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1. Introduction

1.1. In this paper I shall describe a beautiful class of associative algebras, the symplectic

reflection algebras of the title, introduced in a recent paper of Etingof and Ginzburg [11].

These algebras are deformations of, and so retain some of the properties of, skew group

algebras of finite groups, so it’s with the latter class of algebras with which we begin

in Section 2, in particular with the skew group algebra S(V ) ∗ Γ of a finite group Γ

acting linearly on a finite dimensional complex vector space V , and hence acting on the

symmetric algebra of V , S(V ).

One can deform such an algebra by destroying the commutativity of S(V ) using a skew-

symmetric bilinear form κ : V × V −→ CΓ, as we explain in (4.1); but in general when

this is done the algebra which results is too “small”, in the sense that there is no natural

vector space bijection with S(V ) ∗ Γ. Remarkably, however, if Γ consists of symplectic

automorphisms of the symplectic space (V, ω) then there is a class of forms κ derived from

ω for which the resulting deformations do have a natural linear bijection with S(V ) ∗ Γ

- that is, there is a “PBW theorem” in this setting, which we state and explain in (4.1).

The definition of this class of forms requires the concept of a symplectic reflection, the

analogue in the symplectic world of the pseudo-reflections on an ordinary vector space.

So we define and discuss these symplectic reflections in Section 3, before going on to state

the PBW theorem of Etingof and Ginzburg and give the resulting definition of symplectic

reflection algebra in Section 4. From the definition we can quickly deduce in (4.4) that the

symplectic reflection algebras are noetherian C-algebras with many attractive algebraic

and homological properties.

For a given (V, ω, Γ) with Γ generated by symplectic reflections, the space of symplectic

reflection algebras is parametrised by (t, c) ∈ C × Cr/C∗, where r is the number of

conjugacy classes of symplectic reflections in Γ. There is a dichotomy on this space,

corresponding to the familiar special cases (when V = C2m) of S(V ) ∗ Γ and the skew

group algebra of the Weyl algebra, Am(C)∗Γ. Namely, every symplectic reflection algebra

Ht,c is either a finite module over its centre, when t = 0, or has centre the scalars C when

Date: October 8, 2002.
This is an expanded version of a talk given at All Ireland Algebra Days, Queen’s University, Belfast,

in May 2001. I am very grateful to the organising committee and in particular Dr M Mathieu for their

generous hospitality and efficient organisation. All my own research on the topics described here has

been joint with my colleague Dr Iain Gordon (University of Glasgow).
1



2 KENNETH A. BROWN

t is non-zero. I explain this dichotomy in (4.5), and go on in Section 5 to explain the key

tool used in its proof. This is the idea of a Poisson bracket.

The centre Z0,c of H0,c admits a Poisson bracket; more generally this bracket extends

to give an action of Z0,c by derivations on H0,c, making H0,c into a Poisson Z0,c-order.

Further examples of Poisson orders are provided by most (if not all) quantum groups

where the deformation parameter q is a root of unity (5.4)4.

As well as being crucial for the proofs of many properties of Ht,c, the presence of a

Poisson structure on Z0,c, deforming the one given by the restriction of ω to S(V )Γ, is one

of the main reasons why symplectic reflection algebras are so interesting. For, on the one

hand, this means that one can use these algebras to study the “symplectic deformations”

of the quotient variety V/Γ; in particular one can seek a “symplectic desingularisation”

of this space. On the other hand, the structure of Poisson order on H0,c has drastic

consequences for the representation theory of this algebra, thanks to the stratification of

the variety maxspec(Z0,c) by its symplectic leaves. We provide a sketch of some of these

ideas in the remainder of Section 5 and in Section 6.

2. Skew group algebras

2.1. Notation and definitions. Throughout the paper V will denote a finite dimen-

sional complex vector space and Γ will be a finite group acting linearly and faithfully as

automorphisms of V , so there is a monomorphism of groups from Γ into GL(V ). We’ll

write vγ for the action of γ ∈ Γ on v ∈ V . Let S(V ) be the symmetric algebra on V . The

skew group algebra

H = S(V ) ∗ Γ

is the associative C-algebra which, as a vector space, is S(V ) ⊗C CΓ, with the usual

multiplication on S(V ) and on CΓ, and with

γv = vγγ

for v ∈ V and γ ∈ Γ.

Of course, such algebras are familiar and much studied objects, with books (for exam-

ple [20]) devoted to them and their generalisations. It’s an easy exercise to check that

the centre of H, Z(H), is given by the algebra S(V )Γ of Γ-invariants in S(V ). By a

famous theorem [1, Theorem 1.3.1] of Hilbert (although the generalisation to arbitrary

characteristic is due to Noether), S(V )Γ is itself an affine C-algebra and S(V ) is a finitely

generated S(V )Γ-module. Thus H is also a finitely generated S(V )Γ-module. Being

finitely generated over its centre, H is a polynomial identity algebra, or PI-algebra for

short, and the properties of H are closely connected to those of S(V )Γ. In fact, the study

of S(V )Γ has always been one of the main reasons for studying S(V ) ∗ Γ; and one of

the chief motives for introducing the deformations of H which we’ll come to below is to
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improve our understanding of the geometry of the variety V/Γ, whose coordinate ring is

of course S(V )Γ.

2.2. Example. Here is what is perhaps the simplest non-trivial case of the above con-

struction. It is worth looking at now because it is one of the types we’ll deform when we

come to look at symplectic reflection algebras. Let V have dimension 2, say

V = Cx⊕ Cy.

Let n be an integer greater than one and let ε be a primitive nth root of unity. Set

γ =

(
ε 0

0 ε−1

)
∈ SL2(C)

and

Γ = 〈γ〉,

so that Γ acts on V with

xγ = εx and yγ = ε−1y.

Thus

H = S(V ) ∗Γ = C〈x, y, γ : xy = yx; γn = 1; γx = εxγ; γy = ε−1yγ〉, (1)

and it is easy to check that

S(V )Γ = C〈xn, yn, xy〉.

Thus the ring of invariants is isomorphic to the factor of the polynomial algebra C[A, B, C]

by the ideal generated by AB − Cn - this is a Kleinian singularity of type A.

2.3. So far as the geometry of the quotient variety V/Γ is concerned, the simplest pos-

sibility is that this variety is itself smooth (in contrast to Example (2.2)). In fact (since

S(V )Γ is N-graded with S(V )Γ
0 = C) this can happen only when S(V )Γ is a polynomial

algebra. Since it will help to motivate the later definition of symplectic reflections, let’s

recall the 1954 theorem of Shepherd and Todd which describes when this happens. An

element γ of Γ is called a pseudo-reflection if the endomorphism (1 − γ) of V has rank

1 - equivalently, if 1 is an eigenvalue of γ on V of multiplicity dim(V ) − 1. The groups

which are generated by pseudo-reflections in their action on a complex vector space were

classified by Shepherd and Todd [1, page 81].

Theorem. ([1, Theorem 7.2.1]) S(V )Γ is a polynomial algebra if and only if Γ is generated

by pseudo-reflections for its action on V .
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2.4. Skew group algebras over the Weyl algebra. Recall that, for a positive integer

m, the mth Weyl algebra (over C), Am(C), is the algebra of differential operators with

polynomial coefficients on affine m-space Cm, and so is the C-algebra generated by the

elements {x1, . . . , xm, y1, . . . , ym}, subject to the relations yjxi − xiyj = δij and xixj −
xjxi = 0 = yiyj − yjyi. Am(C) is a simple noetherian C-algebra, [12, Corollaries 1.13 and

1.15].

A variation of the construction from (2.1) which has also been well-studied in the past is

obtained by replacing the symmetric algebra S(V ) by a Weyl algebra Am(C). So Γ should

in this case be a finite group of “linear” automorphisms of Am(C): that is, Γ should be a

finite group of automorphisms of the vector space V = ΣiCxi+ΣjCyj which preserves the

non-singular alternating form ω on V defined by ω(yj, xi) = δij; ω(xi, xj) = ω(yi, yj) = 0.

In other words, Γ is a finite subgroup of the symplectic group Sp2m(C). In stark contrast

to the “nearly commutative” situation of (2.1), Am(C)∗Γ is as far from being commutative

as possible: Am(C) ∗ Γ is a simple ring [20, Theorem 15.8].

Notice that when m = 1, Sp2(C) = SL2(C), so that the group Γ of (2.2) is in Sp2(C).

Thus there is a Weyl algebra version of Example (2.2), with the resulting algebra having

the same generators and relations as (1), except that yx− xy = 1.

3. Symplectic actions

3.1. Symplectic reflections. Symplectic reflections are the analogue in the symplectic

world of pseudo-reflections in the Euclidean world. To define them, fix a finite dimensional

symplectic C-vector space V . Thus V admits a non-degenerate alternating bilinear form

ω; V has even dimension 2m, and we can choose a basis {x1, . . . , xm, y1, . . . , ym} of V such

that ω is as in the previous paragraph. Now let Γ be a finite subgroup of the symplectic

group Sp(V ) - that is, Γ ⊆ GL(V ) as before, with

ω(vγ, uγ) = ω(v, u)

for all v, u ∈ V and γ ∈ Γ.

An element s of Γ is called a symplectic reflection (on V ) if the endomorphism 1−s of

V has rank 2. We shall denote the set of symplectic reflections for the action of Γ on V

by S. Clearly, SΓ = S. We shall say that Γ (in its action on V ) is a symplectic reflection

group if Γ is generated by its symplectic reflections (on V ). As the brackets suggest, we’ll

suppress mention of V where the vector space and action are clear from the context.

3.2. Examples. 1. Kleinian singularities. Let m = 1, so that V = Cx ⊕ Cy with

ω(y, x) = 1. As observed in (2.4), Sp(V ) = SL(V ). Moreover, if Γ is a finite subgroup of

SL(V ) and 1 6= s ∈ Γ, then s can’t have 1 as an eigenvalue (since det(s) = 1), so that s

is a symplectic reflection. Therefore Γ is a symplectic reflection group.
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2. Dual pairs. Let U be a finite dimensional C-vector space, and let W be a finite

subgroup of GL(U). Suppose that W is generated by pseudo-reflections in its action on

U , in the sense of (2.3). So the contragredient action of W on U∗ is also generated by

pseudo-reflections. Then V := U ⊕ U∗ is symplectic, with

ω
(
(y, f), (u, g)

)
= g(y)− f(u)

for y, u ∈ U and f, g ∈ U∗. And it’s clear that the pseudo-reflections for the action of W

on U are symplectic reflections for the action on V , so that W is a symplectic reflection

group on V .

3.3. Classification. In [22, Question 1.3], M. Verbitsky posed the

Problem: Classify the (complex) symplectic reflection groups.

There is a natural notion of an indecomposable symplectic triple (V, ω, Γ): the triple

is indecomposable if there is no non-trivial decomposition V = U ⊕ W of V into Γ-

stable symplectic subspaces. It’s routine to reduce the above problem to consideration of

indecomposable triples. Following the statement of this problem in my talk at All Ireland

Algebra Days, R. Guralnick was able to carry out the classification using results from his

joint paper with J. Saxl [13]; details will appear as an Appendix to [13]. The result (with

details omitted) is as follows.

Theorem. (Guralnick-Saxl) Let (V, ω, Γ) be an indecomposable symplectic triple.

1. If V is not an irreducible CΓ-module, then (V, ω, Γ) is a dual pair as in (3.2)2, with

U an irreducible CΓ-module.

2. If V is an irreducible CΓ-module, then one of the following holds:

(i) V = V1 ⊥ . . . ⊥ Vr where each Vi is a 2-dimensional symplectic subspace of V and Γ

permutes the Vi as Sr. Moreover, H, the image of the stabilizer of V1 in GL(V1), is an

irreducible subgroup of Sp(V1) and Γ embeds in H o Sr;

or

(ii) (V, ω, Γ) is one of a finite list of explicit examples, with dimC(V ) ≤ 10.

3.4. Symplectic geometry. Let (V, ω) be a finite dimensional symplectic C-vector space

and let Γ be a finite subgroup of Sp(V ). Then the smooth locus of the quotient variety

X := V/Γ admits a natural symplectic form ω̃ induced from ω. A symplectic resolution

of X,

π : X̃ −→ X,

is a resolution of singularities of X such that the pull-back π∗ω̃ of ω̃ extends to a holo-

morphic symplectic form on X̃. There is a great deal of current interest in symplectic

desingularisation , motivated by developments in differential and algebraic geometry and
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in theoretical physics. One fundamental problem which remains open is:

Problem: For which symplectic quotient singularities as defined above does a symplectic

resolution exist?

Here is what is known at present about this question:

Theorem. Let V , ω and Γ be as above, and set X = V/Γ.

1. (Du Val, [10]) If V has dimension 2 (that is, the Kleinian case), then X has a

symplectic resolution.

2. (Verbitsky, [22, Theorem 3.2]) If X has a symplectic resolution then Γ is a symplectic

reflection group.

3. (Kaledin, [15, Sec.6]) The converse to 2 is false. A counterexample is provided by the

dual pair (see Example (3.2).2) of type G2, so that Γ is Z/2Z× S3 and V has dimension

4.

We shall gain tantalising hints in later sections that the above problem and the partial

solutions outlined in the theorem are closely linked to the structure of the noncommutative

algebras which we are about to define - the symplectic reflection algebras of the title.

4. Symplectic reflection algebras

4.1. Definition and PBW theorem. Let V and Γ be as in (2.1), and let

κ : V × V −→ CΓ

be a skew-symmetric bilinear form. Let

T (V ) := C⊕ V ⊕ (V ⊗ V )⊕ . . .⊕ V ⊗n ⊕ . . .

be the tensor algebra of V . Just as with S(V ), the action of Γ on V extends to an action

of Γ on T (V ) by C-algebra automorphisms, and so we can construct the skew group

algebra T (V ) ∗ Γ in the same way as we formed S(V ) ∗ Γ in (2.1). Now define a factor

algebra Hκ of T (V ) ∗ Γ by

Hκ := T (V ) ∗ Γ/〈xy − yx− κ(x, y) : x, y,∈ V 〉. (2)

Examples: 1. If κ ≡ 0 then we recover the skew group algebra S(V ) ∗ Γ of (2.1), now

denoted by H0.

2. Suppose that V is the standard symplectic space (V, ω) of dimension 2m described

in (3.1), and take κ = ω (where of course we regard C as embedded in CΓ via the map
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c 7→ c1Γ). Then Hκ is the skew group algebra Am(C) ∗ Γ of (2.4).

For a general κ, Hκ is a filtered C-algebra - that is, there are finite dimensional vector

subspaces Fi of Hκ, for i ≥ 0, with Fi ⊆ Fi+1 and FiFj ⊆ Fi+j for all i and j, and

Hκ = ∪i≥0Fi. Namely, set

F0 = CΓ; F1 = CΓ + CΓV ; and Fi = (F1)
i, for i ≥ 1.

We can thus form the associated graded ring gr(Hκ) of Hκ,

gr(Hκ) :=
⊕
i≥0

(Fi+1/Fi).

Clearly there is an epimorphism of algebras

ρ : S(V ) ∗ Γ � gr(Hκ).

We shall say that PBW holds for Hκ if ρ is an isomorphism - equivalently, if Hκ = H0 =

S(V )∗Γ as C-vector spaces. In particular, PBW holds for both of the examples S(V )∗Γ

and Am(C) ∗ Γ given above. There now arises the natural question: for which (V, Γ, κ)

does PBW hold? The answer to this question in the case of symplectic spaces and actions

is surprisingly elegant and includes a huge range of very interesting algebras, as we shall

now see. From now on, we assume that (V, ω, Γ) are as in (3.1). Note that for γ ∈ Γ

there is a ω-orthogonal decomposition V = Im(1 − γ) ⊕ Ker(1 − γ). For s in the set

S of symplectic reflections in Γ, write ωs for the skew-symmetric form on V which has

Ker(1− s) as its radical, and coincides with ω on Im(1− s).

Theorem. (Etingof-Ginzburg, [11, Theorem 1.3]) Let (V, ω, Γ) be an indecomposable

symplectic triple, and let κ : V×V −→ CΓ be a skew-symmetric bilinear form. Then PBW

holds for Hκ if and only if there exist a constant t ∈ C and a function c : S −→ C : s 7→ cs,

with c constant on Γ-conjugacy classes, such that

κ(x, y) = tω(x, y)1Γ + Σs∈Scsωs(x, y)s (3)

for all x, y ∈ V .

In the light of the theorem one is led to make the

Definition: Let (V, ω, Γ) be an indecomposable symplectic triple, and let κ be a form

which conforms to the description in the theorem. Then Hκ is called a symplectic reflec-

tion algebra.

4.2. First properties. Observe that the subgroup T := 〈S〉 is normal in Γ, so that, for

κ as in the definition just given,

Hκ = Hκ(T ) ∗ (Γ/T ),
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where Hκ(T ) denotes the symplectic reflection algebra constructed using T in place of

Γ (but with all the other ingredients unchanged), and the right hand side denotes a

crossed product of Γ/T with coefficients from Hκ(T ). (See [20] for the definition of

crossed product.) Hence it makes sense to assume that Γ is generated by its symplectic

reflections when studying a symplectic reflection algebra Hκ.

Let the Γ-conjugacy classes of symplectic reflections be C1, . . . , Cr, let t ∈ C and let

c = (c1, . . . , cr) ∈ Cr. Then we’ll write Ht,c instead of Hκ when κ is given as in (3), with

c(s) = ci for s ∈ Ci. In particular, we recover the special cases considered in (2.1) and

(2.4) as

H0,0
∼= S(V ) ∗ Γ and H1,0

∼= Am(C) ∗ Γ.

It’s very easy to see from (2) and (3) that Ht,c is isomorphic to Hλt,λc for all λ ∈ C∗.

Thus what we have obtained by means of the construction just defined is a collection of

deformations of S(V ) ∗ Γ parametrised by Cr+1/C∗ = Pr(C).

4.3. Example. Let V and Γ be as in (2.2). As we observed in (3.2), this example is

symplectic if we set ω(x, y) = 1, and every non-identity element of Γ is a symplectic

reflection. Thus, for each choice of t ∈ C and c = (c1, . . . , cn−1) ∈ Cn−1, we get a

symplectic reflection algebra

Ht,c = C〈x, y, γ : γn = 1, γx = εxγ, γy = ε−1yγ, yx− xy = t + Σn−1
i=1 ciγ

i〉. (4)

4.4. Consequences of the filtration. Being a finite module over S(V ), S(V ) ∗ Γ is a

noetherian algebra, and faithfulness of the Γ-action on V ensures that S(V ) ∗ Γ is prime

[20, Corollary 12.6]. Since Ht,c is N-filtered with S(V ) ∗ Γ as associated graded ring, as

follows from the discussion and definition in (4.1), standard filtered-graded techniques [19,

1.6.3,1.6.9] can be used to see that these prime and noetherian properties pass to Ht,c.

Similarly, thanks to Hilbert’s syzygy theorem [19, Theorem 7.5.3] and the generalised

Maschke theorem [20, Theorem 4.1], S(V ) ∗ Γ has finite global (homological) dimension;

and this transfers also to Ht,c by [19, Corollary 7.6.18]. In fact, the more sophisticated

homological properties of being Auslander-regular and Cohen-Macaulay (which we won’t

define here - see for example [17]) can also be deduced for Ht,c as a consequence of the

fact that they hold for S(V ) ∗ Γ. (Imitate the proof for the case dim(V ) = 2 given in [5,

Theorem 1.5].) Finally, when Γ is a symplectic reflection group, S(V ) ∗ Γ is a maximal

order by [18, Theorem 4.6], and a prime noetherian N-filtered ring whose associated

graded ring is a maximal order is itself a maximal order, by [21], so that Ht,c is a maximal

order in its simple artinian quotient ring. (For the definition of a maximal order, see [19,

5.1].

We summarise the above in the
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Theorem. Let (V, ω, Γ) be an indecomposable symplectic triple, with Γ generated by its

symplectic reflections as in (4.2). Let t ∈ C and c ∈ Cr. Then Ht,c is a prime noetherian

maximal order which is Auslander-regular and Cohen-Macaulay.

4.5. The symmetrising idempotent and the centre of Ht,c. The symmetrising

idempotent is the element

e =
1

|Γ|
Σγ∈Γγ ∈ CΓ.

Since CΓ ⊆ Ht,c for all choices of t and c, e is an idempotent element of every Ht,c, (and

we’ll use the same symbol e for this element in every case). Denote the centre of the

algebra A by Z(A). It’s well-known (and an easy exercise) that

eS(V ) ∗ Γe ∼= S(V )Γ = Z(H0,0).

Fix t ∈ C and c ∈ Cr. The filtration {Fi} of (4.1) intersects with eHt,ce to give an

N-filtration of the latter ring (since e ∈ CΓ = F0), and

gr(eHt,ce) = egr(Ht,c)e = eS(V ) ∗ Γe ∼= S(V )Γ. (5)

It’s worth emphasising this point by stating it another way, since it’s one of the funda-

mental reasons for the importance of the algebras Ht,c: eHt,ce is a deformation of the

quotient singularity S(V )Γ, for every choice of t and c.

There is a second vital feature of eHt,ce - its structure determines the centre of Ht,c.

This is the first part of the following result.

Theorem. Fix an indecomposable symplectic triple (V, ω, Γ) with Γ generated by sym-

plectic reflections, and let t ∈ C and c ∈ Cr.

1. The map Ht,c −→ eHt,ce : h 7→ ehe restricts to an algebra isomorphism θ of

Zt,c := Z(Ht,c) with Z(eHt,ce).

2. Ht,c satisfies a polynomial identity if and only if Ht,c is a finite module over its

centre if and only if t = 0.

3. Suppose that t = 0. Then im(θ) = eHt,ce, so that

Z0,c
∼= eH0,ce.

That is, (in view of (5)), Z0,c is a commutative deformation of S(V )Γ.

4. When t 6= 0, Zt,c = C.

Parts 1 and 3 and the sufficiency of t = 0 in 2 are due to Etingof and Ginzburg [11,

Theorems 3.1 and 1.6]. The remainder is due to Brown and Gordon [4]. In the case where

dim(V ) = 2 all the above results are due to Crawley-Boevey and Holland [5]. For the proof

of 1, it’s trivial that θ is an algebra homomorphism. One proves that θ is an isomorphism

by constructing an inverse map, the key point here being that EndeH0,ce(H0,ce) ∼= H0,c,

which follows from the fact that H0,c is a maximal order, Theorem (4.4). The other parts

of the theorem are proved using the Poisson structures which we’ll discuss in Section 5.
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4.6. Example continued. Let’s revisit Example (4.3) in the light of the above results.

Let the primitive idempotents of CΓ be e0, . . . , en−1, with e0 being the symmetrising

idempotent 1
n
Σn

i=0γ
i. It’s convenient to rewrite the relation defining Ht,c in (4) as

yx− xy = Σn−1
i=0 fiei,

where fi ∈ C for i = 0, . . . , n− 1. The condition t = 0 of Theorem (4.5)2 is then restated

as

Σn−1
i=0 fi = 0 (6)

- think in terms of traces on the regular CΓ-module. And one calculates easily that, when

(6) holds,

e0H0,ce0 = C〈xne0, y
ne0, xye0〉 ∼= C[A, B, H : AB = HΠn−1

i=1 (H + f1 + . . . + fi)].

Notice that the centre is thus filtered, with

deg(xne0) = deg(yne0) = n, deg(xye0) = 2,

so its associated graded ring is isomorphic to C[A, B, H : AB = Hn], which is S(V )Γ in

this case, as predicted in (5). Notice also that the centre is smooth here if and only if the

polynomial equation

HΠn−1
i=1 (H + f1 + . . . + fi) = 0

has no repeated roots.

5. Poisson structures

The rich structure of the algebras Ht,c and eHt,ce stems in large part from the fact that

associated graded algebras of these algebras (and indeed the algebras themselves when

t = 0) admit Poisson structures. For example, the proof of Theorem (4.5) makes crucial

use of these structures. We provide a sketch of the key ideas in this section.

5.1. Poisson orders. Let H be a finitely generated C-algebra, finitely generated as a

module over a central subalgebra Z0. By the Artin-Tate Lemma [19, 13.9.10], Z0 is itself

a finitely generated C-algebra. Denote the Lie algebra of C-derivations of H by DerC(H).

Let’s suppose that there is a linear map

D : Z0 −→ DerC(H) : z 7→ Dz,

satisfying

(a) Dzz′ = zDz′ + z′Dz for all z, z′ ∈ Z0;

(b) Z0 is stable under D(Z0);

(c) the resulting bracket { | } : Z0 × Z0 −→ Z0, defined by {z | z′} = Dz(z
′), is a Lie

bracket.

Then we shall say that H is a Poisson Z0-order. In this case Z0 is a Poisson algebra, or,

in other words, Z = maxspec(Z0) is a Poisson variety.
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5.2. Quantization. Here is one important mechanism giving rise to a Poisson order. Let

Ĥ be a C-algebra, Ẑ a subalgebra, and t a central non-zero divisor of Ĥ, contained in

Ẑ. Assume that Z0 = Ẑ/tẐ is a finitely generated central subalgebra of H = Ĥ/tĤ, and

that H is a finitely generated Z0-module. Let π : Ĥ −→ H be the quotient map.

Given any z ∈ Z0 we have a derivation of H, denoted Dz, defined by

Dz(h) = π([ẑ, ĥ]/t),

where ẑ ∈ Ẑ and ĥ ∈ Ĥ are preimages under π of h and z respectively. This makes

sense because [ẑ, ĥ] ∈ tĤ. The map D : Z0 −→ Der(H), given by z 7→ Dz, satisfies the

hypotheses of (5.1), [14].

5.3. Filtered and graded algebras. An important variant of the above is the following.

Let H be an N-filtered C-algebra whose ith-filtered piece is denoted F iH. Let Z be a

subalgebra of H, and give it the induced filtration. Denote the associated graded rings of

Z and H by grZ and grH respectively. Suppose that grZ is a finitely generated central

subalgebra of grH, such that grH is a finitely generated grZ-module. Let σi : F iH −→
grH be the ith-principal symbol map, sending an element of F iH \ F i−1H to its leading

term. Given a graded element of grZ, say σm(z), there is a well-defined derivation of

grH, denoted Dσm(z), given by

Dσm(z)(σn(h)) = σm+n−1([z, h]). (7)

Extending this linearly yields a mapping D : grZ −→ Der(grH), satisfying the hypotheses

of (5.1).

To see that this is really a special case of (5.2), form the Rees algebras Ĥ = ⊕iF
iHti ⊆

H[t] and Ẑ = ⊕iF
iZti ⊆ Z[t], where t is a central indeterminate. It can easily be checked

that we recover the derivations in (7) from the construction in (5.2).

5.4. Examples. 1. Let (V = Σm
i=1Cxi + Cyi, ω, Γ) be an indecomposable symplectic

triple as in (3.3), with the form defined as in (2.4). Then of course S(V ) is a Poisson

algebra under the extension of the form on V (using the Leibniz rule (5.1)(a)) to the

“standard” Poisson bracket {−,−} on S(V ). The Γ-invariance of ω forces Γ-invariance

of {−,−}, and this implies that S(V )Γ is a Poisson subalgebra of S(V ). This definition

extends to give a structure of Poisson S(V )Γ-order on H = S(V ) ∗ Γ if we set Dz(γ) = 0

for z ∈ Z(H) = S(V )Γ and γ ∈ Γ.

Notice that this construction is a case of quantization (5.2). For, starting with (V, ω, Γ)

as above and letting t be an indeterminate, we can take Ĥ to be the C[t]-algebra with

the same relations as H = S(V ) ∗ Γ, except that we now require

[xi, yj] = δijt

for i, j = 1, . . . ,m, instead of [xi, yj] = 0. And in a similar way the construction is also

an example of the filtered-graded case (5.3).
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2. H0,c is a Poisson Z0,c-order. Keep (V, ω, Γ) as in (5.4)1, but assume now that Γ

is generated by symplectic reflections in its action on V , let r be the number of conjugacy

classes of symplectic reflections in Γ, and fix c ∈ Cr. Now let Ĥc be the C[t]-algebra

defined exactly as in (4.1), with relations as in (2) and (3), but with t in (3) being now an

indeterminate rather than a scalar. So now we are in the setting of (5.2), with Ĥ = Ĥc,

and Ĥ/tĤ ∼= H0,c. Also, Z0 = Z0,c, and we take the subalgebra Ẑ of Ĥ to be the inverse

image of Z0 under the canonical epimorphism from Ĥ onto H0,c. By Theorem (4.5)3, the

conditions of (5.2) are fulfilled, and so H0,c is a Poisson Z0,c-order.

3. Quantum groups Both the quantised enveloping algebras Uε(g) and the quantised

function algebras Oε(G) are Poisson orders when ε is a root of unity, thanks to the

mechanism of 5.2. In fact the central Poisson subalgebra can be taken to be a Hopf

subalgebra in these instances. For details and references, see [2], [6], [7].

5.5. Filtered and graded Poisson orders. Suppose that Z0 ⊆ H is a Poisson Z0-order

with non-zero bracket

{−,−} : Z0 ×H −→ H.

Suppose that H is N-filtered with ith filtered subspace F iH, and set F iZ0 = F iH ∩ Z0

for all i ≥ 0. We say that {−,−} has degree d if

{F iZ0, F
jH} ⊆ F i+j+dH

for all i and j, and there exist i, j ∈ N and z ∈ F iZ0, z
′ ∈ F jZ0 such that {z, z′} does

not belong to F i+j+d−1H. Then we can define a structure of Poisson grZ0-order on grH

by setting, for z ∈ FmZ0 and h ∈ F lH,

{σm(z), σl(h)} := σm+l+d({z, h}),

where σi for i ≥ 0 denotes the appropriate principal term map. Conditions (5.1)(a),(b)

and (c) are easy to check. Observe that the Poisson structure induced in this way on

grZ0 has degree precisely d.

5.6. Poisson deformations. It’s not hard to see that the Poisson structure on H0,c

defined in (5.4)2 has degree −2. So (5.5) applies to the Poisson Z0,c-order H0,c, yielding

a structure of Poisson S(V )Γ-order of degree −2 on H0,0 = S(V ) ∗ Γ, and in particular a

degree −2 Poisson structure on S(V )Γ. However, it’s a consequence of Hartog’s theorem

(see [11, Lemma 2.23(i)]) that (up to a scalar multiple) the only degree −2 Poisson bracket

on S(V )Γ is the restriction (5.4)1 of the bracket on S(V ) induced by the symplectic form

on V . We therefore obtain a more precise version of Theorem (4.5)3:

Theorem. The Poisson Z0,c-order structure of H0,c of (5.4)2 is a deformation of the

“standard” Poisson Z0,0-structure on H0,0 of (5.4)1.
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5.7. Poisson ideals and subsets. A two-sided ideal I of the Poisson Z0-order H (re-

spectively J of Z0) is called Poisson if it is stable under D(Z0). Thanks to [9, 3.3.2] if I

(respectively J) is Poisson then so too are both
√

I (respectively
√

J) and the minimal

prime ideals of H (respectively Z0) over I (respectively J). We shall denote the space

of prime Poisson ideals of Z0, with the topology induced from the Zariski topology on

spec(Z0), by P − spec(Z0). Clearly, if I is a Poisson ideal of Z0 then there is an induced

structure of Poisson algebra on Z0/I. We shall denote the maximal ideal spectrum of Z0

by Z. For a semiprime ideal I of Z0 we write V(I) for the closed subset of Z defined by

I. A closed subset V(I) of Z is Poisson closed if its defining ideal is Poisson.

Extension (e : J −→ JH) and contraction (c : I −→ I ∩ Z0) are mappings between

the ideals of Z0 and H, which map Poisson ideals to Poisson ideals. It is an easy exercise

using Going Up [?, 10.2.10(ii)] to show that

c ◦ e is the identity on semiprime ideals of Z0. (8)

Clearly, therefore, if I is a semiprime Poisson ideal of Z0 then there is an induced structure

of Poisson Z0/I-order on A/IA, and if J is a Poisson ideal of H then there is an induced

structure of Poisson Z0/J ∩ Z0-order on H/J.

Note for future use that it’s trivial to check the following:

Lemma. Assume the hypotheses and notation of (5.5). If I is a Poisson ideal of H or

of Z0 then grI is a Poisson ideal of grH or of grZ0, respectively.

5.8. Symplectic leaves. As we shall see, the symplectic leaves of Z provide a key too

in the analysis of a Poisson Z0-algebra H. We begin in this paragraph with a Poisson

C-algebra Z0 - that is, we are in the commutative world for now. Each f ∈ Z0 defines a

Hamiltonian vector field {f,−}. Suppose for a moment that Z is smooth, and let m be

a maximal ideal of Z0. Then the symplectic leaf containing m is the maximal connected

submanifold L(m) of Z such that m ∈ L(m) and the Hamiltonian vector fields span the

tangent space at each point of L(m).

This definition can be extended to arbitrary (not necessarily smooth) varieties Z - for

the details, see [4]. We shall say that the leaves are algebraic if each leaf is locally closed

- meaning that it is an open subset of its (Zariski) closure in Z. A particularly tractable

case occurs when there are only finitely many leaves in Z. To state the result, define the

Poisson core P(m) of a maximal ideal m of Z0 to be the (unique) largest Poisson ideal

contained in m. By (5.7), P(m) is a prime ideal.

Proposition. [4] Let Z0 be a (finitely generated, commutative) C-algebra, and set Z =

maxspecZ0.

1. There are only finitely many leaves in Z if and only if (a) the leaves are algebraic

and (b) the Poisson spectrum P − spec(Z0) of Z0 is finite.
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2. Suppose that there are only finitely many leaves in Z. Let m ∈ Z. Then

L(m) = {n ∈ Z : P(n) = P(m)},

and L(m) consists precisely of the smooth points in the closed subset of Z defined by

P(m).

Of particular relevance in geometric applications is the following corollary; here, 3 =⇒
2 =⇒ 1 is immediate from the definition of a leaf and the proposition, but some further

argument is needed for the remaining implication. Naturally, we say that a Poisson

algebra is Poisson simple if it has no proper Poisson ideals.

Corollary. Let Z0 be a (finitely generated, commutative) C-algebra which is a domain,

and set Z = maxspecZ0. Suppose that there are only finitely many leaves in Z. Then the

following are equivalent:

1. Z is smooth.

2. There is only one leaf in Z.

3. Z0 is Poisson simple.

5.9. Leaves in symplectic reflection algebras - the classical case. Fix (V, ω, Γ) as

in (5.4)1. We shall describe the symplectic leaves of V/Γ. In particular, we’ll see that

they are finite in number, so that Proposition (5.8) applies.

Given v ∈ V let Γv = {γ ∈ Γ : γv = v}, the stabiliser of v, and given T ≤ Γ let Vo
T =

{v ∈ V : T = Γv}, and VT = {v ∈ V : T ⊆ Γv}. Let I(T ) = {xh − x : x ∈ S(V ), h ∈ T},
an ideal of S(V ), and set

J(T ) = I(T ) ∩ S(V )Γ = ∩γ∈ΓI(T γ) ∩ S(V )Γ,

an ideal of S(V )Γ. Clearly VT is a closed subset of V with I(VT ) = I(T ), and Vo
T is open

in VT , being the complement in VT of the closed subset of points with stabiliser strictly

containing T . Letting T vary over subgroups of Γ thus gives a stratification of V by

locally closed subsets,

V =
∐
T≤Γ

Vo
T .

Let π : V −→ V/Γ be the orbit map, and for T ≤ Γ set Zo
T = π(Vo

T ), a locally closed subset

of V/Γ which depends only on the conjugacy class of T in Γ. So there is a stratification

of V/Γ by the locally closed sets Zo
T ,

V/Γ =
∐
T≤Γ

Zo
T , (9)

and

ZT := Zo

T = π(VT ),

with J(T ) being the defining ideal of ZT .
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Let’s do the easy calculation to see that J(T ) is a Poisson ideal, or equivalently that

ZT is a Poisson closed subset of Z. Take x, x′ ∈ S(V ), y ∈ S(V )Γ and h ∈ T . Then,

since the Poisson bracket is induced from the symplectic form on V ,

{(xh − x)x′, y} = {xh − x, y}x′ + (xh − x){x′, y}

= ({x, y}h − {x, y})x′ + (xh − x){x′, y},

proving that I(T ), and therefore J(T ), is stable under the Poisson action of S(V )Γ.

In fact, with more work one can show that the different ideals J(T ) are the only prime

Poisson ideals of S(V )Γ. In other words:

Proposition. [4] The symplectic leaves of V/Γ are precisely the sets Zo
T as T runs through

the conjugacy classes of subgroups of Γ for which Vo
T 6= ∅.

Example: Consider once again the Kleinian singularity of type An−1 of (2.2). So here

I({1}) = 0 and I({T}) = 〈V 〉 for every non-identity subgroup T of Γ. Thus the

proposition tells us that there is only one proper Poisson prime ideal of S(V )Γ, namely

〈xn, yn, xy〉, and that the stratification of V/Γ into symplectic leaves is

V/Γ = π({0}) ∪ π
(
V \ {0}

)
.

5.10. Leaves in symplectic reflection algebras - the quantized case. Now suppose

that we are in the deformed setting of (5.4)2. Analogously to the classical case, we have

the

Proposition. [4] Let H0,c be a symplectic reflection algebra with centre Z0,c as in (5.4)2.

Then maxspec(Z0,c) has only finitely many symplectic leaves.

Unfortunately, there is (at least at present) no precise description of the leaves in

the quantised case, such as we have for the classical case. Each leaf in the quantum

setting is associated, via Proposition (5.8) and the filtered-graded process of Lemma

(5.5), with a semiprime Poisson ideal of S(V )Γ, and this association is well-behaved

with respect to dimension. The semiprime Poisson ideals of S(V )Γ are known, thanks

to Proposition (5.9), but we have no information as to whether the correspondence just

described distinguishes the distinct leaves of maxspec(Z0,c). More detailed information

of this sort would be extremely valuable from the perspective of symplectic algebraic

geometry, to give but one application. For, one important open question is to understand

for which symplectic reflection algebras it is the case that Z0,c is smooth for some (and so

for a generic) choice of the parameters c. This is because when Z0,c is smooth it is hoped

that it will afford a symplectic resolution of singularities of V/Γ as defined in (3.4). For

definitions and a full discussion, see [11].

In the particularly significant case of the rational Cherednik algebras, namely those

symplectic reflection algebras constructed from a dual pair (U,W ) as in (3.2)2, with U

the Cartan subalgebra of a complex simple Lie algebra and W its Weyl group, Z0,c is



16 KENNETH A. BROWN

smooth for a generic choice of c when W has type A or B, but Z0,c is never smooth when

W has type G2 [11, Section 16]. It’s very suggestive to compare this with Theorem (3.4)3.

5.11. The non-PI case. Recall from Theorem (4.5) that Ht,c satisfies a polynomial

identity if and only if t = 0. When t is non-zero Z(Ht,c) = C by Theorem (4.5)4, and we

expect that Ht,c should resemble H1,0, a simple ring. For example, in the Kleinian case

(3.2)1 studied by Crawley-Boevey and Holland it is known [5] that, for t 6= 0, Ht,c has

only finitely many ideals, and indeed is simple for generic values of t and c. Naturally

therefore one asks:

Question: Are the above conclusions still valid when dimC(V ) > 2?

This question is closely related to the Poisson structure of H0,0, thanks to the

Lemma. If t 6= 0 and I is an ideal of Ht,c then grI is a Poisson ideal of H0,0.

Proof. The filtration on Ht,c is that defined in (4.1). Let α ∈ H0,0 and let z ∈ Z(H0,0) =

S(V )Γ. Choose α̂ and ẑ with σ(α̂) = α and σ(ẑ) = z, where σ denotes the principal

symbol map. As in (5.3), defining

{z, α} := σ
(
[ẑ, α̂]

)
(10)

yields a structure of Poisson S(V )Γ-algebra on H0,0. However, this Poisson structure can

be shown to have degree −2, and so - as in (5.6) - it is a non-zero scalar multiple of the

restriction of the standard bracket on S(V ) to S(V )Γ. From (10) it’s clear that if α ∈ grI

then {z, α} ∈ grI, as required. �

While the above lemma does provide some information on the ideal structure of Ht,c for

t 6= 0, it’s unsatisfactory in several respects. First, one has the same problem regarding

the “fibres” of the map from ideals to Poisson ideals which we encountered in (5.10); and

secondly, it would be preferable to relate ideals of Ht,c to Poisson ideals of H0,c rather

than of H0,0. At present we have nothing positive to report on either of these problems.

6. Representation Theory

6.1. Walking across a leaf. The (finite dimensional) representation theory of the al-

gebras H0,c is intimately connected to the symplectic geometry of their centres Z0,c, as

is made clear by the following result. A version of this theorem was first proved by De

Concini and Lyubashenko for use in their study of quantised function algebras at a root of

unity [6]; see also [7]. In those versions the central subalgebra Z0 of the Poisson Z0-order

H being studied had to be smooth, with H a projective Z0-module. The present version,

due to Brown and Gordon [4], avoids those hypotheses, but does require that the leaves

are algebraic. Its proof consists in making various reductions so as to pass to a setting

where the additional hypotheses needed for the argument of De Concini and Lyubashenko
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hold. The key point of the latter is to integrate the Hamiltonian vector fields to get a

linear isomorphism, which is then shown to be an algebra homomorphism.

Theorem. Let H be an affine C-algebra which is a Poisson Z0-order (as defined in (5.1)).

Suppose that the symplectic leaves of maxspec(Z0) are algebraic. If m and n are maximal

ideals of Z0 which belong to the same leaf, then

H/mH ∼= H/nH.

Let’s consider for a moment why the above result is significant for the representation

theory of H. If W is an irreducible H-module then EndH(W ) = C by a version [19,

Proposition 9.1.7] of Schur’s lemma. Hence, (defining AnnZ0(W ) = {z ∈ Z0 : zW = 0}),
it follows that Z0/AnnZ0(W ) = C. That is, AnnZ0(W ) := m is a maximal ideal of Z0

and W is an irreducible H/mH-module. Moreover, if U is a second irreducible H-module

with AnnZ0(U) = m′, and there is a non-split extension X of W by U , then it’s an easy

exercise to show that m = m′ and either mX = 0 or W = U .

In other words, the finite dimensional representation theory of H reduces in large part

to the study of the finite dimensional algebras H/mH, as m ranges through maxspec(Z0).

Hence the relevance of Theorem (6.1). Note that the significance of the theorem will be

particularly marked when there are only finitely many leaves in maxspec(Z0), as is the

case for symplectic reflection algebras by (5.10); or when there are only finitely many

orbits of leaves under the action of the group of Poisson automorphisms of H, as is the

case for quantised function algebras at a root of unity [6].

6.2. Azumaya strata. Let’s see what Theorem (6.1) tells us in the simplest setting. So

we assume that we have a prime Poisson Z0-order H with Z0 = Z(H); and we assume

that there are only finitely many leaves in maxspec(Z0) (although much of what follows

is true under weaker hypotheses).

Recall that if R is a prime algebra which is a finite module over its C-affine centre

Z, then a maximal ideal m of Z is called an Azumaya point of maxspec(Z) if Rm is an

Azumaya Zm-algebra, meaning that Rm is a free Zm-module with

Rm ⊗Zm Rop
m

∼= EndZm(Rm),

[19, 13.7.6]. Thanks to the Artin-Procesi theorem [19, Theorem 13.7.14] this is equivalent

to requiring that

R/mR ∼= Mn(C),

(where n is the PI-degree of R). In other words, the Azumaya points of maxspec(Z)

are precisely the points m at which the structure of R/mR is as simple as possible; such

points are generic in maxspec(Z), [19, Theorem 13.7.14(iii)]. The Azumaya locus AZ of

maxspec(Z) is the open dense subset of Azumaya points of maxspec(Z), and we call R

an Azumaya algebra if AZ = maxspec(Z). Now we’re ready to state a noncommutative
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addition to the equivalences of Corollary (5.8). The first part is immediate from that

corollary and Theorem (6.1).

Corollary. Let H be a prime Poisson Z-order, where Z is the centre of H. Assume that

there are only finitely many leaves in Z = maxspec(Z).

(a) The following are equivalent.

1. Z is smooth.

2. There is only one leaf in Z.

3. Z is Poisson simple.

4. H is an Azumaya algebra.

(b) Assume that H has finite global (homological) dimension. Then (generalising (a)),

the locus of smooth points of Z is equal to the Azumaya locus AZ.

Proof. (b) By the last part of Proposition (5.8), the smooth points of Z belong to a single

leaf. Since this set is dense in Z it must meet the dense set AZ . By Theorem (6.1) we

deduce that every smooth point of Z is Azumaya. Conversely, let m be an Azumaya point

of Z. Then Hm is a projective Zm-module, so, by the hypothesis on the global dimension

of H it follows that Zm has finite global dimension. That is, m is a smooth point, as

required. �

Comments: 1. I’ve chosen to highlight part (a) of the corollary because - when applied

to the symplectic reflection algebras H0,c - it makes precise the way in which their non-

commutative structure encodes the geometry of the varieties whose coordinate rings are

the algebras Z0,c; and recall that the latter are “symplectic deformations” of V/Γ.

2. The same conclusion as in part (b) of the corollary is obtained in an earlier theorem

of Lebruyn [16, Proposition 5], Brown and Goodearl [3, Theorem 3.8]. In the earlier

result no Poisson structure is involved, but much heavier homological conditions have to

be imposed on H, and one has to assume that the complement of AZ has codimension

at least 2 in Z. (In Corollary (6.2)(b) the latter condition is (implicitly) a consequence

of the Poisson structure.)

3. The corollary is the “first step” in a stratification of Z - one factors H by the ideal

generated by the ideal of Z defining the complement of the Azumaya locus AZ - this is a

Poisson ideal - and repeats the game in the factor algebra. In this way one can realise H

as a sheaf of Azumaya algebras - for details, see [4]. This sort of approach was pioneered

in the case of quantised function algebras at a root of 1 by De Concini and Procesi [8].
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