim}(A-Mod)$ is a Calabi-Yau category.

AS regular algebras

Definition (Artin-Schelter)

A connected graded algebra A is called left Artin-Schelter(AS, for short) regular (resp. Gorenstein) algebra if the following conditions hold.

- A has finite global (resp. _AA has finite injective) dimension d;
- (2) there exists an integer l such that

$$\operatorname{Ext}_{A}^{i}(k,A) = \begin{cases} k(l) & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$$
(0.2)

Twisted Calabi-Yau algebras

Definition

A *k*-algebra is called a (left) σ -twisted Calabi-Yau algebra of dimension *d*, for $\sigma \in Aut(A)$, if $A \in D_{per}(A^e)$ and as A^e -module

$$\operatorname{Ext}_{A^e}^i(A, A^e) \cong \begin{cases} {}_{1}A_{\sigma}, & i = d, \\ 0, & i \neq d. \end{cases}$$

• □ > • □ > • □ > • □ > • □ > •

AS regular algebras

"Twisted" graded Calabi-Yau is AS-regular

Any twisted graded Calabi-Yau is AS-regular; Any *p*-Koszul AS-regular algebra is "twisted" Calabi-Yau.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

э

Twisted Calabi-Yau algebras

AS-regular Hopf algebra is "twisted" Calabi-Yau (Brown-Zhang)

Let *H* be a noetherian Hopf algebra with bijective antipode *S*. If *H* is AS-regular with global dimension $\operatorname{gldim}(H) = d$, and if $\int_{H}^{l} \cong {}_{\varepsilon}k_{\pi}$ and ξ is the winding automorphism determined by π , then

$$\mathbf{H}^{i}(H, H^{e}) \cong \begin{cases} {}_{1}H_{\sigma}, & i = d, \\ 0, & i \neq d, \end{cases}$$

where $\sigma = S^2 \xi$.

(日)

AS regular algebras

When AS-regular is Calabi-Yau?

Let *H* be an noetherian Hopf algebra with bijective antipode *S*. Then *H* is Calabi-Yau of dimension *d* if and only if (i) *H* is AS-regular with global dimension $\operatorname{gldim}(H) = d$ and $\int_{H}^{l} \cong k_{H}$, (ii) S^{2} is an inner automorphism of *H*.

(日)

Examples

Examples of Calabi-Yau algebras-I

(1) $k[x_1, x_2, \dots, x_n]$: *n*-Calabi-Yau;

(2) algebras in the classification of 3-dimensional AS-regular algebras of type diag(1, 1) and diag(1, 1, 1);

(3) Sklyanian algebras of dimension 4;

(4) Weyl algebras $A_n(k)$: 2*n*-Calabi-Yau (JLMS, 2009);

(5) the preprojective algebras of non-Dynkin quivers;

(6) Sridharan enveloping algebras of abelian Lie algebras.

・ロット (母) ・ ヨ) ・ ヨ)

Examples

Examples of Calabi-Yau algebras-II

(7) Let *X* be a smooth Calabi-Yau variety (i.e., the canonical sheaf is trivial), then $\mathbb{C}[X]$ is a Calabi-Yau algebra of dimension dim *X*.

(8) Let *G* be a finite group acting on $X = \mathbb{C}^n$, X/G be the quotient variety, and $Y \xrightarrow{f} X/G$ be the crepant resolution $(f^*\omega_{X/G} = \omega_Y)$, then

$$D^b(\mathbb{C}[x_1, x_2, \cdots, x_n] \# G) \cong D^b(CohY).$$

THeorem (Iyama-Reiten, AMJ 2008, Farinati, JA 2005)

 $k[x_1, x_2, \cdots, x_n] #G$ where $G \leq GL(n, k)$ is Calabi-Yau if and only if that $G \leq SL(n, k)$.

 $\{Poly. algebras\} \subset \{Calabi-Yau algebras\} \subset \{AS-regular algebras\}$

$$G \curvearrowright k[x_1, x_2, \cdots, x_n];$$

 $k[x_1, \cdots, x_n] \# G$ is Calabi-Yau $\Leftrightarrow G \subset SL(n, k),$

 $G \curvearrowright$ Calabi-Yau algebra A

A # G is Calabi-Yau $\Leftrightarrow G \subset ???$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Problems and Results

Problems-II

If H is a (Calabi-Yau) Hopf algebra, and $H \curvearrowright$ Calabi-Yau algebra A

A # H is Calabi-Yau $\Leftrightarrow H$???

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

æ

Main Results

Theorem (W-Zhu)

Let *A* be a Koszul Calabi-Yau algebra, *G* be a finite subgroup of $\operatorname{GrAut}(A)$. Then

A # G is Calabi-Yau $\Leftrightarrow G \subset SL(A)$

where $SL(A) := \{ \sigma \in GrAut(A) \mid hdet(\sigma) = 1 \}.$

Theorem (W-Zhu)

Let A be a Koszul Calabi-Yau algebra, H be a Calabi-Yau Hopf algebra, and A be a left graded H-module algebra. Then

A # H is Calabi-Yau \Leftrightarrow The homological determinant hdet_H is trivial.

くぼう くほう くほう

Homological determinant for group actions

Let *A* be an AS-Gorenstein algebra, and $\sigma \in \text{GrAut}(A)$.

(1) $\operatorname{H}^{i}_{\mathfrak{m}}(M) = \varinjlim \operatorname{Ext}^{i}_{A}(A/A \ge n, M)$ is the *i*-th local cohomology of *M* for any graded module *M*;

(2)
$$\operatorname{H}^{i}_{\mathfrak{m}}(A) \cong \begin{cases} 0, & i \neq d, \\ {}_{A}A^{*}(l), & i = d; \end{cases}$$

(3) there exists a scalar c ∈ k* so that the following is commutative.

$$\begin{array}{c} \operatorname{H}^{d}_{\mathfrak{m}}(A) \xrightarrow{\operatorname{H}^{d}_{\mathfrak{m}}(\sigma)} \operatorname{H}^{d}_{\mathfrak{m}}(A) \\ \cong & \downarrow \qquad \cong & \downarrow \\ AA^{*}(l) \xrightarrow{c(\sigma^{-1})^{*}} AA^{*}(l). \end{array}$$

Homological determinant for group actions

Definition (Jorgensen & Zhang, Adv. Math. 1998)

 $hdet(\sigma) := c^{-1}$ is called the **homological determinant** of σ .

If
$$A = k[x_1, x_2, \dots, x_n]$$
 and $\sigma \in \operatorname{GrAut}(A)$. Then $\sigma|_V \in GL(n, k)$
where $V = kx_1 \oplus kx_2 \oplus \dots \oplus kx_n$ and

 $hdet(\sigma) = det(\sigma|_V).$

(日) (圖) (E) (E) (E)

Remarks

Remarks

(1)
$$A := k\langle x, y \rangle / \langle xy + yx \rangle$$
, $\sigma|_{A_1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$,
then hdet $(\sigma) = 1$, but det $(\sigma|_{A_1}) = -1$.

(2) Let A be a *p*-Koszul AS-regular algebra of dimension *d* and $\sigma \in \operatorname{GrAut}(A)$. If $\sigma|_{A_1} = (c_{ij})$, then $\sigma^{\tau} \in \operatorname{GrAut}(A^!)$ where $\sigma^{\tau}|_{A_1^*} = (c_{ij})^{Tr}$ and $\sigma^{\tau}(u) = \operatorname{hdet}(\sigma)u$ for $u \in \operatorname{Ext}_A^d(k,k)$;

<ロ> <同> <同> < 同> < 同> < 三> < 三> < 三

Homological determinant for Hopf actions

Hypothesis:

- (1) H is a Hopf algebra,
- (2) A is a noetherian connected graded AS-Gorenstein algebra, and
- (3) A is a left H-module algebra and each A_i is a left H-submodule for each i, or A is a graded left H-module algebra.

• □ > • □ > • □ > • □ > • □ > •

Homological determinant for Hopf actions

Definition (Kirkman, Kuzmanovich & Zhang, J. Alg. 2009)

Let *A* be an AS-regular algebra of global dimension *d*. There is a left *H*-action on $\operatorname{Ext}_A^d(k, A)$ induced by the left A # H-action on *A*. Let **e** be a nonzero element in $\operatorname{Ext}_A^d(k, A)$. Then there is an algebra morphism $\eta : H \to k$ satisfying $h \cdot \mathbf{e} = \eta(h)\mathbf{e}$ for all $h \in H$.

- The composite map η ∘ S : H → k is called the homological determinant of the *H*-action on *A*, and denoted it by hdet (or more precisely hdet_A)
- 2 The homological determinant $hdet_A$ is said to be trivial if $hdet_A = \epsilon$, the counit of the Hopf algbera *H*.

A D N A D N A D N A D

VdB Duality

Theorem (Van den Bergh)

Let A be a (graded) k-algebra. The following are equivalent.

(1) There exists an A^e -module U with both $_AU$ and U_A are projective, and an integer d such that for any $i \ge 0$ and any k-algebra R,

$$\mathrm{H}^{i}(A,-)\cong\mathrm{H}_{d-i}(A,U\otimes_{A}-):A^{e}\operatorname{-Mod-} R\to\mathrm{Mod-} R.$$

(I)

VdB Duality

(2) *A* is homologically smooth, i.e., *A* has a finitely generated A^{e} -projective resolution of finite length; and

$$\operatorname{Ext}_{A^{e}}^{i}(A, A^{e}) = \begin{cases} 0 & \text{if } i \neq d, \\ U & \text{if } i = d \end{cases}$$
(0.3)

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

with the A^e -module structure induced by the inner action of A^e .

In this case, we say that A satisfies the VdB duality with dualizing module U; and denote it as $A \in VdB(U, d)$.

Sketch proof of VdB Duality

(1) \Rightarrow (2) Since

$$\operatorname{Ext}_{A^e}^i(A,-)\cong\operatorname{Tor}_{d-i}^{A^e}(A,U\otimes_A-)$$

commutes with directed direct limits, $_{A^e}A$ has a finitely generated projective resolution of finite length. And

$$\operatorname{Ext}_{A^{e}}^{i}(A, A^{e}) \cong \operatorname{Tor}_{d-i}^{A^{e}}(A, U \otimes_{A} A^{e}) \cong \begin{cases} 0 & \text{if } i \neq d, \\ U & \text{if } i = d. \end{cases}$$

3

Sketch proof of VdB Duality

(2) \Rightarrow (1) Let $P. \rightarrow {}_{A^e}A \rightarrow 0$ be a f.g. projective resolution of ${}_{A^e}A$ of finite length. Then

$$\begin{aligned} \mathrm{H}^{i}(A,M) &= \mathrm{Ext}_{A^{e}}^{i}(A,M) \cong \mathrm{H}^{i}(\mathrm{R}\mathrm{Hom}_{A^{e}}(A,M)) \\ &\cong \mathrm{H}^{i}(\mathrm{R}\mathrm{Hom}_{A^{e}}(A,A^{e})^{L} \otimes_{A^{e}} M) \cong \mathrm{H}^{i}(U[-d]^{L} \otimes_{A^{e}} M) \\ &= \mathrm{H}^{i-d}(U^{L} \otimes_{A^{e}} M) \cong H^{i-d}(A^{L} \otimes_{A^{e}} (U^{L} \otimes_{A} M)) \\ &\cong \mathrm{H}_{d-i}(A,U \otimes_{A} M). \end{aligned}$$

イロン イヨン イヨン

æ

Stefan's Spectral Sequences

Stefan's Theorem

Theorem

Let *H* be a Hopf algebra and *A* a left (graded) *H*-module algebra, and *M* be an $(A#H)^e$ -module. Then there is a cohomological spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_H^p({}_Hk, \operatorname{Ext}_{A^e}^q(A, M)) \Longrightarrow \operatorname{Ext}_{(A \# H)^e}^{p+q}(A \# H, M)$$

and a homological spectral sequence

$$E_{p,q}^{2} = \operatorname{Tor}_{p}^{H}({}_{H}k, \operatorname{Tor}_{q}^{A^{e}}(A, M)) \Longrightarrow \operatorname{Tor}_{p+q}^{(A \# H)^{e}}(A \# H, M)$$

which are natural in M.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Stefan's Spectral Sequences

Stefan's Theorem

Grotehdieck Spectral Sequences

Stefan's Spectral Sequences are Grothendieck Spectral Sequences, for example, if we take

$$F = \operatorname{Hom}_{B^e}(M, -) : B^e \operatorname{-Mod} \to k \operatorname{-Mod}, M \mapsto M^B$$

$$F_1 = \operatorname{Hom}_{A^e}(M, -) \cdot \operatorname{Rest}_{A^e} : B^e \operatorname{-Mod} \to H \operatorname{-Mod},$$

 $F_2 = \operatorname{Hom}_H(N, -) : H\operatorname{-Mod} \to k\operatorname{-Mod},$

where M^A is viewed as a left *H*-module via

$$h \to m = h_2 m S^{-1} h_1$$
 $((h \to f)(x) = h_3 f(S^{-1} h_2 x) S^{-1} h_1).$

Then $F = F_2F_1$ and for each injective B^e -module, F_1M is F_2 -acyclic.

Stefan's Spectral Sequences

Stefan's Spectral Sequences

Theorem

Note that

$$\operatorname{Ext}_{H}^{p}(_{H}k,\operatorname{Ext}_{A^{e}}^{q}(A,M))=\operatorname{Ext}_{H^{e}}^{p}(H,\operatorname{Ext}_{A^{e}}^{q}(A,M)),$$

and

$$\mathrm{Tor}_p^H({}_Hk,\mathrm{Tor}_q^{A^e}(A,M))=\mathrm{Tor}_p^{H^e}(H,\mathrm{Tor}_q^{A^e}(A,M))$$

where the left *H*-modules $\operatorname{Ext}_{A^e}^q(A, M)$ and $\operatorname{Tor}_q^{A^e}(A, M)$ are viewed as H^e -modules via trivial action on the right. Hence

$$E_2^{p,q} = \operatorname{Ext}_{H^e}^p(H, \operatorname{Ext}_{A^e}^q(A, M)) \Longrightarrow \operatorname{Ext}_{(A \# H)^e}^{p+q}(A \# H, M),$$

$$E_{p,q}^2 = \operatorname{Tor}^{H^e}(H, \operatorname{Tor}_q^{A^e}(A, M)) \Longrightarrow \operatorname{Tor}_{p+q}^{(A \# H)^e}(A \# H, M).$$

Idea of the proof

Ideas of the proof from Farina, JA 2005)

Theorem

Let *H* be a Calabi-Yau Hopf algebra and *A* be a left graded *H*-module algebra. If *A* is a Koszul Calabi-Yau algebra, then A#H is graded Calabi-Yau if and only if that the homological determinant of the Hopf-action on *A* is trivial.

Suppose that *H* is d_1 -Calabi-Yau, and *A* is d_2 -Calabi-Yau. Then

$$\begin{split} \mathrm{H}^{d_1+d_2}(A\#H,(A\#H)^e) &= \mathrm{H}^{d_1}(H,\mathrm{H}^{d_2}(A,(A\#H)^e))\\ \cong &H\otimes_{H^e}(U\otimes_{A^e}(A\#H)^e) \cong U\otimes H\cong A\otimes H. \end{split}$$

They are isomorphic as $(A \# H)^e$ -modules! Hom_{*A*^e} $(P, (A \# H)^e)$ is an $H \otimes (A \# H)^e$ -module.

Definition

Definition (Bocklandt, Schedler & Wemyss)

Let *S* be a finite dimensional semi-simple algebra over k and *V* an *S*-bimodule.

(1) $\omega \in V^{\otimes n}$ is called a weak potential of degree *n* if $s\omega = \omega s$ for any $s \in S$;

- (2) For $m \leq n$, let Δ_m^{ω} be the map $(V^*)^{\otimes n} \to V^{\otimes n-m}, \ \psi_1 \otimes \psi_2 \otimes \cdots \otimes \psi_m \mapsto \psi_1 \otimes \psi_2 \otimes \cdots \otimes \psi_m(\omega).$
- (3) a weak potential is called a *d*-superpotential if $\varphi(\omega) = (-1)^{d-1}(\omega)\varphi$ for $\varphi \in V^*$;
- (4) an algebra *A* is said to be given by a superpotential ω , if $A \cong T_S(V)/\langle \operatorname{Im} \Delta_m^{\omega} \rangle$.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Examples

Examples

ヘロト 人間 とくほとくほとう

æ

Some results

Theorem (Bocklandt, JAPA 2008, Segal, JA 2008)

Every graded 3-dimensional Calabi-Yau algebra is given by a superpotential.

Theorem (Bocklandt, Schedler & Wemyss, JAPA 2010)

Every Koszul Calabi-Yau algebra is given by a superpotential.

・ロット (母) ・ ヨ) ・ ヨ)

p-Koszul Calabi-Yau algebra

Theorem

Let A be a p-Koszul Calabi-Yau algebra. Then A is given by a superpotential.

The proof uses A_{∞} -algebra theory.

p-Koszul Calabi-Yau algebra

Let A = T(V)/(R), $E(A) = \text{Ext}_A^*({}_Ak, {}_Ak)$ is a graded symmetric Frobenius algebra, which also has an A_∞ -structure (m_2, m_p) .

$$\omega \in V^{\otimes \delta(d)} \cong [(V^*)^{\otimes \delta(d)}]^*, \text{ is the map } \eta_1 \otimes \eta_2 \otimes \cdots \otimes \eta_{\delta(d)} \mapsto \langle m_p(\eta_1 \otimes \eta_2 \otimes \cdots \otimes \eta_p), \eta_{p+1} \cdot m_p(\eta_{p+2} \otimes \cdots \otimes \eta_{2p+1} \cdots m_p(\cdots \otimes \eta_{\delta(d)}) \rangle.$$

Note that $d = \operatorname{pdim} A$ is always odd, and $A \cong T(V) / \langle \operatorname{Im} \Delta_{\delta(d-1)}^{\omega} \rangle$.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Superpotential for skew group algebra

Theorem

Let *A* be a *p*-Koszul Calabi-Yau algebra and *G* be a finite subgroup of SL(A). If *A* is given by a superpotential ω , then A # G is given by the superpotential $\omega \# 1$.

$$\psi: T_k(V) \# G/(R \# G) \cong T_{kG}(V \otimes kG)/(R \otimes kG),$$

 $v_1 \otimes v_2 \otimes \cdots \otimes v_n \# g \mapsto (v_1 \otimes 1) \cdots \otimes (v_{n-1} \otimes 1) \otimes (v_n \otimes g).$

Similar result for Hopf actions.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Example

Example

Take
$$A = k\langle x, y, z \rangle / \langle yz - zy, zx - xz, xy - yx + z^2 \rangle$$
,
 $G = \langle \begin{pmatrix} \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & \epsilon \end{pmatrix} \rangle, \epsilon^3 = 1$, primitive.

ヘロト 人間 とくほとくほとう

æ

Example

Example

(1) A # G is the path algebra kQ with the relations

 $y_i z_j = z_i y_j, z_i x_j = x_i z_j, x_i y_j = y_i x_j + z_i z_j;$

- (2) A is defined by a superpotential $xyz xzy + yzx yxz + zxy zyx + z^3$;
- (3) A # G is defined by a superpotential $\sum x_i y_j z_k - x_i z_j y_k + y_i z_j x_k - y_i x_j z_k + z_i x_j y_k - z_i y_j x_k + z_i z_j z_k.$

(日) (圖) (E) (E) (E)

Questions

Questions

- (1) Remove the *p*-Koszul condition away?
- (2) Calabi-Yau property of the fixed ring A^G ?
- (3) (Auslander) R := k[x₁, · · · , x_n]^G, MCM(R) is a (n-1)-Calabi-Yau category.
 Is this true for noncommutative Calabi-Yau algebras?