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Quantum groups

The quantized universal enveloping algebra Uq(g) is the C-algebra with generators

X±
i ,K±1

i , i = 1, . . . , r,

subject to the relations

K−1
i Ki = KiK

−1
i = 1, KiKj = KjKi, KiX

±
j K−1

i = q±cijX±
j ,

X+
i X−

j −X−
j X+

i = δi,j
Ki −K−1

i

qi − q−1
i

,

1−cij
∑

k=0





1− cij

k





q

(X±
i )kX±

j (X±
i )1−cij−k = 0, i 6= j.

Here r=rank of g, Cartan matrix (cij), q ∈ C is transcendental, qi = qdi .
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(X±
i )kX±

j (X±
i )1−cij−k = 0, i 6= j.

Here r=rank of g, Cartan matrix (cij), q ∈ C is transcendental, qi = qdi .

It is a Hopf algebra. Its finite dimensional weight irreps are parametrized by the set of
dominant integral weights P+, λ ∈ P+ 7→ V (λ).

There is a natural action of the related Braid group on Uq(g) and V (λ), w ∈ W 7→ Tw .
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j (X±
i )1−cij−k = 0, i 6= j.

Here r=rank of g, Cartan matrix (cij), q ∈ C is transcendental, qi = qdi .

It is a Hopf algebra. Its finite dimensional weight irreps are parametrized by the set of
dominant integral weights P+, λ ∈ P+ 7→ V (λ).

There is a natural action of the related Braid group on Uq(g) and V (λ), w ∈ W 7→ Tw .

U± the subalg. generated by X±
i , H = 〈K1, . . . ,Kr〉 the group of group-like elements.
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DKP algebras

Fix w ∈ W . De Concini, Kac and Procesi defined a family of subalgebras Uw
± ⊂ U± which

are deformations of U(n+ ∩Adw(n−)).

For a reduced expression w = si1 . . . sik define the roots

β1 = αi1 , β2 = si1 (αi2), . . . , βk = si1 . . . sik−1
(αik ).

Let Uw
± be the subalgebras of Uq(g), generated by the root vectors

X±
β1

= X±
i1
, X±

β2
= Tsi1

(X±
i2
), . . . , X±

βk
= Tsi1 ...sik−1

(X±
ik
).
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= Tsi1 ...sik−1

(X±
ik
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Theorem [De Concini-Kac-Procesi]. The definition of the algebras Uw
± does not depend on

the choice of a reduced decomposition of w. The algebras Uw
± have the PBW bases

(X±
βk

)nk . . . (X±
β1

)n1 , n1, . . . , nk ∈ N.
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(X±
i2
), . . . , X±

βk
= Tsi1 ...sik−1

(X±
ik
).

Theorem [De Concini-Kac-Procesi]. The definition of the algebras Uw
± does not depend on

the choice of a reduced decomposition of w. The algebras Uw
± have the PBW bases

(X±
βk

)nk . . . (X±
β1

)n1 , n1, . . . , nk ∈ N.

Theorem [Heckenberger–Schneider]. All right coideal subalgebras of Uq(b+) containing H

are of the form Uw
+C[H].
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An Example

Let g = slm+n and w = cm where c is the Coxeter element (12 . . .m+ n). Think of
(

0 ∗
0 0

)

.

Then Uw
− (g) is isomorphic to the algebra of quantum matrices Rq [Mm,n]. The latter is the

C-algebra generated by xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, with relations

xijxlj = qxljxij , for i < l,

xijxik = qxikxij , for j < k,

xijxlk = xlkxij , for i < l, j > k,

xijxlk − xlkxij = (q − q−1)xikxlj , for i < l, j < k,
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An Example

Let g = slm+n and w = cm where c is the Coxeter element (12 . . .m+ n). Think of
(

0 ∗
0 0

)

.

Then Uw
− (g) is isomorphic to the algebra of quantum matrices Rq [Mm,n]. The latter is the

C-algebra generated by xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, with relations

xijxlj = qxljxij , for i < l,

xijxik = qxikxij , for j < k,

xijxlk = xlkxij , for i < l, j > k,

xijxlk − xlkxij = (q − q−1)xikxlj , for i < l, j < k,

Theorem of Goodearl–Letzter: A partition of SpecUw
− into strata indexed by H-invariant

primes of Uw
− , each stratum is isomorphic to the spectrum of a (commutative) Laurent

polynomial ring.

Plan. 1. Describe H − SpecUw
− as a poset. 2. Describe explicit generating sets for the

H-primes of Uw
− . 3. Prove the Goodearl–Lenagan conjecture on existence polynormal

generating sequences for H-primes of Rq[Mm,n] (and Uw
− ). 4. Prove that SpecUw

− is
normally separated. 5. Prove a dimension formula for the H-strata of SpecUw

− . All based on
another realization of Uw

− in which the H-invariant primes are explicitly described.
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Relations to Poisson geometry

Let A be a an associative algebra over C with a Z≥0 filtration:

A0 ⊂ A1 ⊂ . . . ⊂ A, A = ∪kAk, Ak.Al ⊂ Ak+l.

If the associated graded grA is commutative, then it inherits a canonical structure of a
Poisson algebra:

{ak +Ak−1, al +Al−1} = akal − alak + Ak+l−2, ak ∈ Ak, al ∈ Al,

note that akal − alak ∈ Ak+l−1. If in addition grA has no nilpotent elements, then one
obtains a canonical Poisson structure on the affine variety Spec(grA).
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Example. U(g), grU(g) ∼= S(g), linear Poisson str. on g∗, symplectic foliation given by
coadjoint orbits.
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Let A be a an associative algebra over C with a Z≥0 filtration:

A0 ⊂ A1 ⊂ . . . ⊂ A, A = ∪kAk, Ak.Al ⊂ Ak+l.

If the associated graded grA is commutative, then it inherits a canonical structure of a
Poisson algebra:

{ak +Ak−1, al +Al−1} = akal − alak + Ak+l−2, ak ∈ Ak, al ∈ Al,

note that akal − alak ∈ Ak+l−1. If in addition grA has no nilpotent elements, then one
obtains a canonical Poisson structure on the affine variety Spec(grA).

Example. U(g), grU(g) ∼= S(g), linear Poisson str. on g∗, symplectic foliation given by
coadjoint orbits.

Orbit method. Prove that PrimA and the quotient space of the symplectic foliation of the
Poisson structure on Spec(grA) are homeomorphic.
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Group Poisson structures

For w ∈ W we will put a quadratic Poisson structure πw on the Schubert cell Xw ⊂ G/B+.

Conjecture. PrimUw
− and the quotient space of the symplectic foliation of (Xw, πw) are

homeomorphic.
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Group Poisson structures

For w ∈ W we will put a quadratic Poisson structure πw on the Schubert cell Xw ⊂ G/B+.

Conjecture. PrimUw
− and the quotient space of the symplectic foliation of (Xw, πw) are

homeomorphic.

Fix a pair of opposite Borel subgroups B± of G, T = B+ ∩B−– a maximal torus of G.

Let ∆+ be the set of all positive roots of g = LieG,

Fix two dual sets of root vectors, {eα}α∈∆+
, {fα}α∈∆+

, normalized by 〈eα, fα〉 = 1,
where 〈., .〉 is the Killing form on g.

Define

πG =
∑

α∈∆+

Leα ∧ Lfα −
∑

α∈∆+

Reα ∧Rfα

called the standard Poisson structure on G. (Here L and R denote left and right invariant
vector fields on G.)
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For w ∈ W we will put a quadratic Poisson structure πw on the Schubert cell Xw ⊂ G/B+.

Conjecture. PrimUw
− and the quotient space of the symplectic foliation of (Xw, πw) are

homeomorphic.

Fix a pair of opposite Borel subgroups B± of G, T = B+ ∩B−– a maximal torus of G.

Let ∆+ be the set of all positive roots of g = LieG,

Fix two dual sets of root vectors, {eα}α∈∆+
, {fα}α∈∆+

, normalized by 〈eα, fα〉 = 1,
where 〈., .〉 is the Killing form on g.

Define

πG =
∑

α∈∆+

Leα ∧ Lfα −
∑

α∈∆+

Reα ∧Rfα

called the standard Poisson structure on G. (Here L and R denote left and right invariant
vector fields on G.)

Example. (SLn(C), πSLn
) embeds in Mn×n with

n
∑

i,k=1

n
∑

j,l=1

(sign(k − i) + sign(l− j))xilxkj
∂

∂xij
∧

∂

∂xkl
.
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Poisson structures on flag varieties

Fix a parabolic subgroup P ⊃ B+ of G. Under the map p : G → G/P the Poisson structures
πG can be pushed forward to a well defined Poisson structure πG/P = p∗(πG) on G/P .
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Poisson structures on flag varieties

Fix a parabolic subgroup P ⊃ B+ of G. Under the map p : G → G/P the Poisson structures
πG can be pushed forward to a well defined Poisson structure πG/P = p∗(πG) on G/P .

Special case: P = B+. The T -orbits of symplectic leaves of (G/B+, πG/B) are the open
Richardson varieties

Ry−,y+ = B−y− ·B+ ∩ B+y+ ·B+ ⊂ G/B+, y± ∈ W, y− ≤ y+.
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Poisson structures on flag varieties

Fix a parabolic subgroup P ⊃ B+ of G. Under the map p : G → G/P the Poisson structures
πG can be pushed forward to a well defined Poisson structure πG/P = p∗(πG) on G/P .

Special case: P = B+. The T -orbits of symplectic leaves of (G/B+, πG/B) are the open
Richardson varieties

Ry−,y+ = B−y− ·B+ ∩ B+y+ ·B+ ⊂ G/B+, y± ∈ W, y− ≤ y+.

Theorem. [Brown, Goodearl, Y.] The T–orbits of symplectic leaves of (G/P, πG/P ) are
precisely the sets

SP (y−, y+) = q(B−y− · B+ ∩B+y+ ·B+), y− ∈ W, y+ ∈ WWP , y− ≤ y+

where WWP is the set of min length repr. of the cosets W/WP and q : G/B+ → G/P is the
canonical projection. (This is the Lusztig stratification of G/P .) One has

SP (y−, y+) = ⊔{SP (y′−, y′+) |y′− ∈ W, y′+ ∈ WWP , y′− ≤ y′+,

∃z ∈ WP , y− ≤ y′−z, y+ ≥ y′+z}

Note that q : B+y+ ·B+ → B+y+ ·P is an isom. of (Poisson) affine spaces for y+ ∈ WWP .
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Poisson side I

The codimension of a symplectic leaf in an open Richardson variety Ry−,y+ is

dimker(1 + y−1
+ y−) = dimE−1(y

−1
+ y−).

The trancendence degree of the center of the Poisson field of rational functions on Ry−,y+

is given by the same number.
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+ y−).

The trancendence degree of the center of the Poisson field of rational functions on Ry−,y+

is given by the same number.

We will interpret DKP algebras as quantized algebras of functions on Schubert cells
(B+w ·B+, π|B+w·B+

), where π := πG/B+
. First restrict the Poisson structure π to the

translated open Schubert cell wB− ·B+. Note that B+w ·B+ ⊂ wB− ·B+.
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), where π := πG/B+
. First restrict the Poisson structure π to the

translated open Schubert cell wB− ·B+. Note that B+w ·B+ ⊂ wB− ·B+.

Theorem. The T -orbits of symplectic leaves of the translated open Schubert cell
(wB− ·B+, π) are

S(y−, y+) = wB− ·B+ ∩ Ry−,y+ = wB− · B+ ∩B−y− ·B+ ∩B+y+ · B+

parametrized by pairs (y−, y+) ∈ W ×W such that y− ≤ w ≤ y+.
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Poisson side I

The codimension of a symplectic leaf in an open Richardson variety Ry−,y+ is

dimker(1 + y−1
+ y−) = dimE−1(y

−1
+ y−).

The trancendence degree of the center of the Poisson field of rational functions on Ry−,y+

is given by the same number.

We will interpret DKP algebras as quantized algebras of functions on Schubert cells
(B+w ·B+, π|B+w·B+

), where π := πG/B+
. First restrict the Poisson structure π to the

translated open Schubert cell wB− ·B+. Note that B+w ·B+ ⊂ wB− ·B+.

Theorem. The T -orbits of symplectic leaves of the translated open Schubert cell
(wB− ·B+, π) are

S(y−, y+) = wB− ·B+ ∩ Ry−,y+ = wB− · B+ ∩B−y− ·B+ ∩B+y+ · B+

parametrized by pairs (y−, y+) ∈ W ×W such that y− ≤ w ≤ y+.

Identify

C[wB− ·B+] ∼= C[wB−B+]B+ = {cλξ,vλ/c
λ
w | λ ∈ P+, ξ ∈ V (λ)∗},

cλξ,v denotes the matrix coefficient of v ∈ V (λ) and ξ ∈ V (λ)∗: for g ∈ G, cλξ,v(g) = 〈ξ, gv〉.

Moreover vλ is a h.w.v. of V (λ), ξλ is a dual vector and cλw = cλwξλ,vλ
.
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Poisson side II

Denote n± = LieU±. For y ∈ W , define the ideals

Q(y)±w = {cλξ,vλ/c
λ
w | λ ∈ P+, ξ ∈ (U(n±)yvλ)

⊥ ⊂ V (λ)∗} = V(wB− ·B+ ∩B±y ·B+)

of C[wB− · B+]. Scheme theoretic intersections of dual Schubert varieties are reduced
(Ramanathan):
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Denote n± = LieU±. For y ∈ W , define the ideals

Q(y)±w = {cλξ,vλ/c
λ
w | λ ∈ P+, ξ ∈ (U(n±)yvλ)

⊥ ⊂ V (λ)∗} = V(wB− ·B+ ∩B±y ·B+)

of C[wB− · B+]. Scheme theoretic intersections of dual Schubert varieties are reduced
(Ramanathan):

Proposition. The vanishing ideal of the Zariski closure of Sw(y−, y+) in wB− ·B+ is

V(Sw(y−, y+)) = Q(y−)−w +Q(y+)+w

= {cλξ,vλ/c
λ
w | λ ∈ P+, ξ ∈ (U(n−)y−vλ ∩ U(n+)y+vλ)

⊥ ⊂ V (λ)∗}.
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Poisson side II

Denote n± = LieU±. For y ∈ W , define the ideals

Q(y)±w = {cλξ,vλ/c
λ
w | λ ∈ P+, ξ ∈ (U(n±)yvλ)

⊥ ⊂ V (λ)∗} = V(wB− ·B+ ∩B±y ·B+)

of C[wB− · B+]. Scheme theoretic intersections of dual Schubert varieties are reduced
(Ramanathan):

Proposition. The vanishing ideal of the Zariski closure of Sw(y−, y+) in wB− ·B+ is

V(Sw(y−, y+)) = Q(y−)−w +Q(y+)+w

= {cλξ,vλ/c
λ
w | λ ∈ P+, ξ ∈ (U(n−)y−vλ ∩ U(n+)y+vλ)

⊥ ⊂ V (λ)∗}.

Schubert varieties are linearly defined (Kempf-Ramanathan):

⊕λ∈P+
H0(G/B+,Lλ) → ⊕λ∈P+

H0(Xy ,Lλ)

is surjective and its kernel is generated by elements in deg 1. So the ideal of Sw(y−, y+)

⊂ wB− ·B+ is generated by
⋃

j

{c
ωj

ξ,vωj
/c

ωj
w | ξ ∈ (U(n−)y−vωj

∩ U(n+)y+vωj
)⊥}
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Poisson str. on Schubert cells

Denote Uw
+ = U+ ∩wU−w−1, identify jw : Uw

+
∼= B+w ·B+. Set πw = (j−1

w )∗(π|B+w·B+
).

Demazure modules Vw(λ) = U(b+)wvλ = U(nw+)wvλ. Then η ∈ Vw(λ)∗ 7→ dw,λ
η ∈ C[Uw

+ ],

dw,λ
η (u) = 〈η, uẇvλ〉, u ∈ Uw

+ . One has

C[Uw
+ ] = {dw,λ

η | λ ∈ P+, η ∈ Vw(λ)∗}.
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Denote Uw
+ = U+ ∩wU−w−1, identify jw : Uw

+
∼= B+w ·B+. Set πw = (j−1

w )∗(π|B+w·B+
).

Demazure modules Vw(λ) = U(b+)wvλ = U(nw+)wvλ. Then η ∈ Vw(λ)∗ 7→ dw,λ
η ∈ C[Uw

+ ],

dw,λ
η (u) = 〈η, uẇvλ〉, u ∈ Uw

+ . One has

C[Uw
+ ] = {dw,λ

η | λ ∈ P+, η ∈ Vw(λ)∗}.

Theorem. (1) The T -orbits of symplectic leaves of the Schubert cells (Uw
+ , πw) are

Sw(y) = j−1
w (Ry,w) = Uw

+ ∩B−yB+w−1,

parametrized by y ∈ W≤w .

(2) The vanishing ideal of Sw(y) is:

V(Sw(y)) = {dw,λ
η | η ∈ (U(n+)wvλ ∩ U(n−)yvλ)

⊥ ⊂ Vw(λ)∗}.

(3) Sw(y) is generated by the above sets for λ = ω1, . . . , ωr .
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Quantum Schubert cells

Define the quantized coordinate ring Rq[Uw
+ ] of the Schubert cell B+w ·B+ as the subset of

(U+)∗ consisting of all matrix coefficients dw,λ
η (x) := 〈η, xTwvλ〉 for η ∈ Vw(λ)∗.

Multiplication:

dw,λ1
η1

dw,λ2
η2

= q〈λ2,λ1−w−1µ1〉dw,λ1+λ2
η ,

where η = η1 ⊗ η2|U+(Twvλ1
⊗Twvλ2

) ∈ Vw(λ1 + λ2)
∗

for η1 ∈ Vw(λ1)∗ of weight µ1 and η2 ∈ Vw(λ2)∗.
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η ,

where η = η1 ⊗ η2|U+(Twvλ1
⊗Twvλ2

) ∈ Vw(λ1 + λ2)
∗

for η1 ∈ Vw(λ1)∗ of weight µ1 and η2 ∈ Vw(λ2)∗.

Motivation: the q-term comes from Rq [G] via a Joseph-Gorelik algebra.
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Quantum Schubert cells

Define the quantized coordinate ring Rq[Uw
+ ] of the Schubert cell B+w ·B+ as the subset of

(U+)∗ consisting of all matrix coefficients dw,λ
η (x) := 〈η, xTwvλ〉 for η ∈ Vw(λ)∗.

Multiplication:

dw,λ1
η1

dw,λ2
η2

= q〈λ2,λ1−w−1µ1〉dw,λ1+λ2
η ,

where η = η1 ⊗ η2|U+(Twvλ1
⊗Twvλ2

) ∈ Vw(λ1 + λ2)
∗

for η1 ∈ Vw(λ1)∗ of weight µ1 and η2 ∈ Vw(λ2)∗.

Motivation: the q-term comes from Rq [G] via a Joseph-Gorelik algebra.

The universal R-matrix associated to w is given by

Rw =
∏

j=k,...,1

expqij

(

(1− qij )
−2X+

βj
⊗X−

βj

)

, expqi
(y) =

∞
∑

n=0

q
n(n+1)/2
i

yn

[n]qi !
.
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Multiplication:

dw,λ1
η1

dw,λ2
η2

= q〈λ2,λ1−w−1µ1〉dw,λ1+λ2
η ,

where η = η1 ⊗ η2|U+(Twvλ1
⊗Twvλ2

) ∈ Vw(λ1 + λ2)
∗

for η1 ∈ Vw(λ1)∗ of weight µ1 and η2 ∈ Vw(λ2)∗.

Motivation: the q-term comes from Rq [G] via a Joseph-Gorelik algebra.

The universal R-matrix associated to w is given by

Rw =
∏

j=k,...,1

expqij

(

(1− qij )
−2X+

βj
⊗X−

βj

)

, expqi
(y) =

∞
∑

n=0

q
n(n+1)/2
i

yn

[n]qi !
.

Theorem. Rq [Uw
+ ] ∼= Uw

− under

dw,λ
η 7→ (dw,λ

η ⊗ id)Rw.
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DKP algebras

Theorem. [Y.] Fix w ∈ W . For each y ∈ W≤w define

Iw(y) = {(dw,λ
η ⊗ id)(Rw) | λ ∈ P+, η ∈ (U+Twvλ ∩ U−Tyvλ)

⊥}.

Then:

(a) Iw(y) is an H-invariant prime ideal of Uw
− and all H-invariant prime ideals of Uw

− are of
this form.

(b) The correspondence y ∈ W≤w 7→ Iw(y) is an isomorphism from the poset W≤w to the
poset of H invariant prime ideals of Uw

− ordered under inclusion; that is Iw(y) ⊆ Iw(y′) for
y, y′ ∈ W≤w if and only if y ≤ y′.

(c) Iw(y) is generated as a right ideal by

(dw,ωi
η ⊗ id)(Rw) for η ∈ (U+Twvωi

∩ U−Tyvωi
)⊥, i = 1, . . . , r,

where ω1, . . . , ωr are the fundamental weights of g.

Proof uses Theorems of Gorelik and Joseph (ring theoretic results along the lines of the
results of Ramanathan and Kempf–Ramanathan).
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Algebras of quantum matrices

Rq[Mm,n] is the C-algebra generated by xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, with relations

xijxlj = qxljxij , for i < l,

xijxik = qxikxij , for j < k,

xijxlk = xlkxij , for i < l, j > k,

xijxlk − xlkxij = (q − q−1)xikxlj , for i < l, j < k,

Zm+n acts on Rq[Mm,n], by (a1, . . . , am, b1, . . . , bn) · xij = qai−bjxij .
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Algebras of quantum matrices

Rq[Mm,n] is the C-algebra generated by xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, with relations

xijxlj = qxljxij , for i < l,

xijxik = qxikxij , for j < k,

xijxlk = xlkxij , for i < l, j > k,

xijxlk − xlkxij = (q − q−1)xikxlj , for i < l, j < k,

Zm+n acts on Rq[Mm,n], by (a1, . . . , am, b1, . . . , bn) · xij = qai−bjxij .

Corollary. [Y.] The Zm+n-invariant prime ideals of Rq[Mm,n] are parametrized by

y ∈ S
≤wm,n

m+n . The ideal corresponding to y is generated by the sets of quantum minors

∆q

w◦
m(p1(I)),(m+1,m+k\p2(I))−m

for k ∈ 1, n, I ⊂ 1,m+ n, |I| = k, I ≤ cm(1, k), I � y(1, k) and

∆q

w◦
m(p1(I)\1,k−n),(m+1,m+n\p2(I))−m

for k ∈ n+ 1,m+ n− 1, I ⊂ 1,m+ n, |I| = k, I ≤ cm(1, k), I � y(1, k).
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DKP algebras -past results

1. Mériaux and Cauchon 2009 classified the H-primes of Uw
− without poset structure (milder

assumptions on the ground filed), earlier Cauchon 2003 did the case of quantum matrices.

2. Launois 2007 described the poset of H-primes of quantum matrices, influential work of
Goodearl and Lenagan 2001 on what it could look like.

3. Only explicit formulas for ideal generators of H-primes of 3× 3 quantum matrices
Goodearl–Lenagan 2001, simultaneously Goodearl–Launois–Lenagan and Casteels
obtained generating sets for H-primes in the case of quantum matrices.

4. Garrett Johnson (UCSB) is working out a complete treatment of the H-spectra of the
algebras of symmetric and antisymmetric matrices.
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The Goodearl–Lenagan conjecture I

An ideal I of R has a polynormal generating sequence y1, . . . , yk if the set generates I and
for all i = 1, . . . , k the image of yi in R/〈y1, . . . , yi−1〉 is normal.
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The Goodearl–Lenagan conjecture I

An ideal I of R has a polynormal generating sequence y1, . . . , yk if the set generates I and
for all i = 1, . . . , k the image of yi in R/〈y1, . . . , yi−1〉 is normal.

Goodearl–Lenagan Conjecture. All H-primes of Rq [Mm,n] have polynormal generating
sequences consisting of quantum minors.
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The Goodearl–Lenagan conjecture I

An ideal I of R has a polynormal generating sequence y1, . . . , yk if the set generates I and
for all i = 1, . . . , k the image of yi in R/〈y1, . . . , yi−1〉 is normal.

Goodearl–Lenagan Conjecture. All H-primes of Rq [Mm,n] have polynormal generating
sequences consisting of quantum minors.

The standard R-matrix identities in Rq[G] imply

dw,λ1
η1

dw,λ2
η2

= q〈η1−wλ1,η2+wλ2〉dw,λ2
η2

dw,λ1
η1

+
∑

α∈Q+,α6=0

dw,λ2
uαη2

dw,λ1
u−αη1

, ηi ∈ (V (λi)w)∗

where u±α ∈ (U±)±α.

If η ∈ (Vw(λi))
∗
µ set ht(η) = 〈µ, ω∨

1 + . . .+ ω∨
r 〉.
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The Goodearl–Lenagan conjecture I

An ideal I of R has a polynormal generating sequence y1, . . . , yk if the set generates I and
for all i = 1, . . . , k the image of yi in R/〈y1, . . . , yi−1〉 is normal.

Goodearl–Lenagan Conjecture. All H-primes of Rq [Mm,n] have polynormal generating
sequences consisting of quantum minors.

The standard R-matrix identities in Rq[G] imply

dw,λ1
η1

dw,λ2
η2

= q〈η1−wλ1,η2+wλ2〉dw,λ2
η2

dw,λ1
η1

+
∑

α∈Q+,α6=0

dw,λ2
uαη2

dw,λ1
u−αη1

, ηi ∈ (V (λi)w)∗

where u±α ∈ (U±)±α.

If η ∈ (Vw(λi))
∗
µ set ht(η) = 〈µ, ω∨

1 + . . .+ ω∨
r 〉.

Theorem. [Y.] Fix an H-prime Iy(w) of Uw
− , y ∈ W≤w . Consider any linear ordering of the

generating set from the previous theorem with the property that, if η1, η2 ∈ (V (ωk)w)∗ and
ht(η1) ≤ ht(η2), then (d

w,ωk
η1

⊗ id)(Rw) comes before (d
w,ωk
η2

⊗ id)(Rw). Any such
sequence is a polynormal generating set of Iy(w).
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The Goodearl–Lenagan conjecture II

We obtain the following constructive proof of the Goodearl–Lenagan conjecture:

Corollary. Consider the Zm+n-invariant prime ideals of Rq[Mm,n] corresponding to

y ∈ S
≤wm,n

m+n and a linear order on the generating set from the previous theorem with the
property that, if I = {i1, . . . , ik} and J = {j1, . . . , jk} satify i1 + . . .+ ik ≤ j1 + . . .+ jk,
then ∆I comes before ∆J . Any such sequence is a polynormal generating set of the prime
ideal.

Structure of torus invariant prime ideals of quantum Schubert cells – p. 16/23



The Goodearl–Lenagan conjecture II

We obtain the following constructive proof of the Goodearl–Lenagan conjecture:

Corollary. Consider the Zm+n-invariant prime ideals of Rq[Mm,n] corresponding to

y ∈ S
≤wm,n

m+n and a linear order on the generating set from the previous theorem with the
property that, if I = {i1, . . . , ik} and J = {j1, . . . , jk} satify i1 + . . .+ ik ≤ j1 + . . .+ jk,
then ∆I comes before ∆J . Any such sequence is a polynormal generating set of the prime
ideal.

Corollary. The H-primes of Uw
− are graded normally separated.

Let y1 < y2 ≤ w, i.e. Iw(y1) ⊂ Iw(y2). Then for some k, y1ωk 6= y2ωk. Set ξ = Ty1ξλ
where ξλ is the dual vector to the h.w.v. vλ. Then

ξ ∈ (U−Ty2vωk
)⊥, ξ /∈ (U−Ty1vωk

∩ U+Twvωk
)⊥

By iteratively changing ξ 7→ X−
i ξ one can insure that in addition

X−
i ξ ∈ (U−Ty1vωk

∩ U+Twvωk
)⊥ ∀i = 1, . . . , r.
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SpecUw

− is normally separated

Then

(d
w,ωk

ξ ⊗ id)(Rw) + Iw(y1)

is a nonzero normal element in Uw
−/Iw(y1) that belongs to Iw(y2)/Iw(y1).
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SpecUw

− is normally separated

Then

(d
w,ωk

ξ ⊗ id)(Rw) + Iw(y1)

is a nonzero normal element in Uw
−/Iw(y1) that belongs to Iw(y2)/Iw(y1).

Theorem [Goodearl]. Assume that R is right noetherian. If H − SpecR is graded normally
separated then SpecR is normally separated.
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SpecUw

− is normally separated

Then

(d
w,ωk

ξ ⊗ id)(Rw) + Iw(y1)

is a nonzero normal element in Uw
−/Iw(y1) that belongs to Iw(y2)/Iw(y1).

Theorem [Goodearl]. Assume that R is right noetherian. If H − SpecR is graded normally
separated then SpecR is normally separated.

Theorem. SpecUw
− is normally separated.
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Dimensions of strata of primes I

Recall that the stratum of SpecUw
− over each H-prime Iy(w) in the Goodearl–Letzter

stratification is homeomorphic to the spectrum of a Laurent polynomial ring. The latter is the
center of the localization of Uw

−/Iy(w) by all nonzero homogeneous elements.
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Dimensions of strata of primes I

Recall that the stratum of SpecUw
− over each H-prime Iy(w) in the Goodearl–Letzter

stratification is homeomorphic to the spectrum of a Laurent polynomial ring. The latter is the
center of the localization of Uw

−/Iy(w) by all nonzero homogeneous elements.

Theorem [Bell–Casteels–Launois, Y.]. The dimension of the the Goodearl–Letzter stratum of
SpecUw

− over the H-prime Iy(w) is equal to

dimker(1 + y−1w) = dimE−1(y
−1w).
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Dimensions of strata of primes I

Recall that the stratum of SpecUw
− over each H-prime Iy(w) in the Goodearl–Letzter

stratification is homeomorphic to the spectrum of a Laurent polynomial ring. The latter is the
center of the localization of Uw

−/Iy(w) by all nonzero homogeneous elements.

Theorem [Bell–Casteels–Launois, Y.]. The dimension of the the Goodearl–Letzter stratum of
SpecUw

− over the H-prime Iy(w) is equal to

dimker(1 + y−1w) = dimE−1(y
−1w).

Denote the dual vector to the h.w.v. vλ of Vw(λ) by ξλ.

Fix y ∈ W≤w . For λ ∈ P+ denote aλ = dw,λ
Tyξλ

. For λ ∈ P , λ = λ+ − λ−, λ± ∈ P+

(non-intersecting support) set

aλ = (aλ+
)−1aλ−

.
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Dimensions of strata of primes I

Recall that the stratum of SpecUw
− over each H-prime Iy(w) in the Goodearl–Letzter

stratification is homeomorphic to the spectrum of a Laurent polynomial ring. The latter is the
center of the localization of Uw

−/Iy(w) by all nonzero homogeneous elements.

Theorem [Bell–Casteels–Launois, Y.]. The dimension of the the Goodearl–Letzter stratum of
SpecUw

− over the H-prime Iy(w) is equal to

dimker(1 + y−1w) = dimE−1(y
−1w).

Denote the dual vector to the h.w.v. vλ of Vw(λ) by ξλ.

Fix y ∈ W≤w . For λ ∈ P+ denote aλ = dw,λ
Tyξλ

. For λ ∈ P , λ = λ+ − λ−, λ± ∈ P+

(non-intersecting support) set

aλ = (aλ+
)−1aλ−

.

Then

aλd
w,µ
ξ = q−〈(y+w)λ,ν−wµ〉dw,µ

ξ aλ, ∀ξ(∈ Vw(µ))∗ν

in (Uw
−/Iy(w))[a−1

λ , λ ∈ P+].
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Dimensions of strata of primes II

Therefore the center of the localization of Uw
−/Iy(w) by all nonzero homogeneous elements

contains the Laurent polynomial ring spanned by

aλ, λ ∈ P+, (y + w)λ = 0.

Thus the stratum of SpecUw
− over Iy(w) has dimension at least

dimker(1 + y−1w) = dimE−1(y
−1w).
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Dimensions of strata of primes II

Therefore the center of the localization of Uw
−/Iy(w) by all nonzero homogeneous elements

contains the Laurent polynomial ring spanned by

aλ, λ ∈ P+, (y + w)λ = 0.

Thus the stratum of SpecUw
− over Iy(w) has dimension at least

dimker(1 + y−1w) = dimE−1(y
−1w).

If its dimension is greater, then we pass to an integral form of the algebra over Z[q, q−1] and
specialize at q = 1. That would imply that the center of the Poisson field of rational functions
on the open Richardson variety Ry,w has trascendence degree strictly greater than

dimker(1 + y−1w) = dimE−1(y
−1w)

which is a contradiction.
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Quantum partial flag varieties I

Choose a set of simple roots I ⊂ 1, r and consider the standard parabolic subgroup
PI ⊃ B+. Consider the multicone:

Spec
(

⊕

ni∈Z≥0

H0(G/PI ,⊗i/∈IL
ni
ωi

)
)

over G/PI . Its coordinate ring is quantized to the subalgebra Rq [G/PI ] of the restricted dual
of Uq(g) spanned by the matrix coefficients

cλξ,vλ , λ =
∑

i/∈I

niωi, ni ∈ Z≥0, ξ ∈ V (λ)∗, vλ − h.w.v. of V (λ).

The construction is due to Lakshmibai–Reshetikhin and Soibelman.
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Quantum partial flag varieties I

Choose a set of simple roots I ⊂ 1, r and consider the standard parabolic subgroup
PI ⊃ B+. Consider the multicone:

Spec
(

⊕

ni∈Z≥0

H0(G/PI ,⊗i/∈IL
ni
ωi

)
)

over G/PI . Its coordinate ring is quantized to the subalgebra Rq [G/PI ] of the restricted dual
of Uq(g) spanned by the matrix coefficients

cλξ,vλ , λ =
∑

i/∈I

niωi, ni ∈ Z≥0, ξ ∈ V (λ)∗, vλ − h.w.v. of V (λ).

The construction is due to Lakshmibai–Reshetikhin and Soibelman.
Problem. Classify the H-invariant prime ideals of Rq[G/PI ] not containing the augmentation
ideal.

Only two cases were previously known: full flag varieties Gorelik J. Algebra 2000, and
Grassmannians Launois–Lenagan–Rigal Selecta Math. 2008.
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Quantum partial flag varieties II

Denote by H − Spec+(Rq [G/PI ]) the set of H-invariant prime ideals of Rq [G/PI ] not
containing the augmentation ideal. Denote the quantum Schubert cell ideals:

Q(w)+I = Span{cλξ,vλ | λ =
∑

i/∈I

niωi, ξ ∈ V (λ)∗, ξ ⊥ U+Twvλ}, w ∈ WWI .

They are Uq(b+) invariant prime ideals of Rq[G/PI ].
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Quantum partial flag varieties II

Denote by H − Spec+(Rq [G/PI ]) the set of H-invariant prime ideals of Rq [G/PI ] not
containing the augmentation ideal. Denote the quantum Schubert cell ideals:

Q(w)+I = Span{cλξ,vλ | λ =
∑

i/∈I

niωi, ξ ∈ V (λ)∗, ξ ⊥ U+Twvλ}, w ∈ WWI .

They are Uq(b+) invariant prime ideals of Rq[G/PI ].

We have the decomposition:

H − Spec+(Rq[G/PI ]) = ⊔
w∈WWI

Xw
I

according to the largest quantum Schubert cell ideal contained in
I ∈ H − Spec+(Rq[G/PI ]).
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Quantum partial flag varieties II

Denote by H − Spec+(Rq [G/PI ]) the set of H-invariant prime ideals of Rq [G/PI ] not
containing the augmentation ideal. Denote the quantum Schubert cell ideals:

Q(w)+I = Span{cλξ,vλ | λ =
∑

i/∈I

niωi, ξ ∈ V (λ)∗, ξ ⊥ U+Twvλ}, w ∈ WWI .

They are Uq(b+) invariant prime ideals of Rq[G/PI ].

We have the decomposition:

H − Spec+(Rq[G/PI ]) = ⊔
w∈WWI

Xw
I

according to the largest quantum Schubert cell ideal contained in
I ∈ H − Spec+(Rq[G/PI ]).

Denote cλw = cλTwξλ,vλ
, cIw = {cλw | λ =

∑

i/∈I niωi}.

Proposition. For all w ∈ WWI the algebras

((

Rq[G/PI ]/Q(w)+I
)

[(cIw)−1]
)H and Uw

−

are isomorphic and for each I ∈ Xw
I , I ∩ cIw = ∅. (Similar strategy to the one for the

isomorphism between the 2 realizations of DKP algebras.)
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Quantum partial flag varieties III

Theorem. [Y.] For an arbitrary partial flag variety G/PI the H-invariant prime ideals of
Rq[G/PI ] (not containing the augmentation ideal) are parametrized by

{(y−, y+) ∈ W ×WWI | y− ≤ y+}.

Denote by II
y−,y+

the ideal corresponding to (y−, y+).
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Quantum partial flag varieties III

Theorem. [Y.] For an arbitrary partial flag variety G/PI the H-invariant prime ideals of
Rq[G/PI ] (not containing the augmentation ideal) are parametrized by

{(y−, y+) ∈ W ×WWI | y− ≤ y+}.

Denote by II
y−,y+

the ideal corresponding to (y−, y+).

Conjecture. Let y−, y′− ∈ W , y+, y′+ ∈ WWI , y− ≤ y+, y′− ≤ y′+. Then II
y−,y+

⊆ II
y′
−
,y′

+

if and only if there exits z ∈ WI such that

y− ≥ y′−z and y+ ≤ y′+z.
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Happy Birthday Ken!
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