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Abstract

In this thesis, we introduce some new notions in the derived category D+(fg)(R) of

bounded below chain complexes of finite type over local commutative noetherian

ring R with maximal ideal m and residue field K in chapter three and study their

relations to each other. Also, we set up the Adams spectral sequence for chain

complexes in D+(fg)(R) in chapter four and study its convergence.

To accomplish this task, we give two background chapters. We give some good

account of chain complexes in chapter one. We review some basic homological

algebra and give definition and basic properties of chain complexes. Then we study

the homotopy category of chain complexes and we end chapter one with section

about spectral sequences.

Chapter two is about the derived category of a commutative ring. Section one

is about localization of categories and left and right fractions. Then in section two,

we give definition of triangulated categories and some of its basic properties and we

end section two with definitions of homotopy limits and colimits. In section three,

we show that the derived category is a triangulated category. In section four, we

give definitions of the derived functors, the derived tensor product and the derived

Hom.

In chapter three, we start section one by giving some facts about local rings

and we end this section by showing that every bounded below chain complex of

finite type has a minimal free resolution. In section two, we show a derived analog

of the Whitehead Theorem. In section three, we construct Postnikov towers for

chain complexes. In section four, we define the Steenrod algebra. In section five,

six and seven, we define irreducible, atomic, minimal atomic, no mod m detectable

homology, H?-monogenic, nuclear chain complexes and the core of a chain complex.

We show some various results relating these notions to each other and give some

examples.

In chapter four, we set up the Adams spectral sequence in section one and study

its properties. In section two, we study homology localization and local homol-

ogy. In section three, we define K[0]-nilpotent completion and we show that the
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Adams spectral sequence for a chain complex Y converges strongly to the homology

of the K[0]-nilpotent completion of Y . In section four, we study the Adams spec-

tral sequence’s convergence where we show that the K[0]-nilpotent completion for

a bounded chain complex Y consisting of finitely generated free R-modules in each

degree is isomorphic to the localization of Y with respect to the H?(−,K)-theory.

In section five, we present some examples.



Contents

1 Chain Complexes 7

1.1 Basic Homological Algebra . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Definition and Elementary Properties of Chain Complexes . . . . . . 14

1.3 The Homotopy Category of Chain Complexes . . . . . . . . . . . . . 22

1.4 Spectral Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 The Derived Category of a Commutative Ring 33

2.1 Localization and the Fractions . . . . . . . . . . . . . . . . . . . . . . 33

2.1.1 The Left and Right Fractions . . . . . . . . . . . . . . . . . . 35

2.2 Triangulated Categories . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.1 Basic Properties of Triangulated Categories . . . . . . . . . . 44

2.2.2 Homotopy Limits and Colimits . . . . . . . . . . . . . . . . . 49

2.3 The Derived Category . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.1 D(R) is Triangulated . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.2 Localizing Subcategories . . . . . . . . . . . . . . . . . . . . . 58

2.4 Derived Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.4.1 The Derived Tensor Product . . . . . . . . . . . . . . . . . . . 64

2.4.2 The Derived Hom . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Minimal Atomic Chain Complexes 69

3.1 Local Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1.1 Minimal Free Resolutions . . . . . . . . . . . . . . . . . . . . 72

3.2 The Derived Whitehead Theorem . . . . . . . . . . . . . . . . . . . . 75

3.3 Postnikov towers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5



CONTENTS 6

3.4 The Steenrod Algebra and its dual . . . . . . . . . . . . . . . . . . . 83

3.5 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.6 Minimal atomic and irreducible chain complexes . . . . . . . . . . . . 88

3.7 Nuclear chain complexes . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Adams Spectral Sequence For Chain Complexes 105

4.1 Setting up the spectral sequence . . . . . . . . . . . . . . . . . . . . . 105

4.2 Homology Localization and Local Homology . . . . . . . . . . . . . . 112

4.3 K[0]-Nilpotent Completion . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

References 141



Chapter 1

Chain Complexes

In this chapter, we state and define some basic notions that are necessary for under-

standing what comes later. We give some preliminaries on chain complexes where

the main references for these basic materials are [33], [30] and [19]. We start in

section one by recalling some facts from commutative ring theory and basic notions

of homological algebra. In section two, we give the definition of chain complexes and

basic properties of them and then the definition of the category of chain complexes.

In section three, we give the definition of the homotopy category of chain complexes

and its some basic properties. In section four, we give the definition of spectral

sequences and explain the convergence of spectral sequences.

Throughout this chapter and the following chapters, let R be an arbitrary com-

mutative ring with identity.

1.1 Basic Homological Algebra

In this section, we review some basic definitions and facts from homological algebra

and commutative ring theory. The main references for this section are [21], [30], [23]

and [19].

Definition 1.1.1. An R-module M is free if it is a sum of copies of R.

Definition 1.1.2. An R-module P is called projective if in each diagram of R-

7
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modules of the following form

P
h

~~
f

��
M g

// N // 0

with g an epimorphism, then there exists h : P −→M such that gh = f .

The following result is proved in [19, Lemma 5.4].

Lemma 1.1.3. Every free R-module is projective.

Definition 1.1.4. An R-module E is injective if for every R-module N and every

submodule M of N , every f : M −→ E can be extended to a map g : N −→ E. The

diagram is

E

0 //M //

f

OO

N

g
``

Definition 1.1.5. An R-module F is flat if the functor F ⊗R − : R-mod −→

R-mod where R-mod is the category of R-modules is exact.

The proof of the following result is in [30, Corollary 3.46].

Lemma 1.1.6. Every projective R-module is flat.

Definition 1.1.7. A free (projective) resolution of an R-module M is an exact

sequence

· · · // Pn
dn // Pn−1

// · · · // P0
ε //M // 0

in which each Pn is a free (projective) module.

A proof of the following theorem is in [30, Theorem 3.8]

Theorem 1.1.8. Every an R-module M has a free (projective) resolution.

Definition 1.1.9. An injective resolution of an R-module M is an exact sequence

0 //M // E0 // E1 // · · · // En // En+1 // · · ·

in which each En is an injective R-module.
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The following result is proved in [30, Theorem 3.28].

Theorem 1.1.10. Every an R-module M has an injective resolution.

If we suppress M from a projective resolution for M , then we get a deleted

projrctive resolution for M . Similarly, if we suppress M from an injective resolution

for M , then we get a deleted injective resolution for M .

The following theorem is proved in [19, Theorem 6.3].

Theorem 1.1.11. The following properties of an R-module P are equivalent.

(i) P is projective.

(ii) For each epimorphism f : M −→ N ,

f? : HomR(P,M) −→ HomR(P,N)

is an epimorphism.

(iii) If

0 // L //M // N // 0

is a short exact sequence, so is

0 // HomR(P,L) // HomR(P,M) // HomR(P,N) // 0.

(iv) Every short exact sequence

0 // L //M // P // 0

splits.

The following result is proved in [30, Theorem 3.16].

Theorem 1.1.12. An R-module E is injective if and only if the functor HomR(−, E)

is exact.

The following important result is proved in [30, Theorem 3.6].

Theorem 1.1.13. Let M be a finitely generated R-module. If f : M −→ M is

surjective, then f is also injective, and is thus an automorphism of M .
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Definition 1.1.14. R is noetherian if every ideal is finitely generated.

The following theorem is proved in [30, Theorem 4.1].

Theorem 1.1.15. R is noetherian if and only if every submodule of a finitely gen-

erated R-module M is also finitely generated.

The proof of the following lemma is straightforward.

Lemma 1.1.16. Let

X
f //

h
��

X ′

h′

��
Y

g // Y ′

be a commutative diagram of R-modules. If f is an epimorphism and h = 0, then

h′ = 0. If g is a monomorphism and h′ = 0, then h = 0.

Before we end this section, we give the definition of Hopf algebra and some results

which we will need later.

Definition 1.1.17. An algebra over R is a graded R-module A together with ho-

momorphisms of graded R-modules φ : A⊗RA −→ A and η : R −→ A such that the

following diagrams

A⊗R A⊗R A
id⊗φ //

φ⊗id

��

A⊗R A
φ

��
A⊗R A

φ // A

and

A⊗R R
id⊗η //

∼=
��

A⊗R A
φ
��

R⊗R A
η⊗idoo

∼=
��

A
id // A A

idoo

are commutative. The homomorphism φ is called the product of the algebra A and

η is called the unit of A. The algebra A is commutative if the following diagram

A⊗R A τ //

φ ##H
HHHHHHHH A⊗R A

φ{{vvvvvvvvv

A

is commutative where τ is the twist homomorphism such that for a ∈ Ap and b ∈ Aq,

τ(a⊗ b) = (−1)pqb⊗ a.
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Definition 1.1.18. If A is an algebra over R, a left A-module is a graded R-module

N together with a A-action, that is, a homomorphism φN : A⊗RN −→ N of graded

R-modules such that the following diagrams

A⊗R A⊗R N
id⊗φN//

φ⊗id
��

A⊗R N
φN

��
A⊗R N

φN // N

R⊗R N
η⊗id //

∼= $$I
IIIIIIII A⊗R N

φNzzuuuuuuuuu

N

are commutative.

Definition 1.1.19. A coalgebra over R is a graded R-module A together with ho-

momorphisms of graded R-modules ψ : A −→ A⊗RA and ε : A −→ R such that the

following diagrams

A
ψ //

ψ

��

A⊗R A
ψ⊗id

��
A⊗R A

id⊗ψ // A⊗R A⊗R A

and

A⊗R R A⊗R A
ε⊗id //id⊗εoo R⊗R A

A

∼=

OO

A
idoo

ψ

OO

id // A

∼=

OO

are commutative. The homomorphism ψ is called the coproduct of the coalgebra A

and ε is called the counit of A. The coalgebra A is cocommutative if the following

diagram

A⊗R A A⊗R Aτoo

A
ψ

ccHHHHHHHHH ψ

;;vvvvvvvvv

is commutative.

Definition 1.1.20. If A is a coalgebra over R, a left A-comodule is a graded R-

module N with a A-coaction, that is, a homomorphism ψN : N −→ A⊗RN of graded
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R-modules such that the following diagrams

N
ψN //

ψN

��

A⊗R N
ψ⊗id

��
A⊗R N

id⊗ψN// A⊗R A⊗R N

A⊗R N
ε⊗id // R⊗R N

N
ψN

ddIIIIIIIII ∼=

::uuuuuuuuu

are commutative.

Definition 1.1.21. A bialgebra A over R is an algebra and a coalgebra over R, such

that the coproduct and the counit are both algebra homomorphisms. Equivalently,

one may require that the product and the unit of the algebra both be coalgebra ho-

momorphisms. The compatibility conditions can also be expressed by the following

commutative diagrams:

R
id //

η
��@

@@
@@

@@
R

A

ε

??~~~~~~~

A⊗R A
φ //

ψ⊗ψ
��

A
ψ // A⊗R A

A⊗R A⊗R A⊗R A
id⊗τ⊗id // A⊗R A⊗R A⊗R A

φ⊗φ

OO

A⊗R A
φ //

ε⊗ε ''OOOOOOOOOOOO A

ε
yyrrrrrrrrrrr

R⊗R R ∼= R

R ∼= R⊗R R
η⊗η

''OOOOOOOOOOOO
η

yyrrrrrrrrrrr

A
ψ // A⊗R A

Definition 1.1.22. A Hopf algebra is a bialgebra A over R together with a R-

module homomorphism c : A −→ A, called the antipode, such that the following
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diagram

A⊗R A
c⊗id // A⊗R A

φ

��
A

ψ

OO

ε //

ψ

��

R
η // A

A⊗R A
id⊗c // A⊗R A

φ

OO

is commutative.

If A is a graded R-module, we denote by A? the graded R-module such that

A?n = HomR(An, R). If f : A −→ B is a homomorphism of graded R-modules,

then f ? : B? −→ A? is the homomorphism of graded R-modules such that f ?n =

Hom(fn, id).

A graded R-module A is of finite type if each An is a finitely generated R-module.

It is projective if each An is projective.

Theorem 1.1.23. Suppose that A is a graded R-module which is projective of finite

type, then

(i) φ : A ⊗R A −→ A is a product in A if and only if φ? : A? −→ A? ⊗R A? is a

coproduct in A?,

(ii) η : R −→ A is a unit for the product φ if and only if η? : A? −→ R? = R is a

counit for the coproduct φ?,

(iii) (A, φ, η) is an algebra if and only if (A?, φ?, η?) is a coalgebra,

(iv) the algebra (A, φ, η) is commutative if and only if the coalgebra (A?, φ?, η?) is

cocommutative.

For the proof of the above theorem, see [23, Proposition 3.1].

Theorem 1.1.24. Suppose (A, φ, η) is an algebra over R such that the graded R-

module A is projective of finite type. If N is a graded R-module which is projective

of finite type, then φN : A ⊗R N −→ N defines the structure of a left A-module on

N if and only if φN? : N? −→ A? ⊗R N? defines the structure of a left A?-comodule

on N?.
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For the proof of the above theorem, see [23, Proposition 3.2].

Theorem 1.1.25. If A is a graded projective R-module of finite type, then (A, φ, η, ψ, ε, c)

is a Hopf algebra with product φ, coproduct ψ, unit η, counit ε and antipode c if and

only if (A?, ψ?, ε?, φ?, η?, c?) is a Hopf algebra with product ψ?, coproduct φ?, unit ε?,

counit η? and antipode c?.

For the proof of the above theorem, see [23, Proposition 4.8].

1.2 Definition and Elementary Properties of Chain

Complexes

In this section, we present several basic definitions and basic properties of chain

complexes. The main references for this section are [30] and [33].

Definition 1.2.1. A chain complex Y? of R-modules is a sequence of R-modules

and R-module maps

Y? = · · · // Yn+1
dn+1 // Yn

dn // Yn−1
// · · ·

where n ∈ Z and dndn+1 = 0 for all n. The maps dn are called the differentials.

The elements of Ker dn are called n-cycles, denoted Zn(Y?) = Zn and the elements

of Im dn+1 are called n-boundaries, denoted Bn(Y?) = Bn. Note that the condition

dndn+1 = 0 means Im dn+1 ⊂ Ker dn. So

0 ⊆ Bn ⊆ Zn ⊆ Yn

for all n. The nth homology module of Y? is

Hn(Y?) = Zn/Bn.

Definition 1.2.2. Dually, a cochain complex Y ? of R-modules is a sequence of

R-modules and R-module maps

Y ? = · · · // Y n−1
dn−1 // Y n dn // Y n+1 // · · ·
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where n ∈ Z and dndn−1 = 0 for all n. The elements of Ker dn are called n-cocycles,

denoted Zn(Y ?) = Zn and the elements of Im dn−1 are called n-coboundaries, de-

noted Bn(Y ?) = Bn. Note that the condition dndn−1 = 0 means Im dn−1 ⊂ Ker dn.

So

0 ⊆ Bn ⊆ Zn ⊆ Y n

for all n. The nth cohomology module of Y ? is

Hn(Y ?) = Zn/Bn.

Throughout this chapter and the following chapters, we will omit the subscript

and superscript and write Y for Y? and Y ?.

The chain complex Y is called exact at Yn if Zn = Bn, that is, Hn(Y ) = 0. If

Hn(Y ) = 0 for each n, we say that Y is acyclic.

Definition 1.2.3. We say that a chain complex Y is connective if Hi(Y ) = 0 for all

i < 0.

Definition 1.2.4. We say that a chain complex Y is of finite type if it has finitely

generated homology in each degree.

Definition 1.2.5. Let M and N be R-modules. Then

TorRn (M,N) = Hn(PM ⊗R N) = Hn(M ⊗R QN),

where PM is a deleted projective resolution of M and QN is a deleted projective

resolution of N .

The following result is proved in [30, Theorem 8.7].

Theorem 1.2.6. If F is flat, then TorRn (F,N) = 0 for all n ≥ 1 and all R-modules

N and similarly in the other variable.

Definition 1.2.7. Let M and N be R-modules. Then

ExtnR(M,N) = Hn(HomR(M,EN)) = Hn(HomR(PM , N)),

where EN is a deleted injective resolution of N and PM is a deleted projective

resolution of M .
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The following result is proved in [30, Theorem 7.6]

Theorem 1.2.8. If N is an injective R-module, then ExtnR(M,N) = 0 for all R-

modules M and all n ≥ 1.

The following result is proved in [30, Theorem 7.7]

Theorem 1.2.9. If M is projective R-module, then ExtnR(M,N) = 0 for all R-

modules N and all n ≥ 1.

Now consider a field k and two commutative k-algebras A andB. LetA⊗kB = C.

Then we have the following important result which is proved in [8, Theorem XI 3.1].

Theorem 1.2.10. Assume that A and B are noetherian. If M is finitely A-generated

and M ′ is finitely B-generated, then there is an isomorphism

ExtpA(M,N)⊗k ExtqB(M ′, N ′) −→ Extp+qC (M ⊗k M ′, N ⊗k N ′).

Definition 1.2.11. Let X and Y be chain complexes. Then a chain map f : X −→

Y is a sequence of maps fn : Xn −→ Yn such that the following diagram commutes

· · · // Xn+1
dn+1 //

fn+1

��

Xn
dn //

fn

��

Xn−1
//

fn−1

��

· · ·

· · · // Yn+1
d′n+1

// Yn
d′n

// Yn−1
// · · ·

Definition 1.2.12. A sequence of chain complexes

0 // X
f // Y

g // Z // 0

is said to be a short exact sequence if the sequences of modules

0 // Xn
fn // Yn

gn // Zn // 0

are exact for every n ∈ Z.

Definition 1.2.13. If Y is a chain complex and n is an integer, we define the

n-skeleton, Y [n], to be the subcomplex of Y such that

(Y [n])i =

Yi if i ≤ n,

0 if i > n.
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It is clear that Hi(Y
[n]) = Hi(Y ) for i < n and Hi(Y

[n]) = 0 if i > n. Also we

can form the chain complex Y [n] as follows:

(Y [n])i = Yn+i

with differential (−1)nd. We call Y [n] the nth translation of Y . We see that

Hi(Y [n]) = Hn+i(Y ).

Also, we define nth translation on any chain map f : X −→ Y by

(f [n])i = fn+i.

Definition 1.2.14. Let M be an R-module and n ∈ Z be a fixed integer. If we

regard M as the nth term and all other terms 0, then this is a chain complex

concentrated in degree n, written M [−n].

Definition 1.2.15. A chain map f : X −→ Y is called a q-isomorphism if the maps

f? : Hn(X) −→ Hn(Y ) are all isomorphisms.

Definition 1.2.16. A projective resolution of a chain complex Y is a q-isomorphism

P −→ Y such that each Pi is a projective R-module.

Definition 1.2.17. An injective resolution of a chain complex Y is a q-isomorphism

Y −→ I such that each Ii is an injective R-module.

Definition 1.2.18. A double complex (or bicomplex ) is a bigraded R-module Y =

{Yp,q} with maps dh : Yp,q −→ Yp−1,q and dv : Yp,q −→ Yp,q−1 such that

dhdh = dvdv = dvdh + dhdv = 0.

It is pictured as a lattice

...

��

...

��

...

��
· · · Yp−1,q+1
oo

dv

��

Yp,q+1
dh
oo

dv

��

Yp+1,q+1
dh
oo

dv

��

· · ·oo

· · · Yp−1,q
oo

dv

��

Yp,q
dh

oo

dv

��

Yp+1,q
dh

oo

dv

��

· · ·oo

· · · Yp−1,q−1
oo

��

Yp,q−1
dh
oo

��

Yp+1,q−1
dh
oo

��

· · ·oo

...
...

...
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The first two conditions dhdh = dvdv = 0 say that each row and each column is a

chain complex.

Definition 1.2.19. If Y is a double complex, its total complex Tot
⊕

(Y ) is the chain

complex defined by

Tot
⊕

(Y )n =
⊕
p+q=n

Yp,q

with differential

dn : Tot
⊕

(Y )n −→ Tot
⊕

(Y )n−1

given by d = dh + dv. Also, we have the total complex Tot
∏

(Y ) which is defined by

Tot
∏

(Y )n =
∏

p+q=n

Yp,q

with differential

dn : Tot
∏

(Y )n −→ Tot
∏

(Y )n−1

given by d = dh + dv.

The following lemma is proved in [30, Lemma 11.14].

Lemma 1.2.20. If Y is a double complex, then both Tot
⊕

(Y ) and Tot
∏

(Y ) are

chain complexes.

Remark 1.2.21. A big commutative diagram whose rows and columns are chain

complexes can be modified by a simple sign change to be a double complex. Let

Y be a bigraded module with maps dh and dv. Assume that dhdh = dvdv = 0 and

the diagram commutes. If dvp,q : Yp,q −→ Yp,q−1 is replaced by d′vp,q = (−1)pdvp,q, then

(Y, dh, d′v) is a double complex.

Definition 1.2.22. Let X and Y be chain complexes of R-modules. We form

the double complex X ⊗ Y = {Xp ⊗R Yq} using the Remark 1.2.21, that is, with

horizontal differentials d⊗ 1 and vertical differentials (−1)p⊗ d. X⊗Y is called the

tensor product double complex, and Tot
⊕

(X⊗Y ) is called the (total) tensor product

chain complex of X and Y .

The following result is proved in [33, Theorem 3.6.3].
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Theorem 1.2.23 (Künneth formula for complexes). Let X and Y be chain

complexes of R-modules. If Xn and d(Xn) are flat for each n, then there is an exact

sequence

0 −→
⊕
p+q=n

Hp(X)⊗R Hq(Y ) −→ Hn(Tot⊕(X ⊗ Y ))

−→
⊕

p+q=n−1

TorR1 (Hp(X), Hq(Y )) −→ 0.

for each n.

Definition 1.2.24. Let X and Y be chain complexes. First we convert Y into a

cochain complex Y with Y s = Y−s. We form the double cochain complex

Hom(X,Y ) = {HomR(Xp, Y
q)}

using Remark 1.2.21. That is, if f : Xp −→ Y q, then we define the horizontal

differential dhf : Xp+1 −→ Y q by (dhf)(x) = f(dx), and we define the vertical

differential dvf : Xp −→ Y q+1 by (dvf)(x) = (−1)p+q+1d(fx) for x ∈ Xp. Hom(X, Y )

is called the Hom double complex, and Tot
∏

(Hom(X, Y )) is called the (total) Hom

cochain complex. Note that we can reindex Tot
∏

(Hom(X, Y )) to obtain (total) Hom

chain complex.

The following theorem is proved in [33, Theorem 3.6.5].

Theorem 1.2.25 (Universal Coefficient Theorem for Cohomology). Let X

be a chain complex of projective R-modules such that each d(Xn) is also projective.

Then for every n and every R-module M , there is an exact sequence

0 −→ Ext1
R(Hn−1(X),M) −→ Hn(HomR(X,M)) −→ HomR(Hn(X),M) −→ 0.

Next we define the mapping cone and mapping cylinder of a chain map.

Definition 1.2.26. Let f : X −→ Y be a chain map. The mapping cone of f is

the chain complex cone(f) whose degree n part is Xn−1

⊕
Yn. The differential in

cone(f) is given by the formula

d(x, y) = (−dX(x), dY (y)− f(x))
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where x ∈ Xn−1 and y ∈ Yn. That is, the differential is given by the matrix−dX 0

−f dY


The following result is proved in [33, Corollary 1.5.4].

Lemma 1.2.27. A map f : X −→ Y is a q-isomorphism if and only if the mapping

cone chain complex cone(f) is exact.

For every chain map f : X −→ Y , there is an exact sequence

0 // Y // cone(f) ∂ // X[−1] // 0

where the left map sends y to (0, y) and the right map sends (x, y) to −x.

Definition 1.2.28. Let f : X −→ Y be a chain map. The mapping cylinder of f is

the chain complex cyl(f) whose degree n part is Xn

⊕
Xn−1

⊕
Yn. The differential

in cyl(f) is given by the formula

d(x1, x2, y) = (dX(x1) + x2,−dX(x2), dY (y)− f(x2)).

That is the differential is given by the matrix
dX idX 0

0 −dX 0

0 −f dY


The following result is proved in [33, Lemma 1.5.6].

Lemma 1.2.29. The subcomplex of elements (0, 0, y) is isomorphic to Y and the

corresponding inclusion α : Y −→ cyl(f) is a q-isomorphism.

Notice that the subcomplex of elements (x, 0, 0) in cyl(f) is isomorphic to X, and

the quotient cyl(f)/X is the mapping cone of f . Therefore we have the following

exact sequence of chain complexes

0 // X // cyl(f) // cone(f) // 0.

There is a category of chain complexes of R-modules, denoted Ch(R), where the

objects are chain complexes and morphisms are chain maps.

A proof of the following theorem can be found in [33, Theorem 1.2.3].
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Theorem 1.2.30. The category Ch(R) of chain complexes of R-modules is an

abelian category.

A chain complex Y is called bounded if Yn = 0 unless a ≤ n ≤ b, bounded above if

there is a bound b such that Yn = 0 for all n > b and bounded below if there is a bound

a such that Yn = 0 for all n < a. The bounded, bounded above and bounded below

chain complexes form full subcategories of Ch(R) and are denoted Chb(R), Ch−(R)

and Ch+(R), respectively. Denote the subcategory of non-negative complexes Y ,

Yn = 0 for all n < 0, by Ch≥0(R).

We define the translation functor T : Ch(R) −→ Ch(R) on any object X by

T (X) = X[−1] and on any morphism f : X −→ Y by T (f) = f [−1]. It is clear that

T is an automorphism and its inverse T−1 is defined by T−1(X) = X[1].

The following theorem is one of the fundamental results on chain complexes and

it is proved in [30, Theorem 6.3].

Theorem 1.2.31. If

0 // X
i // Y

p // Z // 0

is short exact sequence of chain complexes, then there is a long exact sequence of

modules

· · · // Hn(Y )
p? // Hn(Z) ∂ // Hn−1(X)

i? // Hn−1(Y ) // · · ·

where the map ∂ : Hn(Z) −→ Hn−1(X) is called the connecting homomorphism.

Let A and B be two abelian categories. We say that A has enough projectives

if for every object A of A there is a surjection P −→ A with P projective. We say

that A has enough injectives if for every object A in A there is an injection A −→ I

with I injective.

Let F : A −→ B be a right exact functor. If A has enough projectives, we can

construct the left derived functors LiF (i ≥ 0) of F as follows. If A is an object of

A, choose a projective resolution P −→ A and define

LiF (A) = Hi(F (P )).
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Note that since

F (P1) −→ F (P0) −→ F (A) −→ 0

is exact, we always have L0F (A) ∼= F (A). A is said to be left F -acyclic if LnF (A) =

0 for all n ≥ 1.

Let F : A −→ B be a left exact functor. If A has enough injectives, we can

construct the right derived functors RiF (i ≥ 0) of F as follows. If A is an object

of A, choose an injective resolution A −→ I and define

RiF (A) = H i(F (I)).

Note that since

0 −→ F (A) −→ F (I0) −→ F (I1)

is exact, we always have R0F (A) ∼= F (A). A is said to be right F -acyclic if RiF (A) =

0 for all n ≥ 1.

1.3 The Homotopy Category of Chain Complexes

In this section, we give the definition of the homotopy category of chain complexes

and present some of its properties. The main reference for this section is [33].

Definition 1.3.1. If f : X −→ Y is a chain map, then f is null homotopic if there

are maps sn : Xn −→ Yn+1

· · · // Xn+1
dn+1 // Xn

dn //

fn

��

sn

||yyyyyyyy
Xn−1

//

sn−1||yy
yy

yy
yy

y
· · ·

· · · // Yn+1 dn+1

// Yn dn

// Yn−1
// · · ·

such that

f = dY s+ sdX .

Let G be the set of all maps in HomCh(R)(X, Y ) which are null homotopic.

Lemma 1.3.2. The set G is a subgroup of HomCh(R)(X, Y ).
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Proof. It is clear that the zero map is in G. Let f , g be null homotopic maps.

By Definition 1.3.1, there are maps s : X −→ Y [1] and t : X −→ Y [1] such that

f = dY s+ sdX and g = dY t+ tdX . Then

f + g = dY (s+ t) + (s+ t)dX .

That is, f + g is null homotopic. Also, −f = dY (−s) + (−s)dX , that is, −f is null

homotopic. Hence, G is a subgroup.

Definition 1.3.3. If f and g are chain maps X −→ Y , then we say that f and g

are chain homotopic, written f ' g, if f − g ∈ G, that is, if

f − g = dY s+ sdX .

Next we show that ' is an equivalence relation on HomCh(R)(X, Y ). It is clear

that it is reflexive and symmetric. Assume that f ' g and g ' h. Then there

are maps s : X −→ Y [1] and t : X −→ Y [1] such that f − g = dY s + sdX and

g − h = dY t+ tdX . So

f − h = dY (s+ t) + (s+ t)dX .

That is, f ' h and it follows that ' is transitive. Hence, ' is an equivalence

relation.

Lemma 1.3.4. Let X, Y and Z be chain complexes. Let f : X −→ Y and g : Y −→

Z be two chain maps. If either f or g is null homotopic, then gf is null homotopic.

Proof. Assume that f is null homotopic. Then there exists s : X −→ Y [1] such that

f = dY s+ sdX . Therefore,

gf = gdY s+ gsdX = dZgs+ gsdX

where gs : X −→ Z[1]. This implies that gf is null homotopic. Now assume that

g is null homotopic. Then there exists t : Y −→ Z[1] such that g = dZt + tdY .

Therefore,

gf = dZtf + tdY f = dZtf + tfdX

where tf : X −→ Z[1]. This implies that gf is null homotopic.
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Let

HomK(R)(X, Y ) = HomCh(R)(X, Y )/G.

This is an abelian group of classes of homotopic maps between X and Y . Let X, Y

and Z be chain complexes. By Lemma 1.3.4, the composition map

HomCh(R)(Y, Z)× HomCh(R)(X, Y ) −→ HomCh(R)(X,Z)

induces a biadditive map

HomK(R)(Y, Z)× HomK(R)(X, Y ) −→ HomK(R)(X,Z).

Let K(R) be the quotient category of Ch(R) whose objects are chain complexes

and morphisms are classes of homotopic maps, that is, HomK(R)(X, Y ) for every

pair of objects X and Y . K(R) is called the homotopy category of chain complexes.

We define Kb(R), K−(R) and K+(R) to be the full subcategories of K(R) cor-

responding to the full subcategories Chb(R), Ch−(R) and Ch+(R) of bounded,

bounded above and bounded below chain complexes.

The zero object in K(R) is the zero object in Ch(R). For every pair of objects

in K(R), we define their direct sum as the direct sum in Ch(R). Therefore, we have

the following result.

Theorem 1.3.5. The category K(R) is an additive category.

The following result is proved in [33, Lemma 1.4.5].

Lemma 1.3.6. If f and g are homotopic chain maps X −→ Y , then they induce

the same maps Hn(X) −→ Hn(Y ).

It follows by the above lemma that if f : X −→ Y is a q-isomorphism and

g : X −→ Y is homotopic to f , then g is also a q-isomorphism. Therefore, we

say that a morphism in K(R) is a q-isomorphism if all of its representatives are

q-isomorphisms.

Remark 1.3.7. Let X and Y be chain complexes. If we reindex Y as a cochain

complex and form the total Hom cochain complex Tot
∏

(Hom(X, Y )), then an n-

cocycle f is a sequence of maps fp : Xp −→ Y n−p such that fpd = (−1)ndfp+1,
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that is, a morphism of chain complexes from X to the translate Y [−n] of Y . An

n-coboundary is a morphism f that is null homotopic. Thus,

Hn Tot
∏

(Hom(X, Y )) = HomK(R)(X,Y [−n]).

Lemma 1.3.8. If Y is a chain complex, then there is a natural isomorphism

Hn(Y ) ∼= HomK(R)(R[−n], Y ).

Proof. Let [f ] ∈ HomK(R)(R[−n], Y ). Then f(1) ∈ Yn and d(f(1)) = 0. So f(1) ∈

Zn(Y ). Therefore, there is a map

φ : HomK(R)(R[−n], Y ) −→ Hn(Y )

defined by φ([f ]) = f(1) + Bn(Y ). We claim that φ is well defined. Assume that

f ' g. Then there exists s : R[−n] −→ Y [1] such that f − g = ds+ sd by Definition

1.3.3. So f(1) − g(1) = d(y) where y = s(1). That is, f(1) − g(1) ∈ Bn(Y ). Thus,

f(1) + Bn(Y ) = g(1) + Bn(Y ). Hence, φ is well defined. We show that φ is one to

one. Suppose that [f ], [g] : R[−n] −→ Y such that φ([f ]) = φ([g]). We claim that f

is homotopic to g. We have φ([f ]) = φ([g]). Then f(1) + Bn(Y ) = g(1) + Bn(Y ),

that is, f(1) − g(1) + Bn(Y ) = Bn(Y ). Therefore, there exists y ∈ Yn+1 such that

d(y) = f(1)− g(1). Let hn : R −→ Yn+1 defined by 1 7−→ y. We extend hn trivially

to have a homotopy h. Hence, f ' g. Now let ȳ ∈ Hn(Y ). Choose f : R −→ Yn such

that 1 7−→ y. This induces the map f : R[−n] −→ Y . Thus, for each ȳ ∈ Hn(Y )

there exists a morphism [f ] ∈ HomK(R)(R[−n], Y ) such that φ([f ]) = ȳ. It is clear

that φ is a homomorphism of R-modules. Therefore, Hn(Y ) ∼= HomK(R)(R[−n], Y ).

Note that if f : X −→ Y , then it is clear that the following diagram

HomK(R)(R[−n], X) //

��

Hn(X)

��
HomK(R)(R[−n], Y ) // Hn(Y )

is commutative. Hence, there is a natural isomorphism

Hn(Y ) ∼= HomK(R)(R[−n], Y ).
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Lemma 1.3.9. Let f : X −→ Y be a map of chain complexes. Then the following

statements are equivalent.

(i) f is null homotopic.

(ii) T (f) is null homotopic.

Proof. Assume that f is null homotopic. Then there are maps sn : Xn −→ Yn+1

such that f = dY s+ sdX . Now note that

T (f)n+1 = fn = dn+1
Y sn + sn−1d

n
X = −dn+2

T (Y )sn+1 − sndn+1
T (X).

for all n. Thus, T (f) is null homotopic. Similarly, we can prove the converse.

Therefore, Lemma 1.3.9 implies that the translation functor T : Ch(R) −→

Ch(R) induces an automorphism of K(R). We call T again the translation functor

of K(R).

1.4 Spectral Sequences

In this section, we give the definition of spectral sequences and explain the conver-

gence of spectral sequences. The main references for this section are [6], [22], [33]

and [30].

Definition 1.4.1. A homology spectral sequence in the category R-mod of R-

modules consists of the following data:

(i) A family {Er
p,q} of R-modules for all integers p, q and r ≥ 1.

(ii) R-maps

drp,q : E
r
p,q −→ Er

p−r,q+r−1

that are differentials in the sense that drdr = 0.

(iii) Isomorphisms between Er+1
p,q and the homology of Er

?,? at the spot Er
p,q:

Er+1
p,q
∼= Ker(drp,q)/ Im(drp+r,q−r+1).
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There is a category of homology spectral sequences. A morphism f : E −→ Ē

is a family of R-maps f rp,q : E
r
p,q −→ Ēr

p,q for all r of bidegree (0, 0) such that f r

commutes with the differentials, that is, f rdr = d̄rf r and each f r+1
p,q is induced by

f rp,q on homology.

Definition 1.4.2. A cohomology spectral sequence in the category R-mod of R-

modules consists of the following data:

(i) A family {Ep,q
r } of R-modules for all integers p, q and r ≥ 1.

(ii) R-maps

dp,qr : Ep,q
r −→ Ep+r,q−r+1

r

that are differentials in the sense that drdr = 0.

(iii) Isomorphisms between Ep,q
r+1 and the homology of E?,?

r at the spot Ep,q
r :

Ep,q
r+1
∼= Ker(dp,qr )/ Im(dp−r,q+r−1

r ).

There is a category of cohomology spectral sequences. A morphism f : E −→ Ē

is a family of R-maps fp,qr : Ep,q
r −→ Ēp,q

r for all r of bidegree (0, 0) such that fr

commutes with the differentials, that is, frdr = d̄rfr and each fp,qr+1 is induced by

fp,qr on homology.

A filtration of a graded R-module G is

· · · ⊆ Fs−1Gn ⊆ FsGn ⊆ Fs+1Gn ⊆ · · · ⊆ Gn

for each n. The filtration is exhaustive if Gn = ∪sFsGn for each n and it is Hausdorff

if ∩sFsGn = 0 for each n. It is complete if Gn = limsGn/FsGn for each n.

Definition 1.4.3. Given a homology spectral sequence {Er
s,t, d

r : r ≥ 1} and a

filtered graded R-module G, we say that the spectral sequence

(i) converges weakly to G if the filtration is exhaustive and we have isomorphisms

E∞
s,t
∼= FsGs+t/Fs−1Gs+t for all s and t;

(ii) converges to G if (i) holds and the filtration of G is Hausdorff;
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(iii) converges strongly to G if (i) holds and the filtration of G is complete and

Hausdorff.

The following theorem is proved in [33, Comparison Theorem 5.2.12]

Theorem 1.4.4 (Comparison Theorem). Let Er
p,q and Ēr

p,q be two spectral se-

quences converge strongly to H? and H̄?, respectively. Suppose given a map h : H? −→

H̄? compatible with a morphism f : E −→ Ē of spectral sequences, that is, h maps

FpHn to FpH̄n and the associated maps FpHn/Fp−1Hn −→ FpH̄n/Fp−1H̄n correspond

to E∞
p,q −→ Ē∞

p,q. If f r : Er
p,q −→ Ēr

p,q is an isomorphism for all p and q and some r,

then f s : Es
p,q −→ Ēs

p,q is an isomorphism for all r ≤ s ≤ ∞ and h? : H? −→ H̄? is

an isomorphism.

Definition 1.4.5. Let D and E denote R-modules (which are bigraded in the rele-

vant cases) and let i : D −→ D, j : D −→ E and k : E −→ D be module homomor-

phisms. We present these data as in the diagram:

D
i // D

j~~~~
~~

~~
~

E
k

``@@@@@@@

and call {D,E, i, j, k} an exact couple if this diagram is exact, that is, Im i = Ker j,

Im j = Ker k and Im k = Ker i.

Now we have the following important result which is proved in [33, Proposition

5.9.2].

Theorem 1.4.6. An exact couple in which i, j and k have bidegrees (1,−1), (0, 0)

and (−1, 0) determines a homology spectral sequence {Er
s,t, d

r : r ≥ 1}.

The following dual result is proved in [22, Theorem 2.8].

Theorem 1.4.7. An exact couple in which i, j and k have bidegrees (−1, 1), (0, 0)

and (1, 0) determines a cohomology spectral sequence {Es,t
r , dr : r ≥ 1}.

A useful presentation of exact couples is the following unrolled exact couple

· · · i // Ds+1,? i // Ds,? i //

j{{xx
xx

xx
xx

x
Ds−1,?

jyyttttttttt

i // · · ·

Es,?

k

ddIIIIIIIII

Es−1,?

k

ddIIIIIIIII
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The following important result is proved in [22, Corollary 2.10]

Lemma 1.4.8. For r ≥ 1, there is an exact sequence

0 −→ Ds,?/Ker(ir : Ds,? −→ Ds−r,?) + iDs+1,? j̄−→ Es,?
r+1

k̄−→

Im(ir : Ds+r+1,? −→ Ds+1,?) ∩Ker(i : Ds+1,? −→ Ds,?) −→ 0.

Let D∞,? = lims{Ds,?, i} and D−∞,? = colims{Ds,?, i}. Both D∞,? and D−∞,?

have a decreasing filtration given by

F sD∞,? = Ker(D∞,? −→ Ds,?)

and

F̄ sD−∞,? = Im(Ds,? −→ D−∞,?).

These two filtrations have the following properties which are proved in [22, Propo-

sition 3.16].

Lemma 1.4.9. For an exact couple, the filtration F on the limit D∞,? is Hausdorff

and complete. The filtration F̄ on the colimit D−∞,? is exhaustive.

Definition 1.4.10. The spectral sequence associated to an exact couple

{Ds,?, Es,?, i, j, k}

is said to be conditionally convergent to the colimit D−∞,? if

D∞,? = lim
s
{Ds,?, i} = {0} = lim1

s
{Ds,?, i}.

We say the spectral sequence conditionally convergent to the limit D∞,? if D−∞,? =

{0}.

The following important theorem and its corollary are proved in [22, Theorem

3.19].

Theorem 1.4.11. Suppose {Ds,?, Es,?, i, j, k} is an exact couple satisfying Es,? =

{0} for all s < 0. Suppose further that the associated spectral sequence converges

conditionally to D−∞,?. Then the spectral sequence converges strongly to D−∞,? if

and only if lim1
r E

s,?
r = {0} for all s.
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Corollary 1.4.12. Suppose {Ds,?, Es,?, i, j, k} is an exact couple satisfying Es,? =

{0} for all s < 0. Suppose further that D∞,? = 0. Then the spectral sequence

converges to D−∞,? if and only if lim1
r E

s,?
r = {0} for all s.

The following result is in [6, Theorem 7.4].

Theorem 1.4.13. Suppose {Ds,?, Es,?, i, j, k} is an exact couple satisfying Es,? =

{0} for all s < 0. Suppose further that the associated spectral sequence converges

conditionally to D∞,?. Then the spectral sequence converges strongly to D∞,? if and

only if lim1
r E

s,?
r = {0} for all s.

Definition 1.4.14. A Cartan-Eilenberg resolution of a chain complex Y is an upper

half-plane double complex P consisting of projective R-modules together with a

chain map ε : P?,0 −→ Y such that for each n,

(i)

0 Ynoo Pn,0oo Pn,1oo · · ·oo ,

(ii)

0 Zn(Y )oo Zn(P0)oo Zn(P1)oo · · ·oo ,

(iii)

0 Bn(Y )oo Bn(P0)oo Bn(P1)oo · · ·oo ,

and

(iv)

0 Hn(Y )oo Hn(P0)oo Hn(P1)oo · · ·oo

are projective resolutions.

Note that Tot⊕(P ) −→ Y is a q-isomorphism [33, Exercise 5.7.1].

The following result is proved in [33, Lemma 5.7.2].

Lemma 1.4.15. Every chain complex Y of R-modules has a Cartan-Eilenberg res-

olution.

The following result is proved in [30, Theorem 11.34].
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Theorem 1.4.16 (Künneth Spectral Sequence). Let X and Y be non-negative

chain complexes with X flat. Then there is a strongly convergent first quadrant

spectral sequence

E2
p,q =

⊕
s+t=q

TorRp (Hs(X), Ht(Y )) =⇒ Hp+q(Tot⊕(X ⊗ Y )).

The dual result for cohomology, see [30, Theorem 11.34], is the following.

Theorem 1.4.17 (Künneth Spectral Sequence). Let X and Y be non-negative

chain complexes. If either X is projective or Y is injective, there is a strongly

convergent first quadrant spectral sequence

Ep,q
2 =

⊕
s+t=q

ExtpR(Hs(X), Ht(Y )) =⇒ Hp+q(Tot
∏

(Hom(X, Y ))).

Theorem 1.4.18 (Universal Coefficient Spectral Sequence). Let X be non-

negative chain complex of projective R-modules and M an R-module. Then there is

a strongly convergent first quadrant spectral sequence

Ep,q
2 = ExtpR(Hq(X),M) =⇒ Hp+q(HomR(X,M)).

Proof. Let M −→ I be an injective resolution. Consider the first quadrant double

cochain complex Hom(X, I). Since Xp is projective,

Hq(Tot
∏

(Hom(X, I))) = HomR(Xp, Hq(I)).

Therefore, the first spectral sequence has

IEp,q
2 =

0 if q > 0,

Hp(HomR(X,M)) if q = 0.

It follows that this spectral sequence collapses to yield Hp(Tot
∏

(Hom(X, I))) =

Hp(HomR(X,M)). Since Iq is injective,

Hq(Hom(X, In)) = HomR(Hq(X), In).

So the second spectral sequence has

IIEp,q
2 = ExtpR(Hq(X),M).

Hence, there is a strongly convergent first quadrant spectral sequence

Ep,q
2 = ExtpR(Hq(X),M) =⇒ Hp+q(HomR(X,M)).
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A filtration F of a chain complex Y is an ordered family of chain subcomplexes

· · · ⊆ Fp−1Y ⊆ FpY ⊆ · · ·

of Y . The filtration F is called bounded if for each n, there are integers s < t such

that FsYn = 0 and FtYn = Yn. The filtration F is called stupid if

(FpY )n =

0 for n > p,

Yn for n ≤ p.

The following result is important and is proved in [33, Theorem 5.5.1].

Theorem 1.4.19. Let Y be a chain complex. Suppose that the filtration on Y is

bounded. Then there is an associated spectral sequence with

E1
p,q = Hp+q(FpY/Fp−1Y )

converging strongly to H?(Y ).

Moreover, the following result is important and is proved in [22, Theorem 3.5].

Theorem 1.4.20. Let φ : X −→ Y be a chain map respecting the filtration, that is,

φ(FnX) ⊂ FnY for each n. Then φ induces a morphism of the associated spec-

tral sequences. If for some n, φn : En(X) −→ En(Y ) is an isomorphism, then

φr : Er(X) −→ Er(Y ) is an isomorphism for all r, n ≤ r ≤ ∞. If the filtrations are

bounded, then φ induces an isomorphism φ? : H?(X) −→ H?(Y ).



Chapter 2

The Derived Category of a

Commutative Ring

In this chapter, we give some preliminaries on triangulated categories and the derived

category of a commutative ring where the main references of this chapter are [13], [33]

and [25]. In section one, we give the definition of localizations and the left and right

fractions. In section two, we define triangulated categories and present some of its

elementary properties. In section three, we show that the derived category is a

triangulated category. In section four, we give definitions of the derived functors,

the derived tensor product and the derived Hom.

2.1 Localization and the Fractions

In this section, we define the derived category and give the definition of the left and

right fractions. The main references for this section are [13] and [33].

Definition 2.1.1. If S is a collection of morphisms in a category C, then a local-

ization of C with respect to S is a category S−1C and a functor q : C −→ S−1C with

the following properties:

(i) q(s) is an isomorphism in S−1C for every s ∈ S.

(ii) Any functor F : C −→ C′ such that F (s) is an isomorphism for all s ∈ S can

be factorized uniquely through q. That is, we have the following commutative

33
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diagram.

C
q //

F
��

S−1C

||
C ′

It follows that the category S−1C is unique up to equivalence.

The following theorem is proved in [13, Theorem III.2.1].

Theorem 2.1.2. Let A be an abelian category, Ch(A) the category of chain com-

plexes over A. There exists a category D(A) and a functor q : Ch(A) −→ D(A)

with the following properties.

(a) q(f) is an isomorphism for any q-isomorphism f .

(b) Any functor F : Ch(A) −→ D transforming q-isomorphisms into isomor-

phisms can be uniquely factorized through D(A), that is, there exists a unique

functor G : D(A) −→ D with F = Gq.

The category D(A) is called the derived category of the chain complexes of A. In

particular, if A is the category of R-modules, then we get D(R) the derived category

of the commutative ring R.

The problem is that morphisms in D(A) are just formal expressions of the form

s−1
n fn . . . s

−1
2 f2s

−1
1 f1

where fi are morphisms in Ch(A) and si are q-isomorphisms. To work with such

expression we need to simplify it and so we need the following definition.

Definition 2.1.3. A collection S of morphisms in a category C is called a multi-

plicative system in C if the following conditions are satisfied:

(i) S is closed under composition, that is st ∈ S for any s, t ∈ S whenever the

composition is defined and idX ∈ S for any object X ∈ C

(ii) (Ore condition) for any f in C, s ∈ S, there exist g in C, t ∈ S such that the

following diagram

W
g //

t
��

Z

s

��
X

f // Y
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is commutative. Moreover, the symmetric statement is also valid, that is the

following diagram

W Z
goo

X

t

OO

Y
foo

s

OO

is commutative.

(iii) (Cancellation) Let f, g be two morphisms from X to Y , then the following two

conditions are equivalent:

(a) sf = sg for some s ∈ S with source Y .

(b) ft = gt for some t ∈ S with target X.

2.1.1 The Left and Right Fractions

In this subsection, we give the definitions of the left and right fractions. Let C be a

category and S a collection of morphisms in C.

We call a chain in C of the form

fs−1 : X X1
soo f // Y

a left fraction if s is in S. We say that fs−1 is equivalent to

X X2
too g // Y

if there exists a fraction

X X3
oo // Y

fitting into a commutative diagram in C of the form

X1

f

  A
AA

AA
AA

A
s

~~}}
}}

}}
}}

X X3
oo

OO

//

��

Y

X2

t

``AAAAAAAA g

>>~~~~~~~~
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Next we show that the above relation is an equivalence relation. It is obvious that

it is reflexive and symmetric. Now we show that it is transitive. Assume that

X X ′soo f // Y

is equivalent to

X X ′′too g // Y

and

X X ′′too g // Y

equivalent to

X X ′′′uoo e // Y.

That is we have the following commutative diagrams

X ′

f

  B
BB

BB
BB

B
s

}}||
||

||
||

X Z ′oo

r

OO

//

h
��

Y

X ′′
t

aaBBBBBBBB g

>>||||||||

X ′′

g

  B
BB

BB
BB

B
t

}}||
||

||
||

X Z ′′oo

p

OO

//

i
��

Y

X ′′
u

aaBBBBBBBB e

>>||||||||

with s, t, u, sr, tp all belonging to S. We claim that there is a commutative diagram

X ′

f

!!C
CC

CC
CC

C
s

}}{{
{{

{{
{{

X Z ′′′oo

q

OO

//

j

��

Y

X ′′′
u

aaCCCCCCCC e

=={{{{{{{{

with sq ∈ S. Using Ore condition, we get the following commutative diagram

W
v //

k
��

Z ′

sr

��
Z ′′

tp // X
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where v ∈ S. Notice that the two morphisms f1 = hv and f2 = pk from W to

X ′′ satisfy tf1 = tf2. Therefore the cancellation condition says that there exists

a morphism w : Z ′′′ −→ W where w ∈ S such that f1w = f2w. Now putting

q = rvw : Z ′′′ −→ X ′ and j = ikw : Z ′′′ −→ X ′′′, we see that

sq = srvw = tpkw = uikw = uj

and

fq = frvw = ghvw = gpkw = eikw = ej.

Therefore we get the following commutative diagram

X ′

f

!!C
CC

CC
CC

C
s

}}{{
{{

{{
{{

X Z ′′′oo

q

OO

//

j

��

Y

X ′′′
u

aaCCCCCCCC e

=={{{{{{{{

Now we define the composition of equivalence classes of left fractions. Let

X X ′soo f // Y

be a left fraction between X and Y and

Y Y ′too g // Z

a left fraction between Y and Z. Then using Ore condition, there exist an object U

and morphisms u : U −→ X ′ in S and h : U −→ Y ′ such that

U
h //

u

��

Y ′

t
��

g // Z

X X ′soo f // Y

is a commutative diagram. It follows that

X U
suoo gh // Z

is a left fraction between X and Z. We show that the equivalence class of the

composite is independent of the choice of X ′ and Y ′. Let

X X ′′s′oo f ′ // Y
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be a left fraction equivalent to

X X ′soo f // Y.

That is, there exist an object V and morphisms v : V −→ X ′ and v′ : V −→ X ′′ such

that the following diagram

X ′

s

}}||
||

||
|| f

!!B
BB

BB
BB

B

X V //oo

v

OO

v′

��

Y

X ′′
s′

aaCCCCCCCC f ′

==||||||||

is commutative and sv = s′v′ is in S. Using Ore condition, there exists an object U ′

and morphisms u′ : U ′ −→ X ′′ in S and h′ : U ′ −→ Y ′ such that the following diagram

U ′ h′ //

u′

��

Y ′ g //

t
��

Z

X X ′′s′oo f ′ // Y

is commutative. It follows that

X U ′s′u′oo gh′ // Z

is a left fraction between X and Z. Using Ore condition, we see that there exists an

object W , a morphism w : W −→ V in S and a morphism a : W −→ U such that the

following diagram

W
a //

w

��

U

u

��
V

v // X ′

is commutative. Using Ore condition again, we see that there exists an object W ′,

a morphism w′ : W ′ −→ V in S and a morphism a′ : W ′ −→ U ′ such that the following

diagram

W ′ a′ //

w′

��

U ′

u′

��
V

v′ // X ′′

is commutative. Using Ore condition for the third time, we see that there exists an

object C and morphisms c : C −→ W and c′ : C −→ W ′ in S such that the following
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diagram

C
c //

c′

��

W

w

��
W ′ w′ // V

is commutative. Note that

suac = svwc = s′v′w′c′ = s′u′a′c′

is in S since s′v′, w′ and c′ are in S. But

thac = fuac = fvwc = f ′v′w′c′ = f ′u′a′c′ = th′a′c′.

Therefore, using the cancellation condition, we see that there exists an object M

and a morphism m : M −→ C in S such that

hacm = h′a′c′m.

Let b = acm : M −→ U and b′ = a′c′m : M −→ U ′. Then we have that

sub = suacm = s′u′a′c′m = s′u′b′

is in S and ghb = gh′b′. That is the following diagram

U
gh

  A
AA

AA
AA

A
su

~~||
||

||
||

X M //oo

b

OO

b′

��

Z

U ′
s′u′

``AAAAAAAA gh′

>>}}}}}}}

is commutative. Hence, the equivalence class of the composite is independent of the

choice of X ′ and similarly we can verify that the composite is independent of the

choice of Y ′. Therefore, we have defined a product of the sets of equivalence classes

of left fractions between X and Y and equivalence classes of left fractions between

Y and Z into the set of equivalence classes of left fractions between X and Z. Now

we show that the composition of equivalence classes of left fractions is associative.

Consider the following left fractions

X X ′soo f // Y
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Y Y ′too g // Z

Z Z ′
uoo h //W.

Using Ore condition three times, we see that we have the following commutative

diagram

M
c′ //

c

��

V
b′ //

b
��

Z ′
h //

u

��

W

U
a′ //

a

��

Y ′ g //

t
��

Z

X X ′soo f // Y.

in which a, b and c are in S. Note that the composition of the first two left fractions

is represented by

X U
saoo ga′ // Z

and its composition with the third left fraction is represented by

X M
sacoo hb′c′ //W.

While the composition of the last two left fractions is represented by

Y V
tboo hb′ //W

and its composition with the first left fraction is represented by

X M
sacoo hb′c′ //W.

Hence, the composite is associative. Next we prove that

X X
idoo id // X

is the identity morphism. Denote the above left fraction by idX . Consider the

following left fraction between X and Y .

X X ′soo f // Y.

Thus, the following commutative diagram

X ′ id //

s

��

X ′ f //

s

��

Y

X X
idoo id // X
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implies that fs−1 idX = fs−1. Similarly, the following commutative diagram

W ′ g //

id
��

X
id //

id
��

X

W W ′too g // X

implies that idX gt
−1 = gt−1 where

W W ′too g // X

is a left fraction between W and X. Hence, idX is the identity morphism.

We define a right fraction between X and Y to be a chain of the form

s−1f : X
f // Y1 Y.

soo

Similarly, we define a relation on right fractions as follows. We say that s−1f is

equivalent to

X
g // Y2 Y

too

if there exists a fraction

X // Y3 Yoo

fitting into a commutative diagram in C of the form

Y1

��
X

f
??~~~~~~~~
//

g
��@

@@
@@

@@
@ Y3 Yoo

s
__????????

t����
��

��
��

Y2

OO

Similarly, we can show that the above relation is an equivalence relation.

The following important result is proved in [13, Lemma III.2.8].

Theorem 2.1.4. Let S be a multiplicative system in a category C. Then the category

S−1C can be described as follows. S−1C has the same objects as C and HomS−1C(X, Y )

is the family of equivalence classes of left fractions between X and Y . The universal

functor q : C −→ S−1C sends f : X −→ Y to X = X
f // Y .

Remark 2.1.5. S−1C can be constructed using equivalence classes of right fractions.
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The following result is proved in [33, Corollary 10.3.11].

Lemma 2.1.6. If C is an additive category, then so is S−1C and q is an additive

functor.

2.2 Triangulated Categories

In this section, we present the axioms and basic properties of triangulated categories.

The main references for this section are [25] and [33].

Definition 2.2.1. A triangle in some category of complexes (K(A), D(A), · · · )

where A is an abelian category is a diagram of the form

X
u // Y

v // Z
w // X[−1].

Definition 2.2.2. A triangle of the form

X
u // Y

v // cone(u) ∂ // X[−1]

is called a strict triangle on u.

Definition 2.2.3. We say that a triangle

X
u // Y

v // Z
w // X[−1]

is distinguished if it is isomorphic to a strict triangle on u′ : X ′ −→ Y ′ in the sense

that there is a commutative diagram of the form

X
u //

f

��

Y
v //

g

��

Z
w //

h

��

X[−1]

f [−1]

��
X ′ u′ // Y ′ v′ // cone(u′) ∂ // X ′[−1]

where f , g and h are isomorphisms in the corresponding category.

Definition 2.2.4. Let C be an additive category. We say that C is a triangulated

category if it is equipped with an automorphism T : C −→ C called the translation

functor and with a class of triangles called distinguished triangles which are subject

to the following four axioms:
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(TR1) (a) Every morphism X
u // Y can be completed to a distinguished triangle

X
u // Y

v // Z
w // TX.

(b) Any triangle isomorphic to a distinguished one is itself distinguished.

(c) The triangle

X
id // X // 0 // TX

is a distinguished triangle.

(TR2) A triangle

X
u // Y

v // Z
w // TX

is distinguished if and only if the triangle

Y
v // Z

w // TX
−Tu // TY

is distinguished.

(TR3) For any diagram of the form

X
u //

f

��

Y
v //

g

��

Z
w // TX

Tf

��
X ′ u′ // Y ′ v′ // Z ′

w′ // TX ′

where the rows are distinguished triangles and the first square is commutative,

there is a morphism h : Z −→ Z ′, not necessarily unique, which makes the

diagram

X
u //

f

��

Y
v //

g

��

Z
w //

h
��

TX

Tf

��
X ′ u′ // Y ′ v′ // Z ′

w′ // TX ′

commutative.

(TR4) (The octahedral axiom). Let f : X −→ Y and g : Y −→ Y ′ be two composable

morphisms. Let us be given distinguished triangles

X
f // Y // Z // TX

X
gf // Y ′ // Z ′ // TX
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Y
g // Y ′ // Y ′′ // TY

Then we can complete this to a commutative diagram

X
f //

id
��

Y //

g

��

Z //

��

TX

id
��

X
gf //

��

Y ′ //

��

Z ′ //

��

TX

��
0 //

��

Y ′′ id //

��

Y ′′ //

��

0

��
TX

Tf // TY // TZ // T 2X

where the first and second row and second column are given three distinguished

triangles, and every row and column in the diagram is a distinguished triangle.

The following important theorem is proved in [33, Proposition 10.2.4].

Theorem 2.2.5. K(R) is a triangulated category.

The following result is in [33, Corollary 10.2.5].

Corollary 2.2.6. Let C be a full subcategory of Ch(R) and K its corresponding quo-

tient category. Suppose that C is an additive category and is closed under translation

and the formation of mapping cones. Then K is a triangulated category.

Therefore, we deduce from Corollary 2.2.6 that Kb(R), K−(R) and K+(R) are

triangulated categories.

2.2.1 Basic Properties of Triangulated Categories

We present some elementary properties of triangulated categories. We start by

giving the following result.

Lemma 2.2.7. Let C be a triangulated category with a translation functor T . If

X
u // Y

v // Z
w // TX

is a distinguished triangle in C, then the composites vu, wv and Tuw are zero.
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Proof. Consider the following diagram

X
id //

id
��

X //

u

��

0 // TX

X
u // Y

v // Z
w // TX

Then by (TR3), we can complete the diagram to get the following commutative

diagram

X
id //

id
��

X //

u

��

0 //

��

TX

id
��

X
u // Y

v // Z
w // TX

and now we see that vu = 0. Also from the above and axiom (TR2) we deduce that

wv = 0 and Tuw = 0.

Definition 2.2.8. Let C be a triangulated category with a translation functor T .

Let A be an abelian category. An additive functor H : C −→ A is called homological

if for every distinguished triangle

X
u // Y

v // Z
w // TX,

the sequence

· · · // H(X)
H(u) // H(Y )

H(v) // H(Z)
H(w) // H(TX) // · · ·

is exact in the abelian category A.

Definition 2.2.9. Let C be a triangulated category with a translation functor T .

Let A be an abelian category. An additive functor H : C −→ A is called cohomological

if for every distinguished triangle

X
u // Y

v // Z
w // TX,

the sequence

· · · // H(Z)
H(v) // H(Y )

H(u) // H(X)
H(w) // H(T−1X) // · · ·

is exact in the abelian category A.

The following lemma is proved in [25, Lemma 1.1.10].
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Lemma 2.2.10. Let C be a triangulated category. Let W be an object of C. Then

the functor HomC(W,−) is homological.

The following lemma is proved in [25, Remark 1.1.11].

Lemma 2.2.11. Let C be a triangulated category. Let W be an object of C. Then

the functor HomC(−,W ) is cohomological.

Now consider the triangulated category K(R) and the chain complex R[−n].

Then for any distinguished triangle

X
u // Y

v // Z
w // X[−1],

the sequence

· · · −→ HomK(R)(R[−n], X)
u?−→ HomK(R)(R[−n], Y )

v?−→

HomK(R)(R[−n], Z)
w?−→ HomK(R)(R[−n], X[−1]) −→ · · ·

is exact. Using Lemma 1.3.8, we have the following result.

Corollary 2.2.12. If

X
u // Y

v // Z
w // X[−1]

is a distinguished triangle, then the following homology sequence

· · · // Hn(X)
u? // Hn(Y )

v? // Hn(Z)
w? // Hn−1(X) // · · ·

is exact.

Lemma 2.2.13. Let f : X −→ Y be a morphism in K(R). Then the following

conditions are equivalent.

(i) The morphism f is a q-isomorphism.

(ii) The cone of f is acyclic.

Proof. Consider the following distinguished triangle

X
f // Y // cone(f) // X[−1].
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By Corollary 2.2.12, we have the following long exact sequence of homology

· · · // Hn(X)
f? // Hn(Y ) // Hn(cone(f)) // Hn−1(X)

f? // · · ·

Since f is a q-isomorphism, f? is an isomorphism. Thus, Hn(cone(f)) = 0 for each

n. Hence, cone(f) is acyclic. Now assume that cone(f) is acyclic. From the above

long exact sequence of homology

· · · // Hn+1(cone(f)) // Hn(X)
f? // Hn(Y ) // Hn(cone(f)) // · · ·

we deduce that f? is an isomorphism, that is, f is a q-isomorphism.

Remark 2.2.14. Lemma 2.2.13 also holds if we replace K(R) by any of its full

subcategories Kb(R), K−(R) and K+(R) of bounded, bounded above and bounded

below chain complexes of R-modules.

Lemma 2.2.15. (Five Lemma) Let C be a triangulated category with a translation

functor T . Consider the following diagram

X //

f

��

Y //

g

��

Z //

h
��

TX

Tf

��
X ′ // Y ′ // Z ′ // TX ′

where the rows are distinguished triangles. If f and g are isomorphisms in C, then

so is h.

Proof. Assume that f and g are isomorphisms. Now consider the following diagram

· · · // HomC(Z
′, Y ) //

g?

��

HomC(Z
′, Z) //

h?

��

HomC(Z
′, TX)

Tf?

��

// · · ·

· · · // HomC(Z
′, Y ′) // HomC(Z

′, Z ′) // HomC(Z
′, TX ′) // · · ·

We see that the diagram is commutative and the rows are exact by Lemma 2.2.10.

Also, f?, g?, Tf? and Tg? are isomorphisms. Then the Five Lemma implies that h?

is an isomorphism. Therefore, there exists a : Z ′ −→ Z such that h?(a) = ha = idZ′ .

Also, consider the following diagram

· · · // HomC(TX
′, Z) //

Tf?

��

HomC(Z
′, Z) //

h?

��

HomC(Y
′, Z) //

g?

��

· · ·

· · · // HomC(TX,Z) // HomC(Z,Z) // HomC(Y, Z) // · · ·



CHAPTER 2. THE DERIVED CATEGORY OF A COMMUTATIVE RING 48

We see that the diagram is commutative and the rows are exact by Lemma 2.2.11.

Also, f ?, g?, Tf ?, and Tg? are isomorphisms. By the Five Lemma, h? is an isomor-

phism. Therefore, there exists b : Z ′ −→ Z such that h?(b) = bh = idZ . Thus,

b = b(ha) = (bh)a = a.

Hence, h is an isomorphism.

Lemma 2.2.16. Every distinguished triangle, in a triangulated category C with a

translation functor T , is determined up to isomorphism by any of its morphisms.

Proof. Let u : X −→ Y be given. By (TR1), u can be completed to a triangle. Now

let

X
u // Y

v // Z
w // TX

and

X
u // Y

v′ // Z ′
w′ // TX

be two distinguished triangles completing u. Therefore, we have the following dia-

gram

X
u //

id
��

Y
v //

id
��

Z
w // TX

id
��

X
u // Y

v′ // Z ′
w′ // TX

By (TR3), this diagram can be completed to have

X
u //

id
��

Y
v //

id
��

Z
w //

h
��

TX

id
��

X
u // Y

v′ // Z ′
w′ // TX

But id : X −→ X and id: Y −→ Y are isomorphisms. Now Lemma 2.2.15 implies

that h is an isomorphism. Thus, Z is well defined up to isomorphism.

Remark 2.2.17. Let C be a triangulated category with translation functor T . Sup-

pose we have a distinguished triangle

X
u // Y

v // Z
w // TX,

and a factoring of the identity on X as

X
u // Y

u′ // X
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Then we have a canonical isomorphism Y ∼= X ⊕ Z. This is easily seen by the

following diagram

X
u //

id
��

Y
v //

h
��

Z
w //

id
��

TX

id
��

X // X ⊕ Z // Z // TX

where h is clearly an isomorphism by the Five Lemma.

Remark 2.2.18. Let C be a triangulated category with a translation functor T .

Suppose that we have the following distinguished triangle

X
β // Y

γ // Z // TX

and a morphism α : Y −→ W such that the composite αβ is zero. Then there

exists a morphism ᾱ : Z −→ W such that α = ᾱγ. For we have the following exact

sequence

HomC(TX,W ) −→ HomC(Z,W )
γ?

−→ HomC(Y,W )
β?

−→ HomC(X,W )

and if β?(α) = 0, then there exists ᾱ ∈ HomC(Z,W ) such that γ?(ᾱ) = α. Dually,

given the same distinguished triangle and a morphism α : W −→ Y such that the

composite γα = 0, there exists a morphism ᾱ : W −→ X such that βᾱ = α.

2.2.2 Homotopy Limits and Colimits

In this subsection, we define the notions of homotopy limit and homotopy colimit.

Definition 2.2.19. Suppose that C is a triangulated category with a translation

functor T and assume that countable products exist in C. Let

X0 X1
j0oo X2

j1oo X3
j2oo · · ·oo

be a sequence of objects and morphisms in C. The homotopy limit of the sequence,

denoted holimiXi, is by definition given up to non-canonical isomorphism by the

following distinguished triangle

holimiXi
//
∏

i≥0Xi
1−g //

∏
i≥0Xi // T holimiXi

where g is induced by the maps j1, j2, . . ..
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Definition 2.2.20. Suppose that C is a triangulated category with a translation

functor T and assume that countable coproducts exist in C. Let

X0
j1 // X1

j2 // X2
j3 // · · ·

be a sequence of objects and morphisms in C. The homotopy colimit of the sequence,

denoted hocolimiXi, is by definition given up to non-canonical isomorphism by the

following distinguished triangle∐
i≥0Xi

1−shift//
∐

i≥0Xi // hocolimiXi
// T

∐
i≥0Xi

where the shift map is the direct sum of ji+1 : Xi −→ Xi+1.

The following result is proved in [25, Lemma 1.6.5].

Lemma 2.2.21. If we have two sequences

X0
// X1

// X2
// · · ·

and

Y0
// Y1

// Y2
// · · ·

then non-canonically

hocolim
i
{Xi ⊕ Yi} ∼= {hocolim

i
Xi} ⊕ {hocolim

i
Yi}.

The following result is proved in [25, Lemma 1.6.7].

Lemma 2.2.22. Let

X0
0 // X1

0 // X2
0 // · · ·

be a sequence. Then the homotopy colimit of this sequence is 0.

The following result is proved in [25, Lemma 1.7.1].

Proposition 2.2.23. Let

X0
// X1

// X2
// · · ·

be a sequence. Suppose we take any increasing sequence of integers

0 ≤ i0 < i1 < i2 < i3 < · · · .
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Then we can form the subsequence

Xi0
// Xi1

// Xi2
// · · ·

Then the two sequences have isomorphic homotopy colimits.

Definition 2.2.24. Let

· · · // X2
// X1

// X0

be a sequence. We say that this sequence is pro-zero if for each r, there exists s > r

such that Xs −→ Xr is zero.

It follows that if a sequence is pro-zero, then its homotopy limit is 0.

The following result is proved in [25, Proposition 1.6.8].

Proposition 2.2.25. Let e : X −→ X be idempotent, that is, e2 = e. Then there

are morphisms φ and ψ

X
φ // Y

ψ // X

with φψ = idY and ψφ = e. Moreover,

Y ∼= hocolim(X
e−→ X

e−→ X
e−→ · · · ).

2.3 The Derived Category

In this section, we show that the derived category D(R) is a triangulated category.

The main references for this section are [13] and [33].

Proposition 2.3.1. If S is the collection of q-isomorphisms in K(R), then S is

multiplicative system.

Proof. Assume that S is the collection of q-isomorphisms in K(R). We show that

S is multiplicative system. Axiom (i) is obvious. Now we show Ore condition.

Let f : X −→ Y and s : Z −→ Y be given. Using (TR1), form the following

distinguished triangle

Z
s // Y

u // C
∂ // Z[−1].
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Also, embed uf : X −→ C into the distinguished triangle

W
t // X

uf // C
v //W [−1].

By (TR3), there is a morphism g such that the diagram

W
t //

g

��

X
uf //

f

��

C
v //

id

��

W [−1]

Tg

��
Z

s // Y
u // C

∂ // Z[−1]

is commutative. We show that t is a q-isomorphism. Lemma 2.2.13 implies that

H?(C) = 0 since s is q-isomorphism. Now the long exact homology sequence of the

top distinguished triangle implies that t is q-isomorphism, that is, t ∈ S. Similarly,

we can prove the symmetric assertion. Next we show the cancellation condition

holds. Let f, g : X −→ Y . Let s : Y −→ Y ′ be in S with sf = sg. We show that

there exists t : X ′ −→ X such that ft = gt. Using (TR1), we have the following

distinguished triangle

Z
u // Y

s // Y ′ // Z[−1].

Since s ∈ S, we have that H?(Z) = 0. Therefore, we have the following exact

sequence

HomK(R)(X,Z)
u? // HomK(R)(X, Y )

s? // HomK(R)(X, Y
′).

But s(f − g) = 0. Thus, there exists h : X −→ Z such that f − g = uh. Using

(TR1), we have the following commutative diagram

X ′ t // X
h // Z // X ′[−1].

But H?(Z) = 0, which implies that t is q-isomorphism, that is, t ∈ S. Since ht = 0,

we have (f − g)t = 0, that is, ft = gt. Hence, S is multiplicative system.

Definition 2.3.2. The localization S−1K(R) of the homotopy category of chain

complexes K(R) is the derived category D(R) where S is the collection of q-isomorphisms

in K(R).

The following result is proved in [13, Proposition III.4.2]
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Theorem 2.3.3. The localization of K(R) by q-isomorphisms is equivalent to the

localization of Ch(R) by q-isomorphisms. The same is true for K?(R) and Ch?(R)

where ? = +, − or b.

2.3.1 D(R) is Triangulated

In this subsection, we show the following theorem which says that the derived cate-

gory is a triangulated category.

Theorem 2.3.4. D(R) is a triangulated category.

Proof. First note that Lemma 2.1.6 and Theorem 2.2.5 combine together to give

additivity of D(R) and the formula T (fs−1) = T (f)T (s)−1 defines a translation

functor T on D(R). To prove (TR1), it is enough to check that every morphism can

be completed to a distinguished triangle. Let X
u // Y be in D(R) represented by

the fraction

X Z
u′ //soo Y.

Since K(R) is triangulated by Theorem 2.2.5, we can complete u′ to a distinguished

triangle

Z
u′ // Y

v //W
w // TZ

Now consider the following triangle

X
u // Y

v //W
Tsw // TX

in D(R). Therefore, we have the following commutative diagram

Z
u′ //

s

��

Y
v //

id
��

W
w //

id
��

TZ

Ts
��

X
u // Y

v //W
Tsw // TX

Since s is invertible in D(R),

X
u // Y

v //W
Tsw // TX

is distinguished. (TR2) obviously follows from the definitions and from the proper-

ties of T . Next we show (TR3). Let

X
u // Y

v // Z
w // TX
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and

X ′ u′ // Y ′ v′ // Z ′
w′ // TX ′

be two distinguished triangles in D(R) with morphisms f : X −→ X ′ and g : Y −→

Y ′ such that gu = u′f . We claim that there exists a morphism h : Z −→ Z ′ such

that the following diagram is commutative

X
u //

f

��

Y
v //

g

��

Z
w //

h
��

TX

Tf

��
X ′ u′ // Y ′ v′ // Z ′

w′ // TX ′

We can assume that the given distinguished triangles in D(R) are represented by

distinguished triangles in K(R) and the morphisms f , g in D(R) are represented by

left fractions

X X ′′ f̄ //soo X ′

and

Y Y ′′ ḡ //too Y ′,

respectively. We must construct the arrows r and h̄ in the following diagram

X ′′ u′′ //

s

}}||
||

||
||

f̄
��

Y ′′ v′′ //

t

~~||
||

||
||

ḡ

��

Z ′′
w′′ //

r

~~}}
}}

}}
}}

h̄
��

TX ′′

Ts{{www
ww

ww
ww

T f̄

��

X
u // Y

v // Z
w // TX

X ′ u′ // Y ′ v′ // Z ′
w′ // TX ′

We claim that by changing, if necessary, the fraction representing f : X −→ X ′ we

can guarantee the existence of a morphism u′′ : X ′′ −→ Y ′′ in K(R) such that both

squares containing this morphism are commutative. Using the Ore condition, we

complete the following diagram to a commutative square in K(R)

X̄
ū //

t̄
��

Y ′′

t
��

X ′′
us
// Y

where t̄ ∈ S. Replace X ′′ by X̄, s by st̄, f̄ by f̄ t̄. It is clear that

X X̄
st̄oo f̄ t̄ // X ′
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represents the same morphism f : X −→ X ′ in D(R). Next, ū : X̄ −→ Y ′′ makes

one of the two squares commutative, the square tū = ust̄ while the second square

commutes in D(R) but not necessarily in K(R) where we have

u′f̄ s−1 = ḡt−1u = ḡū(t̄)−1s−1

since u′f = gu. So u′f̄ t̄ = ḡū in D(R). To make the second square commutative

in K(R), we must change the representative of f once more. Let us consider two

morphisms u′f̄ t̄, ḡū : X̄ −→ Y ′ in K(R). As they are equal in D(R), there exists

q : ¯̄X −→ X̄ where q ∈ S. Then we take ¯̄X as the new X ′′ and the rest is clear.

Now we complete u′′ : X ′′ −→ Y ′′ to the following distinguished triangle in K(R)

X ′′ u′′ // Y ′′ v′′ // Z ′′
w′′ // TX ′′.

Using (TR3) for K(R), we choose h̄ making the diagram commutative. Similarly,

we construct r and since s, t are in S we see that r ∈ S. Denote by h the morphism

Z −→ Z ′ in D(R) represented by the left fraction

Z Z ′′
h̄ //roo Z ′.

Hence, (TR3) holds for D(R). Next we show (TR4). Suppose that we have the

following three distinguished triangles in D(R)

X
α // Y // Z // TX

X
βα // Y ′ // Z ′ // TX

Y
β // Y ′ // Y ′′ // TY

We claim that we have a commutative diagram

X
α //

id
��

Y //

β

��

Z //

��

TX

id
��

X
βα //

��

Y ′ //

��

Z ′ //

��

TX

��
0 //

��

Y ′′ id //

��

Y ′′ //

��

0

��
TX

Tα // TY // TZ // T 2X
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Let α and β be represented by some left fractions

X U
f //soo Y

and

Y V
g //too Y ′

with s, t ∈ S. Composition is represented by

W
h //

t′

��

V
g //

t
��

Y ′

X U
f //soo Y

where t′ ∈ S. Therefore, βα is represented by the left fraction

X W
gh //st′oo Y ′.

We see that the left fraction

X W
ft′ //st′oo Y

represents in D(R) the same morphism α. Now consider the following three distin-

guished triangles in K(R)

W
h // V // cone(h) // TW,

V
g // Y ′ // cone(g) // TV,

W
gh // Y ′ // cone(gh) // TW.

We have the following diagram in D(R)

W
h //

st′

��

V //

t

��

cone(h) //

∃ r

��

TW

Ts

��
X

α // Y // Z // TX

in which the left square is commutative and s, t are isomorphisms in D(R). By the

axiom (TR3) forD(R), which we just proved, there exists a morphism r : cone(h) −→

Z in D(R) that makes the diagram commutative. By Lemma 2.2.15, we have that r
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is an isomorphism since st′, t are isomorphisms in D(R). Similarly, there exists an

isomorphism r′ : cone(g) −→ Y ′′ in D(R) such that

V
g //

t

��

Y ′ //

id

��

cone(g) //

r′

��

TV

Tt

��
Y

β // Y ′ // Y ′′ // TY

is an isomorphism of distinguished triangles. Also, there exists an isomorphism

r′′ : cone(gh) −→ Z ′ in D(R) such that

W
gh //

st′

��

Y ′ //

id

��

cone(gh) //

r′′

��

TW

Tst′

��
X

βα // Y ′ // Z ′ // TX

is an isomorphism of distinguished triangles. Now since K(R) is triangulated, The-

orem 2.2.5, we can complete the above three distinguished triangles to the following

commutative diagram

W
h //

id

��

V //

g

��

cone(h) //

��

TW

id

��
W

��

gh // Y ′ //

��

cone(gh) //

��

TW

��
0 //

��

cone(g) id //

��

cone(g) //

��

0

��
TW

Th // TV // T cone(h) // T 2W

Hence, (TR4) holds for D(R).

The proof of the following result is in [13, Proposition IV.2.8].

Proposition 2.3.5. Every exact sequence of chain complexes

0 // X
u // Y

v // Z // 0

in Ch(R) can be completed to a distinguished triangle in D(R) by an appropriate

morphism Z −→ X[−1].

Remark 2.3.6. Let

X −→ Y −→ Z −→ X[−1]
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be a distinguished triangle. Consider HomD(R)(Ws,−)? where s ≥ 0. We know that

the following sequence

· · · −→ HomD(R)(Ws, X)n −→ HomD(R)(Ws, Y )n −→

HomD(R)(Ws, Z)n −→ HomD(R)(Ws, X)n−1 −→ · · ·

is a long exact sequence of abelian groups for each s ≥ 0. But the category Ab

of abelian groups satisfies (AB5), that is, Ab is cocomplete and filtered colimits of

exact sequences are exact. So the following sequence

· · · −→ colim
s

HomD(R)(Ws, X)n −→ colim
s

HomD(R)(Ws, Y )n −→

colim
s

HomD(R)(Ws, Z)n −→ colim
s

HomD(R)(Ws, X)n−1 −→ · · ·

is exact.

Similarly, let

Xs −→ Ys −→ Zs −→ Xs[−1]

be a distinguished triangle for each s ≥ 0. Consider HomD(R)(−, N)?. Then the

following sequence

· · · −→ HomD(R)(Zs, N)n −→ HomD(R)(Ys, N)n −→

HomD(R)(Xs, N)n −→ HomD(R)(Zs, N)n+1 −→ · · ·

is a long exact sequence of abelian groups for each s ≥ 0. Therefore, the following

sequence

· · · −→ colim
s

HomD(R)(Zs, N)n −→ colim
s

HomD(R)(Ys, N)n −→

colim
s

HomD(R)(Xs, N)n −→ colim
s

HomD(R)(Zs, N)n+1 −→ · · ·

is exact.

2.3.2 Localizing Subcategories

In this subsection, we compare the localization of a category C with the localizations

of its subcategories.

The following result is proved in [13, Proposition III.2.10].
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Proposition 2.3.7. Let C be a category, S be a multiplicative system in C and B

be a full subcategory of C. Suppose also S ∩ B be a multiplicative system in B. B is

called a localizing subcategory if any of the following equivalent conditions holds.

(i) The natural functor S−1B −→ S−1C is fully faithful.

(ii) Whenever C −→ B is a morphism in S with B in B, there is a morphism

B′ −→ C in C with B′ in B such that the composite B′ −→ B is in S.

(iii) Whenever B −→ C is a morphism in S with B in B, there is a morphism

C −→ B′ in C with B′ in B such that the composite B −→ B′ is in S.

The following result is proved in [33, Corollary 10.3.14].

Lemma 2.3.8. If B is a localizing subcategory of C, and for every object C in C

there is a morphism C −→ B in S with B in B, then S−1B ∼= S−1C. Suppose in

addition that S ∩ B consists of isomorphisms. Then

B ∼= S−1B ∼= S−1C.

The subcategories Kb(R), K+(R) and K−(R) of K(R) are localizing for the

collection S of q-isomorphisms. Thus, their localizations are the full subcategories

Db(R), D+(R) and D−(R) whose objects are the chain complexes which are bounded,

bounded below and bounded above, respectively.

The following result is proved in [13, Corollary IV.2.7].

Corollary 2.3.9. Db(R), D−(R) and D+(R) are triangulated categories.

Lemma 2.3.10. Let P be a bounded below chain complex of projectives. Let s : X −→

P be a q-isomorphism where X is a bounded below chain complex. Then there exists

a morphism of chain complexes t : P −→ X such that st is homotopic to idP .

Proof. Since s is q-isomorphism, cone(s) is exact by Lemma 2.2.13. For brevity, let

cone(s) = C. Also, let dC and dP denote the differentials of C and P , respectively.

There is a map f : P −→ C. Next we show that f is null homotopic. We construct
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the homotopy by induction. We may assume that we begin with n = 0, consider the

following diagram.

P1

��

// P0
//

f0
��

0

C1

d1C // C0
// 0

We have a map k̄0 : P0 −→ C1 since d1
C is surjective and P0 is projective. Assume

we constructed k̄n−1 : Pn−1 −→ Cn such that

fn−1 = dnC k̄n−1 + k̄n−2d
n−1
p .

If we show that Im(fn − k̄n−1d
n
P ) ⊂ Im dn+1

C , then we will have the diagram

Pn

fn−k̄n−1dn
P

��
Cn+1

dn+1
C // Im dn+1

C
// 0

and projectivity of Pn will give a map k̄n : Pn −→ Cn+1 such that fn = dn+1
C k̄n +

k̄n−1d
n
P . Now we show that Im(fn − k̄n−1d

n
P ) ⊂ Im dn+1

C . Since C is exact, it suffices

to show that dnC(fn − k̄n−1d
n
p ) = 0. Since dnC k̄n−1 = fn−1 − k̄n−2d

n−1
P , we have

dnC(fn − k̄n−1d
n
P ) = dnCfn − fn−1d

n
P = 0.

since f is a morphism of chain complexes. Thus, f is null homotopic, say, by a

homotopy k̄ = (t, k). We have f(p) = (dC k̄ + k̄dP )(p). But

(dC k̄ + k̄dP )(p) = dC(t(p), k(p)) + (tdP (p), kdP (p))

= (−dXt(p), dPk(p) + st(p)) + (tdP (p), kdP (p)).

Since f(p) = (0, p), we get

tdP (p)− dXt(p) = 0

and

p = dPk(p) + st(p) + kdP (p).

That is, t is a morphism of chain complexes and st is homotopic to idP .

The following result is proved in [33, Corollary 10.3.9].
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Lemma 2.3.11. If two parallel maps f, g : X −→ Y in K(R) become identified in

D(R), then fs = gs for some s : Z −→ X in S.

Theorem 2.3.12. Let P be a bounded below chain complex of projectives. Then

for any X, the map φ : HomK(R)(P,X) −→ HomD(R)(P,X) is an isomorphism of

R-modules.

Proof. First we show that φ is onto. Let α : P −→ X be a morphism in D(R). Let

P Z
soo f // X

be a representative of α. By Lemma 2.3.10, there exists t : P −→ Z such that

st = idP . Thus, φ(ft) = ft. But ft = fs−1 : P −→ X is equivalent to fs−1. Thus,

φ is onto. Next we show that φ is one to one. Let f, g : P −→ X in K(R). Assume

that f, g become identified in D(R). Then Lemma 2.3.11 says that there exists

s : Z −→ P such that fs = gs. But there exists t : P −→ Z such that st = idP .

Therefore, f = fst = gst = g in K(R). Thus, φ is one to one. Finally, note that

φ : HomK(R)(P,X) −→ HomD(R)(P,X) is a group homomorphism by Lemma 2.1.6.

Also,

φ(rfn(p)) = φ(fn(rp)) = fn(rp) = rfn(p) = rφ(fn(p))

for each r ∈ R, p ∈ P , n and chain map f : P −→ X. This implies that φ is an

R-module homomorphism. Hence, φ is an isomorphism of R-modules.

Remark 2.3.13. Dually, if I is a bounded above chain complex of injectives, then

HomK(R)(X, I) ∼= HomD(R)(X, I).

Theorem 2.3.14. The localization D+(R) of K+(R) is equivalent to the full sub-

category K+(P) of bounded below chain complexes of projectives in K+(R) :

D+(R) ∼= K+(P).

Proof. Let X be in K+(R) and let X −→ Y be a q-isomorphism where Y ∈ K+(P).

Lemma 1.4.15 says that X has a Cartan-Eilenberg resolution P −→ X with Tot⊕(P )

in K+(P). But Tot⊕(P ) −→ Y is a q-isomorphism. Therefore, K+(P) is a localizing

subcategory of K+(R) by Proposition 2.3.7. Thus, D+(R) ∼= S−1K+(P). By Lemma
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2.3.8, it suffices to show that every q-isomorphism in K+(P) is an isomorphism. Let

P and Q be bounded below chain complexes of projectives and s : P −→ Q a q-

isomorphism. Lemma 2.3.10 implies that there is a morphism t : Q −→ P such

that st = idQ. In fact t is a q-isomorphism. So applying Lemma 2.3.10 we have a

morphism u : P −→ Q with tu = idP . Thus, s is an isomorphism in K+(P) with

s−1 = t. Hence,

K+(P) ∼= S−1K+(P) ∼= D+(R).

In the following theorem, let R be noetherian.

Theorem 2.3.15. Let M(R) denote the category of all finitely generated R-modules.

Let D(fg)(R) denote the full subcategory of D(R) consisting of chain complexes Y

whose homology modules Hn(Y ) are all finitely generated. Then,

D+(M(R)) ∼= D+(fg)(R).

where D+(M(R)) denotes the derived category whose objects are bounded below chain

complexes of finitely generated R-modules and D+(fg)(R) denotes the derived category

whose objects are bounded below chain complexes whose homology modules Hn(Y )

are all finitely generated.

Proof. We show that K+(fg)(R) is a localizing subcategory of K+(M(R)). Now

let Y −→ X be a q-isomorphism where X is in K+(fg)(R). So Hn(Y ) is finitely

generated for each n. There exists a Cartan-Eilenberg resolution P −→ Y by Lemma

1.4.15. It is clear that Tot⊕(P ) is in K+(fg)(R) and the composite Tot⊕(P ) −→

X is a q-isomorphism. Thus, K+(fg)(R) is a localizing subcategory of K+(M(R))

by Proposition 2.3.7. Since each object Z ∈ K+(M(R)) has a Cartan-Eilenberg

resolution P −→ Z with Hn(Tot⊕(P ) finitely generated for each n, we have

S−1K+(M(R)) ∼= S−1K+(fg)(R)

by Lemma 2.3.8. Hence,

D+(M(R)) ∼= D+(fg)(R).
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2.4 Derived Functors

In this section, we study derived functors. We define the derived tensor product and

the derived Hom. The main references for this section are [33], [13] and [25].

Let A and B be two abelian categories. We write K−(A), D−(A) for the ho-

motopy category and derived category of bounded above chain complexes of A,

respectively. Also, we write K+(A), D+(A) for the homotopy category and the

derived category of bounded below chain complexes of A, respectively.

Note that K−(A), D−(A), K+(A) and D+(A) are triangulated categories by [33,

Corollary 10.2.5], [33, Corollary 10.4.3], [33, Corollary 10.2.5] and [33, Corollary

10.4.3], respectively.

Definition 2.4.1. Let K1, K2 be triangulated categories. A morphism F : K1 −→

K2 of triangulated categories is an additive functor that commutes with the trans-

lation functor T and sends distinguished triangles to distinguished triangles. There

is a category of triangulated categories and their morphisms. We say that K1 is

a triangulated subcategory of K2 if K1 is a full subcategory of K2, the inclusion is

a morphism of triangulated categories and if every distinguished triangle in K1 is

distinguished in K2.

The proof of the following result is in [13, Proposition III.6.2].

Proposition 2.4.2. Assume that F : A −→ B is an exact functor.

(a) The functor K?(F ) : K?(A) −→ K?(B) transforms q-isomorphisms into q-

isomorphisms so that it induces a functor D?(F ) : D?(A) −→ D?(B).

(b) D?(F ) is an exact functor, that is, it transforms distinguished triangles into

distinguished triangles.

where ? stands for b, +, −, or ∅.

Definition 2.4.3. A right derived functor of an additive left exact functor F : A −→

B is a pair consisting of an exact functor R−F : D−(A) −→ D−(B) and a natural

transformation ζ from

qK−(F ) : K−(A) //K−(B) // D−(B)



CHAPTER 2. THE DERIVED CATEGORY OF A COMMUTATIVE RING 64

to

(R−F )q : K−(A) // D−(A) // D−(B)

which is universal in the sense that if G : D−(A) −→ D−(B) is another exact functor

equipped with a natural transformation ε : qK−(F ) −→ Gq, then there exists a

unique natural transformation η : R−F −→ G making the diagram

qK−(F )

ε

##H
HHHHHHHH

ζ

xxrrrrrrrrrr

(R−F )q
ηq // Gq

commutative. Similarly, a left derived functor of a right exact functor F : A −→ B is

a pair consisting of an exact functor L+F : D+(A) −→ D+(B) together with a natural

transformation ζ : (L+F )q −→ qK+(F ) satisfying the dual universal property (G

factors through η : G −→ L+F ).

The universal property implies that if R−F and L+F exist, then they are unique

up to natural isomorphism.

The following result is proved in [33, Existence Theorem 10.5.6].

Theorem 2.4.4. Let F : A −→ B be an additive functor. If A has enough injectives,

then the right derived functor R−F exists on D−(A), and if I is a bounded above

chain complex of injectives, then

R−F (I) ∼= qK−(F )(I).

Dually, if A has enough projectives, then the left derived functor L+F exists on

D+(A) and if P is a bounded below chain complex of projectives, then

L+F (P ) ∼= qK+(F )(P ).

2.4.1 The Derived Tensor Product

In this subsection, we will give the definition of the derived tensor product and

present its properties.

Definition 2.4.5. The derived tensor product of two chain complexes X and Y is

X
L
⊗
R
Y = L+ Tot

⊕
(X ⊗

R
−)Y.
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Lemma 2.4.6. If X −→ X ′ is a q-isomorphism and X, X ′, and Y are bounded

below chain complexes, then

X
L
⊗
R
Y ∼= X ′ L

⊗
R
Y.

Proof. Suppose Y is a chain complex of flat modules. Theorem 2.4.4 implies that

X
L
⊗
R
Y = Tot⊕(X ⊗ Y )

and

X ′ L
⊗
R
Y = Tot⊕(X ′ ⊗ Y ).

But

E1
p,q(X) = Hq(X)⊗

R
Yp =⇒ Hp+q(X

L
⊗
R
Y )

and

E1
p,q(X

′) = Hq(X
′)⊗
R
Yp =⇒ Hp+q(X

′ L
⊗
R
Y )

by Theorem 1.4.16. It is clear that E1
p,q(X) ∼= E1

p,q(X
′). Thus,

Hp+q(X
L
⊗
R
Y ) ∼= Hp+q(X

′ L
⊗
R
Y )

by the Comparison Theorem 1.4.4. Hence, X
L
⊗
R
Y ∼= X ′ L

⊗
R
Y .

The following theorem is proved in [33, Theorem 10.6.3].

Theorem 2.4.7. The derived tensor product is a bifunctor

L
⊗
R

: D+(R)×D+(R) −→ D+(R).

Its homology is

TorRn (X,Y ) ∼= Hn(X
L
⊗
R
Y ).

Definition 2.4.8. A symmetric monoidal product on a category C is a bifunctor⊗
: C × C −→ C, a unit U ∈ C and coherent natural isomorphisms (X

⊗
Y )

⊗
Z ∼=

X
⊗

(Y
⊗

Z) (the associativity isomorphism), X
⊗

Y ∼= Y
⊗

X (the twist isomor-

phism) and U
⊗

X ∼= X (the unit isomorphism). A symmetric monoidal category

is a category C with a symmetric monoidal product.
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If X, Y and Z are chain complexes in D+(R), then by [33, Example 10.8.1], there

is a natural isomorphism

X
L
⊗
R

(Y
L
⊗
R
Z) ∼= (X

L
⊗
R
Y )

L
⊗
R
Z.

Also, by [33, Exercise 10.6.2], there is a natural isomorphism

X
L
⊗
R
Y ∼= Y

L
⊗
R
X.

Moreover, it is clear that there is a natural isomorphism R[0]
L
⊗
R
X ∼= X. Therefore,

We deduce that the derived category D+(R) of bounded below chain complexes of

R-modules is a symmetric monoidal category.

2.4.2 The Derived Hom

In this subsection, we will give the definition of the derived Hom and present its

properties.

Definition 2.4.9. The derived Hom of two chain complexes X and Y is

RHomR(X, Y ) = R− Tot
∏

Hom(X,−)Y.

Lemma 2.4.10. If Y −→ Y ′ is a q-isomorphism and X is a bounded below chain

complex, then

RHomR(X, Y ) ∼= RHomR(X, Y ′).

Proof. Suppose X is a chain complex of projectives. Then,

RHomR(X, Y ) ∼= Tot
∏

Hom(X, Y )

and

RHomR(X, Y ′) ∼= Tot
∏

Hom(X, Y ′).

Therefore,

Hn(Tot
∏

Hom(X,Y )) = HomK(R)(X, Y [−n])

∼= HomD(R)(X, Y [−n])

∼= HomD(R)(X, Y
′[−n])

∼= HomK(R)(X, Y
′[−n])

= Hn(Tot
∏

Hom(X, Y ′)).
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where the first isomorphism is induced by Theorem 2.3.12. Hence,

RHomR(X, Y ) ∼= RHomR(X, Y ′).

The following lemma is proved in [33, Lemma 10.7.3].

Lemma 2.4.11. If X −→ X ′ is a q-isomorphism and Y is a bounded above chain

complex, then

RHomR(X ′, Y ) ∼= RHomR(X,Y ).

Definition 2.4.12. If X and Y are chain complexes, then

ExtnR(X, Y ) = HomD(R)(X, Y [−n]).

The following result is proved in [33, Theorem 10.7.4].

Theorem 2.4.13. The derived Hom is a bifunctor

RHomR : D(R)op ×D−(R) −→ D(R).

Dually,

RHomR : D+(R)op ×D(R) −→ D(R).

In both cases its cohomology is

ExtnR(X, Y ) ∼= Hn(RHomR(X, Y )).

The following result is proved in [33, Theorem 10.8.7].

Theorem 2.4.14 (Adjoint Isomorphism). If Y is a bounded below chain complex,

then

−
L
⊗
R
Y : D+(R) −→ D+(R)

is left adjoint to the functor

RHomR(Y,−) : D−(R) −→ D−(R).

That is, for X in D+(R) and Z in D−(R) there is a natural isomorphism

HomD(R)(X,RHomR(Y, Z)) ∼= HomD(R)(X
L
⊗
R
Y, Z).
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This isomorphism arises by applying H0 to the isomorphism

RHomR(X,RHomR(Y, Z)) ∼= RHomR(X
L
⊗
R
Y, Z)

in D−(R). The adjunction morphisms are

ηX : X −→ RHomR(Y,X
L
⊗
R
Y )

and

εZ : RHomR(Y, Z)
L
⊗
R
Y −→ Z.



Chapter 3

Minimal Atomic Chain Complexes

In this chapter, we define some new notions which are invariant in the derived

category. These notions have been defined in a topological framework in [5]. After

introducing these concepts we establish the connection between them.

Introduction

First we know what we mean by an irreducible (or simple) R-module M , namely

0 6= M and M has no proper submodules. Also, an atomic module is an R-module

for which every non-trivial self map is an isomorphism. If M is an irreducible R-

module, then M is atomic by Schur’s lemma. However, atomic does not imply

irreducible.

Example 3.0.15. Let F be a field and A = {( a b0 c ) : a, b, c ∈ F} be the ring of

triangular matrices over F . Let M = {( ab ) : a, b ∈ F}. Then it is clear that M

is a module over A. Note that {( a0 ) : a ∈ F} is a submodule of M . So M is not

irreducible. If 0 6= φ : M −→M , then it can be proved that φ is invertible and hence

M is an atomic module.

We generalize both concepts and define others. In section one, we recall some

facts about local commutative rings, give the definition of a minimal chain complex

and show that for any chain complex Y of finitely generated homology there is a

minimal free chain complex X and a q-isomorphism f : X −→ Y . In section two,

69
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we state and prove a derived analog of the Whitehead Theorem. In section three,

we construct Postnikov towers. In section four, we define an analog of the Steenrod

algebra. In section five, we present some definitions and in the following section,

we show a result that characterizes irreducible chain complexes and we prove that

minimal atomic chain complexes and irreducible chain complexes are the same. In

the last section, we define the notions of a nuclear chain complex and a core of a

chain complex and we show that a nuclear chain complex is minimal atomic.

3.1 Local Rings

In this section, we review some basic facts about local commutative rings. The

main references for these facts are [30] and [21]. We recall that R is an arbitrary

commutative ring.

Definition 3.1.1. R is local if it has a unique maximal ideal.

We will give a number of examples of local rings.

Example 3.1.2. (a) Every field is local.

(b) If F is a field, then the ring of formal power series F [[x]] over F is local.

(c) If P is a prime ideal in R, then the localization S−1R is a local ring where S =

R−P . For example, the ring of localized integers Z(p) = {a/b ∈ Q : (b, p) = 1}

is a local ring.

(d) If P is a maximal ideal in R, then the completion R̂P is a local ring. For

example, the ring of p-adic integers Ẑp is a local ring.

(e) If I is a maximal ideal in R, then R/In is a local ring.

Definition 3.1.3. If R is a local ring with maximal ideal m, then the field R/m is

called the residue field of R.

The following result is proved in [30, Theorem 4.47].

Lemma 3.1.4 (Nakayama’s Lemma). If R is a local ring with maximal ideal m

and M is a finitely generated R-module with mM = M , then M = 0.
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If W is a set of generators of an R-module M , then we say that W is minimal if

any proper subset of W does not generate M .

The following theorem is proved in [21, Theorem 2.3].

Theorem 3.1.5. Let R be a local ring with maximal ideal m and residue field R/m

and let M be a finitely generated R-module. Set M̄ = M/mM . Now M̄ is a finite-

dimensional vector space over R/m, and we write n for its dimension. Then

(i) If we take a basis {u′1, . . . , u′n} for M̄ over R/m, and choose an inverse image

ui ∈M of each u′i, then {u1, . . . , un} is a minimal generating set of M ,

(ii) conversely every minimal generating set of M is obtained in this way, and so

has n elements.

The following result is proved in [30, Theorem 4.44].

Theorem 3.1.6. If R is a local ring, every finitely generated projective module M

is free.

The following lemma is important and will be used later. Its proof is in [28,

Proposition 1.5].

Lemma 3.1.7. Let R be a local commutative noetherian ring with maximal ideal m

and M be an R-module. Let F −→M be a free resolution of M . Then the following

conditions are equivalent.

(i) For each i ≥ 1, the map φi : Fi −→ Fi−1 is defined by a matrix with coefficients

in m. (Note that this condition is independent of the choice of bases for Fi and

Fi−1.)

(ii) For each i ≥ 0, the map θi : Fi −→ Kerφi−1 is defined by a minimal set of

generators (for i = 0, θ0 is the map from F0 onto M).

Definition 3.1.8. Let R be a local ring with maximal ideal m and residue field

R/m and let M be a finitely generated R-module. An exact sequence

· · · // Ln
dn // Ln−1

dn−1 // · · · // L1
d1 // L0

d0 //M // 0

is called a minimal free resolution of M if it satisfies the following conditions:
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(a) each Ln is a finitely generated free R-module,

(b) dnLn ⊂ mLn−1 for each n,

(c) R/m⊗R L0 −→ R/m⊗RM is an isomorphism.

Let R be a local ring with maximal ideal m and residue field K = R/m. Assume

that m is generated by a finite regular sequence m1, . . . ,mn ∈ R, that is, m1 is not

a zero divisor and for i > 1, each mi is not a zero divisor on R/(m1, . . . ,mi−1).

Since m is generated by a finite regular sequence, we have the following result

which is proved in [33, Corollary 4.5.5].

Proposition 3.1.9. There is a Koszul free resolution P of K where P = ER(ei :

1 ≤ i ≤ n) is a differential graded algebra with ei in degree 1 and differential given

by d(ei) = mi. In this case we have that

Ext?R(K,K) ∼= EK(ei : 1 ≤ i ≤ n)

Also, we have the following result proved in [21, Theorem 16.2].

Lemma 3.1.10. For s ≥ 1, ms/ms+1 is R/m-module with a basis consisting of the

residue classes of the distinct monomials of degree s in the mi.

3.1.1 Minimal Free Resolutions

In this subsection and the following sections, we assume that R is a commutative

noetherian local ring with maximal ideal m and residue field K = R/m.

Definition 3.1.11. A chain complex (Y, d) is minimal if the induced differential

d⊗ idK on Y ⊗K[0] satisfies d⊗ idK = 0.

Now we give the following important theorem which proves the existence of

a minimal free resolution of any chain complex of finite type in Ch+(R). The

usefulness of minimal free resolutions will become clear when we study the Adams

spectral sequence in the next chapter.

This theorem is [28, Theorem 2.4]. We think it is not well known and thus we

give its proof here.
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Theorem 3.1.12. Let Y be a chain complex of finite type in Ch+(R). Then there

is a minimal free chain complex G in Ch+(R) and a q-isomorphism f : G −→ Y .

Proof. We prove this theorem using induction. If i0 is such that Hi(Y ) = 0 for

i ≤ i0, then we can let Fi = 0 for i ≤ i0 and the zero map in degrees ≤ i0 from F to

Y is obviously a q-isomorphism.

Now assume that we have defined finitely generated free R-modules Fi and maps

fi for i ≤ n such that the following diagram

Fn
dn //

fn

��

Fn−1

fn−1

��

// · · ·

· · · // Yn+1
// Yn // Yn−1

// · · ·

is commutative and

(a) Hi(f) : Hi(F ) −→ Hi(Y ) is an isomorphism for i < n.

(b) g : Ker(dn) −→ Hn(Y ) is surjective.

Now we construct Fn+1 and fn+1 such that (a) and (b) hold for n+1. First note

that Ker(g) maps to Bn(Y ) since we have the following commutative diagram with

exact rows.

0 // Ker(g) //

��

Ker(dn)

��

g // Hn(Y ) //

id
��

0

0 // Bn(Y ) // Zn(Y ) // Hn(Y ) // 0

We have that the Ker(g) is finitely generated since R is noetherian. Let {y1, . . . , yn}

be a generating set of Ker(g). Assume that E1 is free on {x1, . . . , xn}. Define

ψ : E1 −→ Ker(g) by ψ(xi) = yi. Therefore, we have the following commutative

diagram where the map h1 exists since E1 is free.

E1

��

h1

zzvvv
vvv

vvv
v

Yn+1
// Bn(Y ) // 0

That is, the following diagram

E1
λ //

h1

��

Fn

fn

��
Yn+1

// Yn
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is commutative where the map λ is the composite of ψ : E1 −→ Ker(g) with the

inclusion map Ker(g) −→ Fn. We have that Hn+1(Y ) is finitely generated. Let

{z1, . . . , zm} be a generating set of Hn+1(Y ). Assume that E2 is free on {t1, . . . , tm}.

Define φ : E2 −→ Hn+1(Y ) by φ(ti) = zi. Then we have the following commutative

diagram

E2

φ

��xx
Zn+1(Y ) // Hn+1(Y ) // 0

where the dotted arrow exists since E2 is free. Let the map h2 : E2 −→ Yn+1 be the

composite of the map E2 −→ Zn+1(Y ) with the inclusion map Zn+1(Y ) −→ Yn+1.

Map E2 to zero in Fn. Let Fn+1 = E1 ⊕ E2 and fn+1 = h1 + h2. The differential

dn+1 = λ+ 0. Then we can see that the following diagram

Fn+1
dn+1 //

fn+1

��

Fn

fn

��
Yn+1

// Yn

is commutative. By construction, it is clear that Hn(f) : Hn(F ) −→ Hn(Y ) is an

isomorphism and Ker(dn+1) −→ Hn+1(Y ) is surjective. Hence, we have constructed

a free resolution of Y .

This gives some free resolution of Y and to get a minimal one, we can proceed as

follows. We show that F is a sum of a minimal chain complex G and an exact chain

complex H of free modules. Then G is a minimal free resolution of Y . If F is not

minimal, then the matrix (aij) defining dn : Fn −→ Fn−1 must have a unit element

since R is local. We can transform (aij) by a finite number of elementary row and

column operations to the following form
1 0 · · · 0

0
... (a′ij)

0
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This means that we have a diagram

Fn
dn //

∼=
��

Fn−1

∼=
��

R⊕ F ′
n

(id,d′n)// R⊕ F ′
n−1

and the chain complex F is the direct sum of

· · · // Fn+1
// F ′
n

// F ′
n−1

// Fn−2
// · · ·

and

· · · // 0 // R
id // R // 0 // · · · .

This process can be continued until we are left with a minimal free resolution G of

Y and the sum of pieces of the form

· · · // 0 // R
id // R // 0 // · · ·

in various degrees. Putting these latter pieces together gives H which is an exact

chain complex of free modules. Hence, there is a minimal free chain complex G in

Ch+(R) and a q-isomorphism f : G −→ Y .

3.2 The Derived Whitehead Theorem

In this section, a chain complex means a chain complex Y in the derived category

D+(fg)(R) of bounded below chain complexes whose homology modules Hi(Y ) are

of finite type.

In this section, we state and prove a derived analog of the Whitehead Theorem.

We begin by introducing some definitions and proving some results.

First note that Lemma 1.3.8 and Theorem 2.3.12 combine together to give that

for any chain complex Y ,

Hn(Y ) ∼= HomD+(fg)(R)(R[−n], Y ).

Define

Hn(Y,K) = Hn(Y
L
⊗
R

K[0]),
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the nth homology of the derived tensor product Y
L
⊗
R

K[0]. We have the reduction

map

ρ : Hn(Y ) −→ Hn(Y,K)

induced from the evident morphism

Y ∼= Y
L
⊗
R
R[0] −→ Y

L
⊗
R

K[0].

Let P be a minimal projective resolution of Y by Theorem 3.1.12. Then

Hn(Y,K) = Hn(Y
L
⊗
R

K[0])

∼= Hn(P
L
⊗
R

K[0])

= Hn(· · ·
0−→ P1 ⊗R K 0−→ P0 ⊗R K −→ 0)

= Pn ⊗R K.

Hence, Hn(Y,K) is a K-module.

Similarly, we can define

Hn(Y,K) = Hn(RHomR(Y,K[0]))

= H0(RHomR(Y,K[−n])).

If P is a minimal projective resolution of Y , then

Hn(Y,K) = Hn(RHomR(Y,K[0]))

∼= Hn(Hom
∏

(P,K[0]))

= Hn(0 −→ HomR(P0,K)
0−→ HomR(P1,K)

0−→ · · · )

= HomR(Pn,K).

Hence, Hn(Y,K) is a K-module.

One of the applications of the existence of a minimal projective resolution is the

following result.

Lemma 3.2.1. If Y is a chain complex, then

Hn(Y,K) ∼= HomK(Hn(Y,K),K).
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Proof. Let Y be a chain complex. By Theorem 3.1.12, there exists a minimal pro-

jective resolution P −→ Y . Therefore,

Hn(Y,K) = Hn(RHomR(Y,K[0]))

∼= Hn(RHomR(P,K[0]))

∼= Hn(Hom
∏

(P,K[0]))

= Hn(HomR(P,K))

= HomR(Pn,K)

∼= HomK(Pn ⊗R K,K)

∼= HomK(Hn(P,K),K)

∼= HomK(Hn(Y,K),K).

Hence,

Hn(Y,K) ∼= HomK(Hn(Y,K),K).

Definition 3.2.2. A chain complex Y is called n-connected if Hi(Y ) = 0 for all

i ≤ n.

Definition 3.2.3. A morphism α : X −→ Y inD+(fg)(R) is called an n-isomorphism

if α? : Hi(X) −→ Hi(Y ) is an isomorphism for each i ≤ n.

Theorem 3.2.4. Let Y be a chain complex. If Y is n-connected, then Hi(Y,K) = 0

for all i ≤ n and ρ : Hn+1(Y ) −→ Hn+1(Y,K) is an epimorphism.

Proof. Assume that Y is n-connected, that is, Hi(Y ) = 0 for all i ≤ n. We claim

that Hi(Y,K) = 0 for all i ≤ n. There exists a minimal projective chain complex

P and a q-isomorphism P −→ Y by Theorem 3.1.12. But Y
L
⊗
R

K[0] ∼= P
L
⊗
R

K[0]

by Lemma 2.4.6. Therefore, by Theorem 1.4.16 there exists a Künneth spectral

sequence

E2
s,t = TorRs (Ht(P ),K) =⇒ Hs+t(P

L
⊗
R

K[0]).

Since Ht(P ) ∼= Ht(Y ) = 0 for each t ≤ n, we have E2
s,t = 0 for each s and t ≤ n.

Thus, E∞
s,t = 0 for each s and t ≤ n. So, Hi(P

L
⊗
R

K[0]) = 0 for each i ≤ n. Hence,

Hi(Y
L
⊗
R

K[0]) = 0 for all i ≤ n. Now notice that

E∞
0,n+1

∼= Hn+1(Y )⊗R K.
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Therefore, Hn+1(Y,K) ∼= Hn+1(Y )⊗R K. Hence, ρ : Hn+1(Y ) −→ Hn+1(Y )⊗R K is

reduction mod m, that is, it is an epimorphism.

Theorem 3.2.5 (Derived Whitehead Theorem). Let α : X −→ Y be a mor-

phism in D+(fg)(R).

(i) If α is an n-isomorphism, then Hi(X,K) −→ Hi(Y,K) is an isomorphism for

all i ≤ n.

(ii) If Hi(X,K) −→ Hi(Y,K) is an isomorphism for all i ≤ n, then α? : Hi(X) −→

Hi(Y ) is an isomorphism for all i < n and an epimorphism for i = n.

Proof. Without loss of generality, we assume X and Y are connective. First we

prove (i). Assume that α is an n-isomorphism. Then α? : Hi(X) −→ Hi(Y ) is

an isomorphism for each i ≤ n. We must show that Hi(X,K) −→ Hi(Y,K) is

an isomorphism for all i ≤ n. By Theorem 3.1.12, there exist minimal projective

resolutions P −→ X and Q −→ Y . Therefore, we have the following commutative

diagram

X
α // Y

P
β //

g

OO

Q

h

OO

in which β = h−1αg. Let f : P −→ Q be a chain map representing the morphism β.

But α is n-isomorphism. So f is n-isomorphism. Consider

φ = f ⊗ id : P
L
⊗
R

K[0] −→ Q
L
⊗
R

K[0].

Now we claim that φ? : Hi(P
L
⊗
R

K[0]) −→ Hi(Q
L
⊗
R

K[0]) is an isomorphism for each

i ≤ n.

We will consider two spectral sequences Er and Ēr associated to filtrations on

the complexes P ⊗K[0] and Q⊗K[0], respectively, induced by the stupid filtrations

on P and Q, respectively. Note that both filtrations are bounded. By Theorem

1.4.16, there exist Künneth spectral sequences

E2
s,t
∼= TorRs (Ht(P ),K) =⇒ Hs+t(P ⊗K[0])
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and

Ē2
s,t
∼= TorRs (Ht(Q),K) =⇒ Hs+t(Q⊗K[0]).

Since Ht(P ) ∼= Ht(Q) for each t ≤ n, we have that E2
s,t
∼= Ē2

s,t for each s and t ≤ n.

φ induces a map from the filtration of P ⊗K[0] to the filtration of Q⊗K[0] and thus

a homomorphism of spectral sequences Er −→ Ēr. Since d3
s,t is of bidegree (−3, 2),

we can deduce that E3
s,t
∼= Ē3

s,t in the following cases.

(i) s < 3 and t ≤ n,

(ii) s ≥ 3 and t ≤ n− 2.

Also, since d4
s,t is of bidegree (−4, 3), we can deduce that E4

s,t
∼= Ē4

s,t in the following

cases.

(i) s < 3 and t ≤ n,

(ii) s = 3 and t ≤ n− 2,

(iii) 4 ≤ s ≤ 6 and t ≤ n− 3,

(iv) s > 6 and t ≤ n− 5.

Continuing this way, we can deduce that E∞
s,t
∼= Ē∞

s,t for each s + t ≤ n. Using

Theorem 1.4.20, we have that φ? : Hi(P
L
⊗
R

K[0]) −→ Hi(Q
L
⊗
R

K[0]) is an isomorphism

for all i ≤ n. Therefore, β? : Hi(P
L
⊗
R

K[0]) −→ Hi(Q
L
⊗
R

K[0]) is an isomorphism for

each i ≤ n. But g? : Hi(P,K) −→ Hi(X,K) is an isomorphism for each i and

h? : Hi(Q,K) −→ Hi(Y,K) is an isomorphism for each i by Lemma 2.4.6. Hence,

Hi(X,K) −→ Hi(Y,K) is an isomorphism for all i ≤ n.

Next we show (ii). Assume that Hi(X,K) −→ Hi(Y,K) is an isomorphism for

all i ≤ n. We claim that α? : Hi(X) −→ Hi(Y ) is an isomorphism for all i < n and

an epimorphism for i = n. We have the following commutative diagram

X
α // Y

P
β //

g

OO

Q

h

OO
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in which β = h−1αg and P and Q are minimal projective resolutions for X and Y ,

respectively. Let f : P −→ Q be a chain map representing the morphism β. We show

that f? : Hi(P ) −→ Hi(Q) is an isomorphism for each i < n and an epimorphism for

i = n. We have that g? : Hi(P
L
⊗
R

K[0]) −→ Hi(X
L
⊗
R

K[0]) is an isomorphism for all

i as well as h? : Hi(Q
L
⊗
R

K[0]) −→ Hi(Y
L
⊗
R

K[0]) is an isomorphism for all i. Thus,

Hi(P,K) −→ Hi(Q,K) is an isomorphism for all i ≤ n. Choose q1, . . . , qn ∈ Qi

whose images form a basis of the K-vector space Qi ⊗R K. By Nakayama’s Lemma,

q1, . . . , qn generate Qi. Similarly, choose p1, . . . , pm ∈ Pi whose images form a basis

of the K-vector space Pi ⊗R K. By Nakayama’s Lemma, p1, . . . , pm generate Pi.

Note that Pi and Qi are finitely generated free since R is local by Theorem 3.1.6.

But Pi ⊗R K ∼= Qi ⊗R K. Thus, fi : Pi −→ Qi is onto and n = m. Hence, fi is an

isomorphism. Therefore, fi is an isomorphism for all i ≤ n. We deduce that f? is

an isomorphism for each i < n and an epimorphism for i = n. Therefore, we have

that β? : Hi(P ) −→ Hi(Q) is an isomorphism for each i < n and an epimorphism

for i = n. Hence, we have α? : Hi(X) −→ Hi(Y ) is an isomorphism for all i < n and

an epimorphism for i = n.

3.3 Postnikov towers

In this section, we show how to construct a Postnikov tower for a chain complex in

D+(R) and without loss of generality, we assume that chain complexes are connec-

tive. The main references for Postnikov towers in topology are [24] and [9].

Theorem 3.3.1. For each chain complex Y in D+(R), there exists a tower

· · · β3 // Y {2} β2 // Y {1} β1 // Y {0} ,

as well as morphisms αn : Y −→ Y {n} such that the diagram

Y {n}

βn

��

Y

αn

::uuuuuuuuuu

αn−1 $$IIIIIIIIII

Y {n− 1}
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commutes for each n. Moreover, Hi(Y {n}) = 0 for i > n and αi? : Hi(Y ) −→

Hi(Y {n}) is an isomorphism for all i ≤ n.

Proof. We may change Y up to q-isomorphism to assume that Y is a chain complex

of projective modules. We prove this theorem by induction. We start at n = 0.

Consider the chain complex H0(Y )[0]. Then

H0(Y,H0(Y )) = HomK(R)(Y,H0(Y )[0])

and the universal coefficient spectral sequence Theorem 1.4.18 implies that

H0(Y,H0(Y )) = HomR(H0(Y ), H0(Y )).

Therefore,

HomK(R)(Y,H0(Y )[0]) = HomR(H0(Y ), H0(Y )).

Choose a chain map g : Y −→ H0(Y )[0] which corresponds to the identity on

H0(Y ). Let f : Y {0} −→ H0(Y )[0] be a projective resolution of H0(Y )[0]. Let

α0 = f−1g : Y −→ Y {0} be in D+(R). Then α0 induces an isomorphism on H0.

Now form the following distinguished triangle

F
π // Y

α0 // Y {0} // F [−1].

Then the corresponding homology long exact sequence

· · · // Hi(F )
π? // Hi(Y )

α0? // Hi(Y {0}) // · · ·

implies that

Hi(F ) =

Hi(Y ) i > 0,

0 i ≤ 0.

We have

H1(F,H1(Y )) = HomK+(R)(F,H1(Y )[−1]).

By the universal coefficient spectral sequence, we have

H1(F,H1(Y )) = HomR(H1(Y ), H1(Y )).

Let i : F −→ H1(Y )[−1] represent the identity on H1(Y ), that is,

i? : H1(F ) ∼= H1(H1(Y )[−1]) = H1(Y ).
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Consider

· · · −→ HomK+(R)(F,H1(Y )[−1])
∂?

−→ HomK+(R)(Y {0}[1], H1(Y )[−1])

α0?−−→ HomK+(R)(Y [1], H1(Y )[−1]) −→ · · · .

Then let

k2 = ∂?(i) ∈ HomK+(R)(Y {0}[1], H1(Y )[−1]).

Form the following distinguished triangle

Y {0}[1] k2
// H1(Y )[−1]

γ // Y {1} β1 // Y {0}.

From the following homology long exact sequence

· · · // Hi(Y {1})
β1? // Hi(Y {0})

k2
? // Hi(H1(Y )[−2])

γ? // · · ·

we find that

Hi(Y {1}) =

Hi(Y ) i ≤ 1,

0 i > 1.

Then the following commutative diagram in K+(R)

Y {0}[1] k2
// H1(Y )[−1]

Y {0}[1]

id

OO

// F

i

OO

implies that there exists a morphism α1 : Y −→ Y {1} in K+(R) such that the

following diagram commutes in K+(R).

Y {0}[1] k2
// H1(Y )[−1]

γ // Y {1} β1 // Y {0}

Y {0}[1]

id

OO

// F

i

OO

π // Y

α1

OO

α0 // Y {0}

id

OO

Therefore, we have the following commutative diagram with exact rows.

0 // H1(H1(Y )[−1])
γ? // H1(Y {1}) // 0 // 0

0 //

OO

H1(F )

i?

OO

π? // H1(Y ) //

α1?

OO

0 //

OO

0

OO
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By the Five Lemma, we have α1? is an isomorphism since i? is an isomorphism.

Also, we have the following commutative diagram with exact rows.

0 // 0 // H0(Y {1}) // H0(Y ) // 0

0 //

OO

0 //

OO

H0(Y )
α0? //

α1?

OO

H0(Y )

id

OO

// 0

OO

By the Five Lemma, we have α1? is an isomorphism. Assume that we have con-

structed Y {n} such that the diagram

Y {n}

βn

��

Y

αn

::uuuuuuuuuu

αn−1 $$IIIIIIIIII

Y {n− 1}

commutes, Hi(Y {n}) = 0 for i > n and αn? : Hi(Y ) −→ Hi(Y {n}) is an isomor-

phism for all i ≤ n. Next we construct Y {n + 1}. We may change Y {n} up

to q-isomorphism to assume that Y {n} is a chain complex of projective modules.

Form the following distinguished triangle

Q ε // Y
αn // Y {n} // Q[−1].

Then it follows from the corresponding homology long exact sequence that

Hi(Q) =

Hi(Y ) i > n,

0 i ≤ n.

The remainder of the proof continues as the case n = 0. Hence, the theorem is

proved.

Note that inductively we can define kn to be the morphism Y {n − 2}[1] −→

Hn−1(Y )[−n+ 1] and kn is called the nth k-invariant of the chain complex Y .

3.4 The Steenrod Algebra and its dual

In this section, we define an analogue of the mod p Steenrod algebra.
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Let P −→ K[0] be a minimal projective resolution. It follows that there exists a

morphism P
L
⊗
R

K[0] −→ K[0] and hence a morphism

φ : K[0]
L
⊗
R

K[0] ∼= P
L
⊗
R

K[0] −→ K[0].

Also, note that in D(R), we have

K[0]
L
⊗
R

K[0]
L
⊗
R

K[0] ∼= K[0]
L
⊗
R

(K[0]
L
⊗
K

K[0])
L
⊗
R

K[0]

∼= (K[0]
L
⊗
R

K[0])
L
⊗
K
(K[0]

L
⊗
R

K[0]).

Therefore,

K[0]
L
⊗
R

K[0]
L
⊗
R

K[0] ∼= (P
L
⊗
R

K[0])
L
⊗
K
(P

L
⊗
R

K[0]).

since P
L
⊗
R

K[0] ∼= K[0]
L
⊗
R

K[0].

Note that the degree n part of the chain complex P
L
⊗
R

K[0] is Pn ⊗R K which is

free over K and d(Pn ⊗R K) = 0 since P is minimal projective resolution. Using

Künneth formula for complexes Theorem 1.2.23, we see that

TorK
1 (Hi(P

L
⊗
R

K[0]), Hj(P
L
⊗
R

K[0])) = 0

since Hi(P
L
⊗
R

K[0]) is free over K for each i. It follows that

Hn((P
L
⊗
R

K[0])
L
⊗
K
(P

L
⊗
R

K[0])) ∼=
n⊕
i=0

Hi(P
L
⊗
R

K[0])⊗K Hn−i(P
L
⊗
R

K[0]).

Moreover, the natural map R −→ K induces the following morphism

η : R[0] −→ K[0].

Next we show that K[0] with the morphisms φ and η is a commutative monoid

in D+(fg)(R). Since X
L
⊗
R
Y ∼= Y

L
⊗
R
X and X

L
⊗
R

(Y
L
⊗
R
Z) ∼= (X

L
⊗
R
Y )

L
⊗
R
Z for any chain

complexes X, Y and Z in D+(fg)(R) and because of Lemma 2.4.6, we see that

K[0]
L
⊗
R

K[0] ∼= P
L
⊗
R

K[0] ∼= K[0]
L
⊗
R
P,

(K[0]
L
⊗
R

K[0])
L
⊗
R

K[0] ∼= (P
L
⊗
R

K[0])
L
⊗
R
P
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and

K[0]
L
⊗
R

(K[0]
L
⊗
R

K[0]) ∼= P
L
⊗
R

(K[0]
L
⊗
R
P ).

Therefore, we have the following commutative diagrams

(P
L
⊗
R

K[0])
L
⊗
R
P

%%KKKKKKKKKK
∼=

xxqqqqqqqqqqq

P
L
⊗
R

K[0]
L
⊗
R
P (P

L
⊗
R

K[0])
L
⊗
R
P

∼=oo

id

OO

//

∼=
��

K[0]
L
⊗
R
P

P
L
⊗
R

(K[0]
L
⊗
R
P )

∼=

ffMMMMMMMMMMM

99ssssssssss

K[0]
L
⊗
R
P

!!C
CC

CC
CC

CC
C

∼=

{{wwwwwwww

K[0]
L
⊗
R
P K[0]

L
⊗
R
P

∼=oo

id

OO

//

∼=
��

K[0]

P
L
⊗
R

K[0]

∼=

ccGGGGGGGGG

=={{{{{{{{{{

The above two commutative diagrams prove commutativity of the following diagram

K[0]
L
⊗
R

K[0]
L
⊗
R

K[0]
id⊗φ //

φ⊗id

��

K[0]
L
⊗
R

K[0]

φ

��
K[0]

L
⊗
R

K[0]
φ // K[0]

Similarly, we can show that the following diagrams

K[0]
L
⊗
R
R[0]

id⊗η //

∼=
��

K[0]
L
⊗
R

K[0]

φ
��

K[0] id // K[0]

K[0]
L
⊗
R

K[0]

φ
��

R[0]
L
⊗
R

K[0]
η⊗idoo

∼=
��

K[0] K[0]idoo
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K[0]
L
⊗
R

K[0]
τ //

φ $$H
HH

HH
HH

HH
K[0]

L
⊗
R

K[0]

φzzvvv
vv

vv
vv

K[0]

are commutative where τ is the twist morphism. Hence, K[0] is a commutative

monoid in D+(fg)(R).

Note that we have the following morphism

(K[0]
L
⊗
R

K[0])
L
⊗
K
(K[0]

L
⊗
R

K[0]) ∼= K[0]
L
⊗
R

K[0]
L
⊗
R

K[0]
φ⊗id // K[0]

L
⊗
R

K[0].

We shall denote this morphism by ∆. Also, we have the following morphism

K[0]
L
⊗
R

K[0] ∼= K[0]
L
⊗
R
R[0]

L
⊗
R

K[0]
id⊗η⊗id−−−−−→ K[0]

L
⊗
R

K[0]
L
⊗
R

K[0]

∼=−→ (K[0]
L
⊗
R

K[0])
L
⊗
K
(K[0]

L
⊗
R

K[0]).

We shall denote this morphism by Ψ. Now if Y is a chain complex in D+(fg)(R),

then we have the following morphism

Y
L
⊗
R

K[0] ∼= Y
L
⊗
R
R[0]

L
⊗
R

K[0]
id⊗η⊗id−−−−−→ Y

L
⊗
R

K[0]
L
⊗
R

K[0]

∼=−→ (Y
L
⊗
R

K[0])
L
⊗
K
(K[0]

L
⊗
R

K[0]).

We shall denote this morphism by Ω. Moreover, we have the following morphism

R[0]
L
⊗
R

K[0]
η⊗id−−→ K[0]

L
⊗
R

K[0].

We shall denote this morphism also by η. We see that there are homomorphisms

Γ = ∆? : H?(K[0],K)⊗K H?(K[0],K) −→ H?(K[0],K)

λ = η? : K −→ H?(K[0],K)

Σ = Ψ? : H?(K[0],K) −→ H?(K[0],K)⊗K H?(K[0],K)

ε = φ? : H?(K[0],K) −→ K

c = τ? : H?(K[0],K) −→ H?(K[0],K)

Θ = Ω? : H?(Y,K) −→ H?(Y,K)⊗K H?(K[0],K).
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Since H?(K[0],K) is free over H?(R[0],K) = K, using [32, Theorem 17.8], we have

that H?(K[0],K) is a Hopf algebra over K with commutative product Γ, unit λ,

coproduct Σ, counit ε and antipode map c. Moreover, H?(Y,K) is a comodule over

H?(K[0],K) for any chain complex Y in D+(fg)(R) where Ω? is the coaction map.

We have noted earlier that H?(K[0],K) ∼= HomK(H?(K[0],K),K) and since

H?(K[0],K) is a graded projective K-module of finite type, then its dual H?(K[0],K)

is a Hopf algebra over K with product Σ?, unit ε?, cocomutative coproduct Γ?, counit

λ? and antipode map c? by Theorem 1.1.25. Moreover,

Θ? : H?(Y,K)⊗K H
?(K[0],K) −→ H?(Y,K)

defines the structure of a H?(K[0],K)-module on H?(Y,K) by Theorem 1.1.24.

Therefore, H?(Y,K) is a module over H?(K[0],K) for every chain complex Y in

D+(fg)(R).

Definition 3.4.1. The mod m Steenrod algebra A? is the graded K-module with

An = Hn(K[0],K)

for all n. Note that A0 = K and A1 ∼= K ⊕ · · · ⊕ K n-times where n is the size of

minimal generating set of m.

Remark 3.4.2. Observe that Theorem 2.4.13 implies that

An = Hn(K[0],K) ∼= ExtnR(K[0],K[0]) = HomD(R)(K[0],K[−n]).

3.5 Definitions

In this section, we give some definitions of new notions.

From now on until the end of this chapter, we work in the derived category

D+(fg)(R) of bounded below chain complexes Y whose homology modules Hi(Y ) are

of finite type and we will consider only chain complexes Y with Yi = 0 for all i < 0

and H0(Y ) 6= 0. The condition H0(Y ) 6= 0 corresponds to the Hurewicz dimension

0 in [5].

We begin with definitions of concepts that are invariant in the derived category.

In the following definitions, consider chain complexes X and Y as stated above.
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Definition 3.5.1. A morphism α : X −→ Y in D+(fg)(R) is a d-monomorphism if

α? : H0(X)⊗R K −→ H0(Y )⊗R K

and

α? : Hn(X) −→ Hn(Y )

are monomorphisms for all n ≥ 0.

Definition 3.5.2. Y is irreducible if any d-monomorphism α : X −→ Y is a d-

isomorphism.

Definition 3.5.3. Y is atomic if any self morphism α : Y −→ Y that induces an

isomorphism on H0 is a d-isomorphism.

Definition 3.5.4. Y is minimal atomic if it is atomic and any d-monomorphism

α : X −→ Y from an atomic chain complex X to Y is d-isomorphism.

Definition 3.5.5. Y has no mod m detectable homology if the reduction morphism

ρ : Hn(Y ) −→ Hn(Y ; K) is zero for all n > 0.

Definition 3.5.6. Y is H?-monogenic if H?(Y ; K) is a cyclic module over the mod

m Steenrod algebra A?.

We will prove the following theorem later when we define the notion of a nuclear

chain complex.

Theorem 3.5.7. If Y is a chain complex and u ∈ H0(Y ) with 0 6= ū ∈ H0(Y,K),

then there is a d-monomorphism α : X −→ Y such that X is atomic with H0(X) a

cyclic R-module.

The above theorem implies the following important result.

Corollary 3.5.8. Every irreducible chain complex is atomic.

3.6 Minimal atomic and irreducible chain com-

plexes

The first result in this section characterizes irreducible chain complexes Y which

have H0(Y ) a cyclic R-module.
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Theorem 3.6.1. If Y is a chain complex with H0(Y ) a cyclic R-module, then Y is

irreducible if and only if Y has no mod m detectable homology.

Proof. Suppose that Y is a chain complex with H0(Y ) a cyclic R-module. Assume

that Y is irreducible. Assume that Y has mod m detectable homology, that is,

ρ : Hn(Y ) −→ Hn(Y,K) is non-zero for n > 0. Then there is f : R[−n] −→ Y

such that 0 6= ρ(f) ∈ Hn(Y,K). Thus, there exists 0 6= α : Y −→ K[−n] where

α ∈ Hn(Y,K). Form the following distinguished triangle

Y
α // K[−n]

β // X
γ // Y [−1]

Then we have the following long exact sequence

· · · // 0 // Hn+1(X)
γ? // Hn+1(Y [−1])

α? // K
β? // Hn(X) // · · ·

It is clear that Y is irreducible if and only if Y [−1] is irreducible. Thus, γ is d-

monomorphism which is not d-isomorphism. This contradicts the fact that Y is

irreducible. Hence, Y has no mod m detectable homology.

Conversely, assume that Y has no mod m detectable homology. We show that

Y is irreducible. Let α : X −→ Y be a d-monomorphism. We claim that α is

d-isomorphism. Let

X
α // Y

β // Z
γ // X[−1]

be a distinguished triangle. Thus, we have the following long exact sequence

· · · // Hn(X)
α? // Hn(Y )

β? // Hn(Z)
γ? // Hn−1(X) // · · ·

Then it is clear that α is d-isomorphism if and only if Hi(Z) is zero for all i. Suppose

that H?(Z) 6= 0. Let n be minimal such that Hn(Z) 6= 0. Thus, ρ1 : Hn(Z) −→

Hn(Z,K) is non-zero. Now consider the following commutative diagram

Hn(Y )

ρ2
��

β? // Hn(Z)

ρ1
��

Hn(Y,K) // Hn(Z,K)

We have that β? is an epimorphism since α is d-monomorphism. Thus, ρ2 is not zero

since ρ1 is not by Lemma 1.1.16. This contradicts that Y has no mod m detectable

homology. Therefore, Hi(Z) is zero for all i. Hence, Y is irreducible.
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Remark 3.6.2. If H0(Y ) is not a cyclic R-module, then Theorem 3.6.1 does not

hold. For example, the chain complex R[0]⊕R[0] has no mod m detectable homology

but is not irreducible since

R[0]
(0,id) // R[0]⊕R[0]

is a d-monomorphism which is not a d-isomorphism.

We will now present some examples of irreducible chain complexes.

Example 3.6.3. Let M be a cyclic R-module and consider the chain complex X =

M [0]. Then clearly X has no mod m detectable homology with H0(X) a cyclic

R-module. Therefore, X is irreducible by Theorem 3.6.1.

Example 3.6.4. A projective resolution P of a cyclic R-module M obviously has

no mod m detectable homology. Hence, it is irreducible.

Example 3.6.5. Consider the following chain complex Y

0 // R
i // R⊕R // 0

where R is in degree 1 and i is the map (0, id). Then it is clear that H0(Y ) = R is

a cyclic R-module. Notice that Hi(Y ) = 0 for all i > 0. Thus, the reduction map

is zero for i > 0. Therefore, Y has no mod m detectable homology. Hence, Y is

irreducible.

We now give the following interesting example.

Example 3.6.6. Let R = EC(x) be the exterior algebra over C with generator x

of degree one. Note that R is a noetherian local ring with maximal ideal m = xC.

The residue field K = R/m ∼= C. Let Y be the following chain complex

0 // R
x // R

x // R // 0.

Then it is clear that H0(Y ) = C, H1(Y ) = 0 and H2(Y ) = m.

On the other hand, Y
L
⊗
R

C[0] is the following chain complex

0 // C 0 // C 0 // C // 0.

Therefore, we deduce that ρ : H2(Y ) −→ H2(Y
L
⊗
R

C[0]) is zero. Thus, Y has no mod

m detectable homology. Hence, Y is irreducible.
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Theorem 3.6.7. Let Y be H?-monogenic. Then Y has no mod m detectable hom-

ology.

Proof. We have that Y is H?-monogenic. Thus, H?(K[0],K) −→ H?(Y,K) is an

epimorphism. Thus, H?(Y,K) −→ H?(K[0],K) is monomorphism. Now consider

the following commutative diagram.

Hn(Y ) //

ρ1
��

Hn(K[0])

ρ2
��

Hn(Y,K) // Hn(K[0],K)

It is clear that if n > 0, then ρ1 is zero by Lemma 1.1.16. Hence, Y has no mod m

detectable homology.

Remark 3.6.8. The converse of Theorem 3.6.7 fails to hold. Consider the chain

complex Y = R2[0]. Then it is obvious Y has no homology detected by mod m

homology. However, Y is not H?-monogenic since H0(Y,K) = K2 and A0 = K.

Now we give some examples of H?-monogenic chain complexes.

Example 3.6.9. The chain complex R[0] is an H?-monogenic since H?(R[0],K) =

K = A?/I where I is the ideal of the augmentation map λ? : A? −→ K .

Example 3.6.10. Since H?(K[0],K) = A?, then the chain complex K[0] is clearly

an H?-monogenic .

We present now a less obvious example.

Example 3.6.11. Consider the polynomial ring R[X, Y ] in two variables over the

real numbers and the maximal ideal m = (X2 + 1, Y ). Let R = R[X, Y ](X2+1,Y ) be

the localization of R[X, Y ] at the prime ideal (X2 + 1, Y ). Then it is clear that the

residue field K ∼= C. Now let M = R/(Y )R. Consider the chain complex M [0].

Now to calculate H?(C[0],C), we resolve C[0] with the following minimal free chain

complex

0 // R
f // R⊕R g // R // 0.
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where g(1, 0) = X2 + 1, g(0, 1) = Y and f(1) = (Y,−X2 − 1). Therefore,

H i(C[0],C) =


C i = 0, 2,

C2 i = 1,

0 otherwise.

Hence, A? = EC(e1, e2)

Similarly, we resolve M [0] with the following minimal free chain complex

0 // R
h // R // 0.

where h(1) = Y . So

H i(M [0],C) =

C i = 0, 1,

0 otherwise.

Therefore, H?(M [0],C) = A?/A?e1. Hence, M [0] is H?-monogenic.

We now give an example that motivates the characterization of minimal atomic

chain complexes.

Example 3.6.12. Let M be an R-module which is not a cyclic and consider the

chain complex Y = M [0]. Then it is clear that Y is atomic by Definition 3.5.3.

But there is no reason why Y is irreducible. For example, the chain complex Y =

R[0]⊕R[0] is obviously an atomic chain complex but Remark 3.6.2 shows that Y is

not irreducible.

Observe that the chain complex R[0]⊕R[0] in Remark 3.6.2 is an example of an

atomic chain complex that is not irreducible as well as not minimal atomic.

We come now to the following important result which proves that minimal atomic

chain complexes and irreducible chain complexes are the same.

Theorem 3.6.13. A chain complex Y is irreducible if and only if it is minimal

atomic.

Proof. Assume that Y is irreducible. We show that Y is minimal atomic. Y is

atomic by Corollary 3.5.8. Let α : X −→ Y be a d-monomorphism with X atomic.
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It is clear that α is a d-isomorphism since Y is irreducible. Hence, Y is minimal

atomic.

Conversely, assume that Y is minimal atomic. We prove that Y is irreducible. Let

α : Z −→ Y be a d-monomorphism. Then there is a d-monomorphism β : X −→ Z

such that X is atomic. Thus, the composite αβ is d-monomorphism with X atomic.

Hence, αβ is d-isomorphism since Y is minimal atomic. This implies that α induces

an epimorphism on homology modules. Therefore α is d-isomorphism. Hence, Y is

irreducible.

Example 3.6.14. Example 3.6.3, Example 3.6.4, Example 3.6.5 and Example 3.6.6

are examples of minimal atomic chain complexes using Theorem 3.6.13.

Theorem 3.6.15. A chain complex Y with H0(Y ) a cyclic R-module is minimal

atomic if and only if Y {n} is minimal atomic for each n ≥ 0.

Proof. We have the following commutative diagram

Hi(Y ) //

ρ1
��

Hi(Y {n})
ρ2
��

Hi(Y,K) // Hi(Y {n},K)

Now assume that Y is minimal atomic. Then ρ1 is zero since Y is irreducible by

Theorem 3.6.13 and thus it has no homology detected by mod m homology by

Theorem 3.6.1. Since the top horizontal map is an epimorphism for all i, in fact it

is an isomorphism for all i ≤ n by Theorem 3.3.1, we have that ρ2 is zero by Lemma

1.1.16. Hence, Y {n} is minimal atomic for each n ≥ 0. Conversely, assume that

Y {n} is minimal atomic, that is, ρ2 = 0. By Lemma 1.1.16, it suffices to show that

the bottom horizontal map is a monomorphism. But Hi(Y,K) ∼= Hi(Y {n},K) for

all i ≤ n by the Derived Whitehead Theorem. Therefore, induction shows that ρ1

is zero. Hence, Y is minimal atomic.

Definition 3.6.16. The k-invariants of Y detect its homology if each k-invariant

kn+2 : Y {n}[1] −→ Hn+1(Y )[−n − 1], n ≥ 0 of a Postnikov tower
{
Y {n}

}
induces

an epimorphism

Hn+1(Y {n}[1],K) −→ Hn+1(Hn+1(Y )[−n− 1],K) ∼= Hn+1(Y )⊗R K.
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Theorem 3.6.17. A chain complex Y with H0(Y ) a cyclic R-module is irreducible

if and only if the k-invariants of Y detect its homology.

Proof. We show that the chain complex Y is irreducible if and only if each k-invariant

kn+2 : Y {n}[1] −→ Hn+1(Y )[−n − 1], n ≥ 0 of a Postnikov tower
{
Y {n}

}
induces

an epimorphism

Hn+1(Y {n}[1],K) −→ Hn+1(Hn+1(Y )[−n− 1],K) ∼= Hn+1(Y )⊗R K.

Consider the following distinguished triangle

Y {n}[1] kn+2
// Hn+1(Y )[−n− 1]

γ // Y {n+ 1} βn+1 // Y {n}.

Then we have the following commutative diagram

Y {n}[1] //

kn+2

��

Y {n}[1]
L
⊗
R

K[0]

kn+2⊗id
��

Hn+1(Y )[−n− 1] //

γ

��

Hn+1(Y )[−n− 1]
L
⊗
R

K[0]

γ⊗id

��

Y {n+ 1} //

βn+1

��

Y {n+ 1}
L
⊗
R

K[0]

βn+1⊗id

��

Y {n} // Y {n}
L
⊗
R

K[0]

Therefore, we have the following commutative diagram

...

��

...

��

Hn+1(Y {n}[1])

kn+2
?

��

// Hn+1(Y {n}[1]
L
⊗
R

K[0])

(kn+2⊗id)?

��

Hn+1(Hn+1(Y )[−n− 1])
ρ1 //

γ? ∼=

��

Hn+1(Hn+1(Y )[−n− 1]
L
⊗
R

K[0])

(γ⊗id)?

��

Hn+1(Y {n+ 1})

��

ρ2 // Hn+1(Y {n+ 1}
L
⊗
R

K[0])

��
...

...
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in which the columns are exact. Note that ρ1 is just reduction mod m where

Hn+1(Hn+1(Y )[−n− 1]
L
⊗
R

K[0]) = Hn+1(Y )⊗R K.

Therefore, if (kn+2 ⊗ id)? is an epimorphism for each n ≥ 0, then ρ2 is zero for each

n ≥ 0 since (γ ⊗ id)? is zero. Thus, Y is minimal atomic by Theorem 3.6.15 and

hence irreducible by Theorem 3.6.13.

Conversely, if Y is irreducible, hence has no mod m detectable homology by The-

orem 3.6.1, then Y is minimal atomic and thus Y {n} is minimal atomic. Therefore,

ρ2 is zero and it follows that (γ ⊗ id)? is zero. Hence, (kn+2 ⊗ id)? is an epimor-

phism.

3.7 Nuclear chain complexes

In this section, for n ≥ 0, the n+1-skeleton, Y [n+1], of a chain complex Y is defined

to be the mapping cone of a map ∂n : Jn −→ Y [n], where Jn is a finite direct sum of

copies of R.

Definition 3.7.1. A nuclear chain complex is a free chain complex Y in which

Y0 = R and

Ker(∂n? : Hn(⊕R[−n]) −→ Hn(Y
[n])) ⊂ m Hn(⊕R[−n])

for each n.

Observe that Y is nuclear if and only if each n-skeleton Y [n] for n ≥ 0 is nuclear.

We now give some examples of nuclear chain complexes.

Example 3.7.2. R[0] is an example of a nuclear chain complex.

Example 3.7.3. Consider the following Koszul chain complex Y

0 // R
x // R // 0

where R concentrated in degrees 1 and 0 and x ∈ m is a nonzero divisor on R. Then

it is clear that H0(Y ) = R/xR is a cyclic R-module and Ker(∂0? : H0(R[0]) −→

H0(Y
[0])) = 0. Therefore, Y is nuclear.
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Example 3.7.4. The chain complex Y in Example 3.6.6 is also nuclear.

Definition 3.7.5. A core of a chain complex Y is a nuclear chain complex X

together with a d-monomorphism α : X −→ Y .

Proposition 3.7.6. A nuclear chain complex is atomic.

Proof. Let Y be a nuclear chain complex and let α : Y −→ Y be a morphism

that induces an isomorphism on H0. We must show that α is a d-isomorphism

or equivalently, Y [n] −→ Y [n] is a d-isomorphism for each n. Since α induces

an isomorphism on H0, we see that α? : Hi(Y
[0]) −→ Hi(Y

[0]) an isomorphism

for all i. Assume inductively that α : Y [n] −→ Y [n] is a d-isomorphism. Now

we claim that α : Y [n+1] −→ Y [n+1] is a d-isomorphism. It suffices to show that

Hq(Y
[n+1]) −→ Hq(Y

[n+1]) is an isomorphism for q = n and q = n+1. We have that

⊕R[−n]
∂n // Y [n] // Y [n+1] // ⊕R[−n− 1]

is a distinguished triangle. We see that α induces the following commutative dia-

gram.

⊕R[−n]
∂n //

∃ f

��

Y [n] //

��

Y [n+1] //

��

⊕R[−n− 1]

f [−1]

��
⊕R[−n]

∂n // Y [n] // Y [n+1] // ⊕R[−n− 1]

There results the following commutative diagram.

0 // Hn+1(Y
[n+1]) //

��

Hn(⊕R[−n]) //

f?

��

Hn(Y
[n]) //

∼=
��

Hn(Y
[n+1]) //

��

0

0 // Hn+1(Y
[n+1]) // Hn(⊕R[−n]) // Hn(Y

[n]) // Hn(Y
[n+1]) // 0

It suffices to prove that f? : Hn(⊕R[−n]) −→ Hn(⊕R[−n]) is an isomorphism by

the Five Lemma. We have the following commutative diagram with exact rows.

Hn(⊕R[−n])
∂n? //

��

Hn(Y
[n]) //

∼=
��

Hn(Y
[n+1]) //

��

0

Hn(⊕R[−n])
∂n? // Hn(Y

[n]) // Hn(Y
[n+1]) // 0

The right vertical arrow is an epimorphism by diagram chasing. Therefore, it is an

isomorphism since epimorphic endomorphism of a finitely generated module over a
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commutative ring R is an isomorphism by Theorem 1.1.13. This implies that right

vertical arrow is an isomorphism in the following commutative diagram

0 // Ker ∂n?
i //

��

Hn(⊕R[−n]) //

f?

��

Im ∂n? //

∼=
��

0

0 // Ker ∂n?
i // Hn(⊕R[−n]) // Im ∂n? // 0

After tensoring with K, the inclusion i becomes 0 since

Ker(∂n? : Hn(⊕R[−n]) −→ Hn(Y
[n])) ⊂ m Hn(⊕R[−n]).

Therefore, f? ⊗ idK is an isomorphism. This implies that f? is an isomorphism.

Hence, Y is an atomic.

Remark 3.7.7. The converse of Proposition 3.7.6 does not hold in general. Consider

the following chain complex Y

0 // I
i // R // 0

in which I is an ideal of R in degree 1 and i is the inclusion map. We see that Y

has no mod m detectable homology and since H0(Y ) = R/I is a cyclic R-module, Y

is irreducible by Theorem 3.6.1. Hence, Y is atomic by Theorem 3.6.13. However,

Y is not nuclear since it is not free chain complex.

The following result shows that a core of a chain complex whose zero homology

is cyclic exists.

Theorem 3.7.8. Let Y be a chain complex with H0(Y ) a cyclic R-module. Then

there is a core α : X −→ Y .

Proof. We have that H0(Y ) is a cyclic R-module. We may change Y up to q-

isomorphism to assume that Y0 = R. Let X0 = R and define α0 : R −→ R by

1 7−→ 1. Assume inductively that we have constructed X [n] and αn : X [n] −→ Y that

induces monomorphism on homology modules in dimension less than n. Choose a

minimal (finite) set of generators for the kernel of αn? : Hn(X
[n]) −→ Hn(Y ). Let

Jn be the sum of a copy of R for each chosen generator, and let

∂n : Jn = ⊕R[−n] −→ X [n]
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represent the chosen generators. Define X [n+1] to be the mapping cone of ∂n,

⊕R[−n]
∂n // X [n] // X [n+1].

We see that the composite

⊕R[−n]
∂n // X [n] // Y

is zero. Notice that for Y there is a distinguished triangle

Y
id // Y // 0 // Y [−1].

Now consider the following commutative diagram of solid lines.

⊕R[−n] //

��

X [n] //

��

X [n+1]

αn+1

��
0 // Y // Y

Then there exists αn+1 : X [n+1] −→ Y making the diagram commute. Note that

the morphism X [n] −→ X [n+1] induces an isomorphism on Hi for i < n and an

epimorphism onHn. By construction, we deduce that αn+1 induces a monomorphism

on Hi for i ≤ n. On passage to colimit, we obtain α : X −→ Y that induces

monomorphism on all homology modules. The minimality of the chosen set of

generators ensures that

Ker(∂n? : Hn(⊕R[−n]) −→ Hn(X
[n])) ⊂ mHn(⊕R[−n])

holds which means that X is nuclear. Hence, there is a core α : X −→ Y

We now give a proof of Theorem 3.5.7, which shows that the core of any chain

complex always exists without restriction to cyclicity of the zeroth homology.

Proof of Theorem 3.5.7. Let u ∈ H0(Y ) = Y0/B0(Y ) such that 0 6= ū ∈ H0(Y,K).

Lift u to an element ũ ∈ Y0. Then it is clear that

〈
u
〉

= R/I ⊂ H0(Y ) = Y0/B0(Y )

for some ideal I ∈ R. Let X0 = R. Define α0 : R −→ Y0 by 1 7−→ ũ. As-

sume inductively that we have constructed X [n] and αn : X [n] −→ Y that induces
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monomorphism on homology modules in dimension less than n. Choose a minimal

finite set of generators for the kernel of αn? : Hn(X
[n]) −→ Hn(Y ). Now we continue

as in the proof of Theorem 3.7.8 to end up with a nuclear chain complex X and a

d-monomorphism α : X −→ Y Therefore, X is atomic by Proposition 3.7.6. Hence,

there is a d-monomorphism α : X −→ Y such that X is atomic with H0(X) a cyclic

R-module.

The proof of Proposition 3.7.6 can be adapted to show the following result.

Proposition 3.7.9. Let X and Y be nuclear chain complexes and let α : X −→ Y

be a core of Y . Then α is a d-isomorphism.

Proof. It is obvious thatH0(X
[0]) −→ H0(Y

[0]) is an isomorphism. Thus,Hk(X
[0]) −→

Hk(Y
[0]) is an isomorphism for all k. Now assume that α : X [n] −→ Y [n] is a d-

isomorphism. We show that α : X [n+1] −→ Y [n+1] is a d-isomorphism. It suffices to

show that Hq(X
[n+1]) −→ Hq(Y

[n+1]) is an isomorphism for q = n and q = n + 1.

There is a commutative diagram of distinguished triangles.

Jn = ⊕R[−n]
jn //

∃ f

��

X [n] //

α

��

X [n+1]

α

��
Kn = ⊕R[−n]

kn // Y [n] // Y [n+1]

There results the following commutative diagram with exact rows.

0 // Hn+1(X
[n+1]) //

��

Hn(Jn) //

f?

��

Hn(X
[n]) //

∼=
��

Hn(X
[n+1]) //

��

0

0 // Hn+1(Y
[n+1]) // Hn(Kn) // Hn(Y

[n]) // Hn(Y
[n+1]) // 0

By the Five Lemma, it suffices to show that f? is an isomorphism. We have the

following commutative diagram with exact rows.

Hn(Jn) //

��

Hn(X
[n]) //

∼=
��

Hn(X
[n+1]) //

��

0

Hn(Kn) // Hn(Y
[n]) // Hn(Y

[n+1]) // 0
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The right vertical arrow is an epimorphism by diagram chasing. Consider the fol-

lowing diagram

Hn(X
[n+1])

��

∼= // Hn(X)

��
Hn(Y

[n+1])
∼= // Hn(Y )

We see that the right vertical arrow is monomorphism. Thus, the left vertical ar-

row is monomorphism, hence isomorphism. Thus, the right vertical arrow is an

isomorphism in the following diagram

0 // Ker jn?

��

i1 // Hn(Jn) //

f?

��

Im jn?
//

∼=
��

0

0 // Ker kn?

i2 // Hn(Kn) // Im kn?
// 0

We see that the maps i1 and i2 become 0 after tensoring with K. Therefore f? ⊗

idK is an isomorphism. This implies that f? is an isomorphism. Hence, α is a

d-isomorphism.

In Proposition 3.7.6, we showed that a nuclear chain complex is atomic and now

with the aid of Proposition 3.7.9, we give the following strong result.

Theorem 3.7.10. A nuclear chain complex is minimal atomic.

Proof. Let Y be a nuclear chain complex. We prove that Y is minimal atomic. Y

is atomic by Proposition 3.7.6. Let α : X −→ Y be a d-monomorphism where X

is atomic. We show that α is d-isomorphism. Let β : Z −→ X be a core of X.

Therefore, the composite αβ : Z −→ Y is a core of Y . Hence, αβ is d-isomorphism

by Proposition 3.7.9. Thus, α must induce an epimorphism on homology and so it is

an isomorphism. Therefore, α is a d-isomorphism. Hence, Y is minimal atomic.

Theorem 3.7.11. The following conditions on a chain complex Y are equivalent.

(i) Y is minimal atomic.

(ii) Any core of Y is a d-isomorphism.

(iii) Y is d-isomorphic to a nuclear chain complex.
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Proof. First we show that (i) implies (ii). So assume that Y is minimal atomic. Let

α : X −→ Y be a core of Y . Then α is d-isomorphism since Y is minimal atomic.

Hence, (i) implies (ii). Next we show that (ii) implies (iii). Assume any core of Y is

d-isomorphism. Let α : X −→ Y be a core of Y . That is, X is nuclear and α induces

monomorphism on homology groups. Thus, α is a d-isomorphism. Therefore, Y is

d-isomorphic to a nuclear chain complex. Hence, (ii) implies (iii). Now we show that

(iii) implies (i). Assume that Y is d-isomorphic to a nuclear chain complex. That

is, there exists a nuclear chain complex X and a d-isomorphism α : X −→ Y . We

have that X is nuclear and thus minimal atomic by Theorem 3.7.10. We claim that

Y is minimal atomic. We show that Y is atomic. Let θ : Y −→ Y be a morphism

that induces an isomorphism on H0. We show that θ is d-isomorphism. Consider

the following diagram of solid arrows.

X

α

��

ψ // X

α

��
Y

θ
// Y

We have that α is d-isomorphism. Thus, there exists a morphism ψ : X −→ X which

induces an isomorphism on H0. But X is atomic. Thus, ψ is a d-isomorphism.

Hence, θ is a d-isomorphism. Therefore, Y is atomic. Let β : Z −→ Y be a d-

monomorphism, where Z is atomic. We show that β is d-isomorphism. Consider

the following diagram.

Z
β

  A
AA

AA
AA

X α
// Y

Therefore there exists γ : Z −→ X which is d-monomorphism. But X is minimal

atomic. Therefore, γ is d-isomorphism. Thus, β is d-isomorphism. Hence, Y is

minimal atomic, showing that (iii) implies (i).

Now we have the following lemma which characterizes minimal chain complexes.

Lemma 3.7.12. A chain complex (Y, d) is minimal if and only if the inclusion of

skeleta i : Y [n] −→ Y [n+1] induces an isomorphism

in : Hn(Y
[n],K) −→ Hn(Y

[n+1],K) = Hn(Y,K)
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for each n.

Proof. We may change Y up to q-isomorphism to suppose that Y is a chain complex

of projective modules. Assume that Y is minimal, that is, dn ⊗ idK = 0 for each n.

We always have that in : Hn(Y
[n],K) −→ Hn(Y

[n+1],K) is an epimorphism. Since Y

is minimal, we have that

in : Hn(Y
[n],K) = Yn ⊗R K −→ Hn(Y

[n+1],K) = Yn ⊗R K

is an epimorphism and hence in is an isomorphism for each n. Conversely, assume

that in is an isomorphism for each n. We show that Y is minimal and we do that

by induction. At 0, we have that

H0(Y
[0],K) = Y0 ⊗R K

∼= // H0(Y
[1],K) = (Y0 ⊗R K)/ Im(d1 ⊗ idK).

Therefore, Im(d1 ⊗ idK) = 0. Thus, d1 ⊗ idK = 0. Assume that dn ⊗ idK = 0. We

claim that dn+1 ⊗ idK = 0. We have that

Hn(Y
[n],K) = Yn ⊗R K

∼= // Hn(Y
[n+1],K) = (Yn ⊗R K)/ Im(dn+1 ⊗ idK).

Therefore, Im(dn+1 ⊗ idK) = 0. Thus, dn+1 ⊗ idK = 0. Hence, Y is minimal.

Lemma 3.7.13. Let Y be a chain complex with H0(Y ) a cyclic R-module. Then Y

is nuclear if and only if ρ : Hn(Y
[n]) −→ Hn(Y

[n],K) is zero for n > 0.

Proof. First note that we have the following distinguished triangle

⊕R[−n] α // Y [n]
β // Y [n+1]

γ // ⊕R[−n− 1].

Thus, we have the following commutative diagram with exact rows.

0 // Hn+1(Y
[n+1])

γ? //

ρ1
��

Hn(⊕R[−n])
α? //

ρ2

��

Hn(Y
[n])

ρ

��
0 // Hn+1(Y

[n+1],K) // Hn(⊕R[−n],K) // Hn(Y
[n],K)

Now assume that Y is nuclear. That is, Ker(α?) ⊂ mHn(⊕R[−n]) for each n.

But Ker(α?) = Im(γ?). Let y ∈ Hn+1(Y
[n+1]). Therefore, ρ2(γ?(y)) = 0. Thus,

ρ1(y) = 0. Hence, ρ : Hn(Y
[n]) −→ Hn(Y

[n],K) is zero for n > 0. Conversely,

assume that ρ : Hn(Y
[n]) −→ Hn(Y

[n],K) is zero for n > 0. Then Im(γ?) ⊂ Ker(ρ2).

But Ker(ρ2) = mHn(⊕R[−n]). Thus, Ker(α?) ⊂ mHn(⊕R[−n]). Hence, Y is

nuclear.
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Remark 3.7.14. Note that ρ2 is an epimorphism. Therefore, when Y is nuclear,

Hn(⊕R[−n],K) −→ Hn(Y
[n],K) is zero. This implies that Y is minimal by Lemma

3.7.12.

Theorem 3.7.15. Let Y be a chain complex with H0(Y ) a cyclic R-module. Then

Y is nuclear if and only if it satisfies

(i) Y has no mod m detectable homology,

(ii) Y is minimal chain complex.

Proof. Assume that Y is nuclear. Remark 3.7.14 shows that Y is minimal chain

complex. Consider the following commutative diagram.

Hn(Y
[n]) //

ρ1
��

Hn(Y )

ρ2

��
Hn(Y

[n],K) // Hn(Y,K)

The top arrow is an epimorphism. Since Y is nuclear, we have ρ1 is zero for n > 0

by Lemma 3.7.13. Thus, ρ2 is zero by Lemma 1.1.16. Hence, Y has no mod m

detectable homology.

Conversely, assume that (i) and (ii) hold. Thus, the bottom arrow is an isomor-

phism and ρ2 is zero for n > 0 in the above commutative diagram. Thus, ρ1 is zero

for n > 0. Hence, Y is nuclear by Lemma 3.7.13.

Example 3.7.16. Using Theorem 3.7.15, the chain complex Y in Example 3.7.3 is

nuclear since if we tensor Y with K, we will have that x ⊗ idK is zero since x ∈ m

and thus Y is minimal. Also, notice that H0(Y ) = R/xR is a cyclic R-module,

H1(Y ) = 0 since X is a nonzero divisor and H1(Y,K) = K and thus the reduction

map ρ is just a zero map. Therefore, Y has no mod m detectable homology.

Example 3.7.17. The chain complex Y in Example 3.6.6 is nuclear since Y has no

mod C detectable homology and is minimal.

Example 3.7.18. Let R = EC(x). Let Y be the following chain complex

· · · x // R
x // R

x // R // 0,
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that is, R in each degree with multiplication by x as differential. Then it is clear

that

Hi(Y ) =

C i = 0,

0 otherwise.

Thus, Y has no mod C detectable homology. Since x ⊗ idC = 0, Y is minimal.

Hence, Y is nuclear by Theorem 3.7.15.

Example 3.7.19. Note that Example 3.6.4 is not nuclear since it is not minimal.

Therefore, we deduce that minimal projective resolution of a cyclic R-module is

nuclear.

Now we give the following description of minimal atomic chain complexes.

Theorem 3.7.20. The following conditions on a chain complex Y with H0(Y ) a

cyclic R-module are equivalent.

(i) Y is minimal atomic.

(ii) Any d-isomorphism α : X −→ Y from a minimal chain complex X to Y is a

core of Y .

(iii) A minimal chain complex d-isomorphic to Y is nuclear.

Proof. We prove that (i) implies (ii). Assume that Y is minimal atomic. Let

α : X −→ Y be a d-isomorphism from a minimal chain complex X to Y . We

show that X is nuclear. We have that X is minimal atomic, hence irreducible by

Theorem 3.6.13, since α is d-isomorphism. Thus, X has no mod m detectable hom-

ology by Theorem 3.6.1. Hence, X is nuclear by Theorem 3.7.15. It is clear that (ii)

implies (iii). Next we show that (iii) implies (i). Let X be a minimal chain complex

d-isomorphic to Y . Assume X is nuclear. Then X is minimal atomic by Theorem

3.7.10. Hence, Y is minimal atomic.



Chapter 4

The Adams Spectral Sequence For

Chain Complexes

In this chapter, we assume that R is a commutative noetherian local ring with

maximal ideal m and residue field K. Consider the derived category D+(fg)(R) of

bounded below chain complexes of finite type. Assume that all chain complexes are

connective.

In this chapter, we set up the Adams spectral sequence for chain complexes in

D+(fg)(R) and discuss its convergence and give some examples.

4.1 Setting up the spectral sequence

Before we start we need to set up some notation. We will use subscripts to denote

different chain complexes, rather than the modules in a single chain complex, unless

otherwise stated. That is, when we write Yn, we mean a chain complex not the

module in degree n of a chain complex. Likewise we will use superscripts to denote

different chain complexes rather than the modules in a single cochain complex. That

is, when we write Y n, we mean a chain complex not the module in degree n of a

cochain complex.

105
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Definition 4.1.1. A mod m Adams resolution for a chain complex Y is a diagram

Y = Y0

α0

��

Y1

α1

��

β0oo Y2

α2

��

β1oo · · ·β2oo

L0 L1 L2

where each Ls = Ys
L
⊗
R

K[0], αs
? is onto and each

Ys+1
βs // Ys

αs // Ls // Ys+1[−1]

is a distinguished triangle.

Lemma 4.1.2. Let Y be a chain complex. Then Y admits a mod m Adams resolu-

tion.

Proof. Let Y0 = Y . Consider the canonical morphism

Y0
∼= Y0

L
⊗
R
R[0]

id⊗η−−−→ Y0

L
⊗
R

K[0] = L0.

Let α0 = id⊗η. Form the following distinguished triangle

Y1
β0 // Y0

α0 // L0
// Y1[−1].

Now we claim that α0
? is onto. Note that

Hn(L0,K) = Hn(Y0

L
⊗
R

K[0],K)

= Hn(RHomR(Y0

L
⊗
R

K[0],K[0]))

= HomK(Hn(Y0

L
⊗
R

K[0],K),K).

Let P −→ K[0] be a minimal projective resolution and Q −→ Y0 be a minimal

projective resolution. Then

Y0

L
⊗
R

K[0]
L
⊗
R

K[0] ∼= (Y0

L
⊗
R

K[0])
L
⊗
K
(K[0]

L
⊗
R

K[0])

∼= (Q
L
⊗
R

K[0])
L
⊗
K
(P

L
⊗
R

K[0]).

since Q
L
⊗
R

K[0] ∼= Y0

L
⊗
R

K[0] and P
L
⊗
R

K[0] ∼= K[0]
L
⊗
R

K[0]. Note that the degree n part

of the chain complex Q
L
⊗
R

K[0] is Qn⊗R K which is free over K and d(Qn⊗R K) = 0
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since Q is a minimal projective resolution. Using the Künneth formula for complexes

Theorem 1.2.23, we see that

TorK
1 (Hi(Q

L
⊗
R

K[0]), Hj(P
L
⊗
R

K[0])) = 0

since Hi(Q
L
⊗
R

K[0]) is free over K for each i. It follows that

Hn((Q
L
⊗
R

K[0])
L
⊗
K
(P

L
⊗
R

K[0])) ∼=
n⊕
i=0

Hi(Q
L
⊗
R

K[0])⊗K Hn−i(P
L
⊗
R

K[0]).

Therefore,

Hn(L0,K) = Hn(Y0

L
⊗
R

K[0],K)

∼= HomK(Hn(Y0

L
⊗
R

K[0]
L
⊗
R

K[0]),K)

= HomK(
n⊕
i=0

Hi(Q
L
⊗
R

K[0])⊗K Hn−i(P
L
⊗
R

K[0]),K)

=
n⊕
i=0

HomK(Hi(Q
L
⊗
R

K[0],K)⊗K Hn−i(P
L
⊗
R

K[0]),K)

∼=
n⊕
i=0

HomK(Hi(Q
L
⊗
R

K[0]),K)⊗K HomK(Hn−i(P
L
⊗
R

K[0],K))

∼=
n⊕
i=0

H i(Q,K)⊗K H
n−i(P,K)

∼=
n⊕
i=0

H i(Y0,K)⊗K H
n−i(K[0],K).

Thus, we deduce that

H?(L0,K) ∼= H?(Y0,K)⊗K A?

where A? is the Steenrod algebra. Now it is clear that α0
? is onto. We can deduce

that L0 is a connective chain complex of finite type. From the following homology

long exact sequence,

· · · −→ Hn(Y1) −→ Hn(Y0) −→ Hn(L0) −→ Hn−1(Y1) −→ · · ·

we deduce that Y1 is a connective chain complex of finite type. The lemma now

follows by induction.

Now we give the main theorem of this chapter.
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Theorem 4.1.3. Let Y be a connective chain complex. Then there exists a spectral

sequence {Er, dr} with the following properties.

(i) dr : E
s,t
r −→ Es+r,t+r−1

r for all r, s, t.

(ii) Es,t
2
∼= Exts,tA?(H?(Y,K),K).

(iii) Es,t
r+1 ⊂ Es,t

r for r > s and ∩r>sEs,t
r = Es,t

∞ .

(iv) There is a associated decreasing filtration

Ht−s(Y ) = F 0Ht−s(Y ) ⊃ F 1Ht−s(Y ) ⊃ · · · ⊃ F sHt−s(Y ) ⊃ · · · .

Remark 4.1.4. The above construction of Adams spectral sequence is natural.

That is, if α : Y −→ Y ′ is a morphism, then we have the following commutative

diagram

Y1
//

α1

��

Y0
//

α0

��

Y0

L
⊗
R

K[0] //

α0⊗idK
��

Y1[−1]

α1[−1]

��
Y ′

1
// Y ′

0
// Y ′

0

L
⊗
R

K[0] // Y ′
1 [−1]

since the middle square is commutative. By induction, we construct morphisms

αn : Yn −→ Y ′
n for n ≥ 0. Therefore, we have a morphism of spectral sequences of Y

and Y ′. In particular, if α : Y −→ Y ′ is an isomorphism, then we get an isomorphism

of the spectral sequences of Y and Y ′. Consequently, we deduce that the filtration

of H?(Y ) is independent of Adams resolution.

Remark 4.1.5. Theorem 4.1.3 does not say that the Adams spectral sequence

converges. We need to have some conditions which guarantee the convergence. We

will discuss this in detail after the proof of the theorem.

Proof. Consider the following distinguished triangle

Ys+1
βs // Ys

αs // Ls // Ys+1[−1].

Then we have the following homology long exact sequence

· · · // Ht−s(Ys+1)
βs? // Ht−s(Ys)

αs? // Ht−s(Ls) // · · ·
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Define Ds,t
1 = Ht−s(Ys) and Es,t

1 = Ht−s(Ls). Thus, we have the following exact

couple

D1
i1 // D1

j1~~||
||

||
||

E1

k1

``BBBBBBBB

where

i1 : Ds+1,t+1
1 −→ Ds,t

1

j1 : Ds,t
1 −→ Es,t

1

and

k1 : Es,t
1 −→ Ds+1,t

1

This exact couple determines a spectral sequence {Er, dr} where Er+1 = H(Er, dr)

and dr : E
s,t
r −→ Es+r,t+r−1

r . Thus, we have proved (i). Now notice that we have the

following short exact sequence

0 // H?(Ys+1[−1],K) // H?(Ls,K)
αs

?
// H?(Ys,K) // 0

since αs
? is onto for each s. Gluing these together, we get the following long exact

sequence

· · · −→ H?(L2[−2],K) −→ H?(L1[−1],K) −→ H?(L0,K) −→ H?(Y,K) −→ 0.

which is a freeA?-resolution forH?(Y,K) since eachH?(Ls[−s],K) is freeA?-module

and the maps are A?-maps. Thus, we have a resolution which is needed to identify

E2.

Es,t
1 = Ht−s(Ls)

= Ht−s(Ys,K)

∼= HomK(H t−s(Ys,K),K)

∼= Homt−s
K (H?(Ys,K),K)

∼= Homt−s
A? (H?(Ys,K)⊗

K
A?,K)

∼= Homt−s
A? (H?(Ls,K),K)

∼= Homt
A?(H?(Ls[−s],K),K).
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The boundary d1 is induced by the morphism

Ls // Ys+1
// Ls+1

where Ls −→ Ys+1 has degree −1. Now we have the following commutative diagram,

in which the vertical maps are induced by the morphisms Ls −→ Ls+1 of degree −1.

Ht−s+1(Ls−1)

d1
��

∼= // Homt
A?(H?(Ls−1[−s+ 1],K),K)

��
Ht−s(Ls)

d1
��

∼= // Homt
A?(H?(Ls[−s],K),K)

��
Ht−s−1(Ls+1)

∼= // Homt
A?(H?(Ls+1[−s− 1],K),K)

Therefore,

Es,t
2 = Exts,tA?(H?(Y,K),K).

Hence, we have proved (ii). We have Es,t
2 = 0 if s < 0 and thus Es,t

r = 0 if s < 0.

Since dr has bidegree (r, r − 1), no differential map into Es,t
r if r > s. Therefore,

there is a monomorphism Es,t
r+1 −→ Es,t

r when r > s and thus⋂
r>s

Es,t
r = Es,t

∞ .

Filter Ht−s(Y ) by letting

F sHt−s(Y ) = Im(Ht−s(Ys) −→ Ht−s(Y )).

Then it is clear that we have the following decreasing filtration

Ht−s(Y ) = F 0Ht−s(Y ) ⊃ F 1Ht−s(Y ) ⊃ · · · ⊃ F sHt−s(Y ) ⊃ · · · .

Hence, we have proved the theorem.

Now we will discuss convergence. Note that using Lemma 1.4.8, we have for each

r the following short exact sequence

0 −→ Ds,?/Ker(ir : Ds,? −→ Ds−r,?) + iDs+1,? j̄−→ Es,?
r+1

k̄−→

Im(ir : Ds+r+1,? −→ Ds+1,?) ∩Ker(i : Ds+1,? −→ Ds,?) −→ 0.
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Now letting r go to infinity, we see that the left hand term stabilizes when r = s

since is : Ds,? −→ D0,?. Therefore, we have the following short exact sequence

0 −→ Ds,?/Ker(is : Ds,? −→ D0,?) + iDs+1,? j̄−→ Es,?
∞

k̄−→⋂
r

Im(ir : Ds+r+1,? −→ Ds+1,?) ∩Ker(i : Ds+1,? −→ Ds,?) −→ 0.

Lemma 4.1.6. There are monomorphisms

0 −→ F sHt−s(Y )/F s+1Ht−s(Y ) −→ Es,t
∞ .

Proof. It suffices to show that

F sHt−s(Y )/F s+1Ht−s(Y ) ∼= Ds,?/Ker(is : Ds,? −→ D0,?) + iDs+1,?.

Note that F sHt−s(Y ) = isDs,t and F s+1Ht−s(Y ) = i(isDs+1,t+1). We have the

following commutative diagram

0 // Ker is + iDs+1,? //

is

��

Ds,? //

is

��

Ds,?/Ker is + iDs+1,? //

īs

��

0

0 // is+1Ds+1,? // isDs,? // F s/F s+1 // 0

in which each row is exact. We see that the middle vertical map is is epimorphism

and thus īs is epimorphism. Next we show that īs is also a monomorphism. Let

ā = a+ (Ker is + iDs+1,?) and b̄ = b+ (Ker is + iDs+1,?) be in Ds,?/Ker is + iDs+1,?.

Assume that īs(ā) = īs(b̄). We claim that ā = b̄. We have that

is(a) + is+1Ds+1,? = is(b) + is+1Ds+1,?.

Then is(a − b) ∈ is+1Ds+1,?. This implies that either is(a − b) ∈ is+1Ds+1,? =

is(iDs+1,?), that is, a− b ∈ iDs+1,?, or is(a− b) = 0, that is, a− b ∈ Ker is. In both

cases, we have that ā = b̄. Hence, there are monomorphisms

0 −→ F sHt−s(Y )/F s+1Ht−s(Y ) −→ Es,t
∞ .

Remark 4.1.7. Let

Cs,t = Coker[F sHt−s(Y )/F s+1Ht−s(Y ) −→ Es,t
∞ ]
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where s ≥ 0 and Dt−s =
⋂
s≥0 F

sHt−s(Y ). If the Cs,t = 0 for all s, t, then we can

define a new filtration

Ht−s(Y )/Dt−s = F̄ 0Ht−s(Y ) ⊃ F̄ 1Ht−s(Y ) ⊃ . . . ⊃ F̄ sHt−s(Y ) ⊃ . . .

with F̄ sHt−s(Y ) = F sHt−s(Y )/Dt−s for all s ≥ 0. Then we would still have

F̄ sHt−s(Y )/ ¯F s+1Ht−s(Y ) ∼= F sHt−s(Y )/F s+1Ht−s(Y ) ∼= Es,t
∞ .

for all s, t but in addition ∩F̄ sHt−s(Y ) = 0. Thus, if the Cs,t vanish, we can say

that the Adams spectral sequence converges to H?(Y )/D?.

Theorem 4.1.8. If holims Ys = 0, then the Adams spectral sequence converges to

H?(Y ).

Proof. First note that lim1
r E

s,t
r = {0} for all s and t since Es,t

2 is finitely generated

over K for each s and t. Hence, the Adams spectral sequence converges to H?(Y )

by Theorem 1.4.12.

4.2 Homology Localization and Local Homology

In this section, we define localizations of chain complexes with respect to a homology

theory and in particular we define the localization of chain complexes with respect

to the homology theory K?(−) = H?(−,K). Then we define local homology of chain

complexes.

A homology theory on the derived category D+(fg)(R) is a functor S? from

D+(fg)(R) to the category of graded R-modules determined by the recipe

S?(Y ) = H?(S
L
⊗
R
Y )

for some object S in D+(fg)(R). A chain complex Y is called S?-acyclic if S?(Y ) = 0.

A morphism α : X −→ Y is called an S?-equivalence if α? : S?(X) ∼= S?(Y ). We

define a chain complex Z to be S?-local if each S?-equivalence α : X −→ Y induces

a bijection

α? : HomD+(fg)(R)(Y, Z)? ∼= HomD+(fg)(R)(X,Z)?
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or equivalently if HomD+(fg)(R)(X,Z)? = 0 for each S?-acyclic chain complex X. An

S?-localization of Y is an S?-equivalence Y −→ YS with the property that YS is

S?-local.

In [11], it was proved that the localization of a chain complex Y with respect

to the homology theory K? is YK = RHomR(K,Y ) where K is the chain complex

constructed as follows. Let r1, . . . , rn be the generators of the maximal ideal m and

consider the following chain complexes

0 // R // R[1/ri] // 0,

where R is in degree 0. Then

K =
⊗
i

(0 −→ R −→ R[1/ri] −→ 0).

Furthermore in [11], it was proved that K is isomorphic to a chain complex of free

R-modules which is concentrated between dimensions (−n) and 0.

Definition 4.2.1. Let M be an R-module. Then the local homology of M at m is

denoted Hm
? (M) and defined by the formula

Hm
n (M) = Hn(RHomR(K,M))

For the following definition see [11].

Definition 4.2.2. Let Y be an object of D(R). Then the derived local homology of

Y at m is

Hm(Y ) = RHomR(K,Y )

There is a third quadrant spectral sequence

Es,t
2 =

⊕
p+q=t

ExtsR(Hp(K), Hq(Y )) =⇒ H−t−s(H
m(Y )).

Now we give some elementary properties of K?-localizations whose proofs are

straightforward.

Lemma 4.2.3. If

X // Y // Z // X[−1]

is a distinguished triangle and any two of X, Y , Z are K?-local, then so is the third.
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Lemma 4.2.4. A direct summand of a K?-local chain complex is K?-local.

Lemma 4.2.5. The product of a set of K?-local chain complexes is K?-local.

Lemma 4.2.6. If

X0 X1
oo X2

oo · · ·oo

is a sequence of chain complexes such that X0, X1, X2,... are K?-local, then the

homotopy inverse limit of this sequence is K?-local.

Recall that it was proven in Section 3.4 that K[0] is a commutative monoid in

D+(fg)(R) with product

φ : K[0]
L
⊗
R

K[0] −→ K[0]

and unit map

η : R[0] −→ K[0].

Let Y be a chain complex. Consider the chain complex Y
L
⊗
R

K[0]. Note that we

have the following morphism

φY : (Y
L
⊗
R

K[0])
L
⊗
R

K[0] ∼= Y
L
⊗
R

(K[0]
L
⊗
R

K[0])
id⊗φ // Y

L
⊗
R

K[0]

Then we can see that the following diagrams are commutative in D+(fg)(R).

Y
L
⊗
R

K[0]
L
⊗
R

K[0]
L
⊗
R

K[0]
id⊗φ //

φY ⊗id

��

Y
L
⊗
R

K[0]
L
⊗
R

K[0]

φY

��

Y
L
⊗
R

K[0]
L
⊗
R

K[0]
φY // Y

L
⊗
R

K[0]

Y
L
⊗
R

K[0]
L
⊗
R
R[0]

id⊗η //

∼=
��

Y
L
⊗
R

K[0]
L
⊗
R

K[0]

φY

��

Y
L
⊗
R

K[0]
id // Y

L
⊗
R

K[0]

Therefore, the chain complex Y
L
⊗
R

K[0] is a module over K[0] in D+(fg)(R).

Now we give the following result which is needed later.

Lemma 4.2.7. For any chain complex Y , the chain complex Y
L
⊗
R

K[0] is K?-local.
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Proof. Let X be a chain complex such that H?(X
L
⊗
R

K[0]) = 0, that is, X
L
⊗
R

K[0] ∼= 0.

Let α : X −→ Y
L
⊗
R

K[0] be a morphism. Then the morphism α can be factored as

X
L
⊗
R

K[0]
α⊗id // Y

L
⊗
R

K[0]
L
⊗
R

K[0]

id⊗φ
��

X
L
⊗
R
R[0] ∼= X

id⊗η

OO

α // Y
L
⊗
R

K[0]

Therefore, α is trivial. Hence, Y
L
⊗
R

K[0] is K?-local.

Definition 4.2.8. The K[0]-nilpotent chain complexes form the smallest class C of

chain complexes in D+(fg)(R) such that:

(i) K[0] ∈ C,

(ii) If X ∈ C and Y ∈ D+(fg)(R), then X
L
⊗
R
Y ∈ C,

(iii) If

X // Y // Z // X[−1]

is a distinguished triangle and two of X, Y , Z are in C, then so the third,

(iv) If Y ∈ C and X is a direct summand of Y , then X ∈ C.

We filter the class C as follows. Let C0 consist of all chain complexes Y ∼=

K[0]
L
⊗
R
X for some chain complex X and given Cn−1 with n− 1 ≥ 0 let Cn consist of

all chain complexes Y such that either Y is a direct summand of a member of Cn−1

or there is a distinguished triangle

X // Y // Z // X[−1]

with X,Z ∈ Cn−1. Now we use this filtration to prove the following result.

Lemma 4.2.9. If Y is K[0]-nilpotent, then Y is K?-local.

Proof. We prove this lemma by induction using the above filtration. Let Y ∈ C0.

Then Y ∼= K[0]
L
⊗
R
X for some chain complex X. So Y is K?-local by Lemma 4.2.7.

Assume that every K[0]-nilpotent chain complex in Cn−1 is K?-local. We claim that
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every K[0]-nilpotent chain complex in Cn is K?-local. Let Y ∈ Cn. Then Y is either

a direct summand of a member of Cn−1, that is, a direct summand of K?-local chain

complex and thus Y is K?-local by Lemma 4.2.4 or there is a distinguished triangle

X // Y // Z // X[−1]

with X,Z K?-local in Cn−1. Therefore, Y is K?-local by Lemma 4.2.3.

Definition 4.2.10. A K[0]-nilpotent resolution of a chain complex Y is a tower

{Ws}s≥1 such that:

(i) Ws is K[0]-nilpotent for each s ≥ 1.

(ii) For each K[0]-nilpotent chain complex N , the map

colim
s

HomD+(fg)(R)(Ws, N)? −→ HomD+(fg)(R)(Y,N)?

is isomorphism.

4.3 K[0]-Nilpotent Completion

In this section, we define K[0]-nilpotent completion of a chain complex and show

that the Adams spectral sequence for a chain complex Y converges strongly to the

homology of the K[0]-nilpotent completion of Y .

Note that there is no reason why holims Ys = 0. Following Bousfield [7], we

define chain complexes Y s by the following distinguished triangles

Ys // Y0
// Y s // Ys[−1].

Now we construct a morphism Y s+1 −→ Y s. Using the octahedral axiom for the

composite

Ys+1 −→ Ys −→ Y0,
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we obtain the following commutative diagram.

Ys+1
βs //

id
��

Ys
αs //

��

Ls //

��

Ys+1[−1]

id
��

Ys+1

��

// Y0
//

��

Y s+1 //

��

Ys+1[−1]

��
0

��

// Y s

��

id // Y s //

��

0

��
Ys+1[−1] // Ys[−1] // Ls[−1] // Ys+1[−2]

in which each row and column is a distinguished triangle. In particular, the column

Ls −→ Y s+1 −→ Y s −→ Ls[−1]

is a distinguished triangle for each s ≥ 1. Also, we have the following commutative

diagrams

Ys+1
//

βs

��

Y0
//

id

��

Y s+1 //

��

Ys+1[−1]

��
Ys // Y0

// Y s // Ys[−1]

and

Ls //

id

��

Y s+1 //

��

Y s //

��

Ls[−1]

��
Ls // Ys+1[−1] // Ys[−1] // Ls[−1]

Moreover, we get the following commutative diagram

Y

��

Y
idoo

��

Y
idoo

��

· · ·idoo

Y 1 Y 2oo Y 3oo · · ·oo

Therefore, we get the following tower

Y 1[1]

��

Y 2[1]oo

��

Y 3[1]oo

��

· · ·oo

L1 L2 L3

in which each triangle

Y s+1[1] −→ Y s[1] −→ Ls −→ Y s+1
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is a distinguished triangle. Now using the above tower, we can construct Adams

spectral sequence as derived in the proof of Theorem 4.1.3. We note that the above

structures are natural in Y .

Now let K∧Y be the homotopy inverse limit of the tower {Y s}. So there is a

morphism Y −→ K∧Y . We call Y −→ K∧Y the K[0]-nilpotent completion of Y .

Since Y 0 = 0, we deduce the Adams spectral sequence now conditionally converges

to H?(K∧Y ). Filter Ht−s(K∧Y ) by

F sHt−s(K∧Y ) = Ker(Ht−s(K∧Y ) −→ Ht−s(Y
s)).

Also, note that Es,t
r+1 ⊂ Es,t

r for r > s. Since lim1
r E

s,t
r = {0} for all s and t, we

have the main result of this section using Theorem 1.4.13.

Theorem 4.3.1. The Adams spectral sequence converges strongly to H?(K∧Y ).

Lemma 4.3.2. Let Y be a chain complex. Then K∧Y is K?-local.

Proof. We show that K∧Y is K?-local. It suffices to show that Y s is K?-local for

each s using Lemma 4.2.6. We prove it by induction. For s = 1, we have Y 1 ∼= L0 =

Y0

L
⊗
R

K[0]. But Y 1 is K?-local by Lemma 4.2.7. Assume that Y s is K?-local. We

prove that Y s+1 is K?-local. We have the following distinguished triangle

Ls // Y s+1 // Y s // Ls[−1].

But Ls = Ys
L
⊗
R

K[0] is K?-local by Lemma 4.2.7 and Y s is K?-local by the assumption.

Hence, Y s+1 is K?-local by Lemma 4.2.3. Hence, K∧Y is K?-local.

Therefore, there is a unique morphism β : YK −→ K∧Y such that the composite

Y // YK // K∧Y

is Y −→ K∧Y .

Remark 4.3.3. We see that if H?(Y,K)
∼=−→ H?(K∧Y,K), then YK

β−→∼= K∧Y by the

Derived Whitehead Theorem 3.2.5.

Lemma 4.3.4. Let Y be a chain complex. Then the tower {Y s}s≥1 is a K[0]-

nilpotent resolution of Y .
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Proof. First we show that each Y s is K[0]-nilpotent by induction. When s = 1,

Y 1 ∼= L0 = Y0

L
⊗
R

K[0] is K[0]-nilpotent. Assume that Y s is K[0]-nilpotent. Consider

the following distinguished triangle

Ls −→ Y s+1 −→ Y s −→ Ls[−1].

We see that Y s+1 is a K[0]-nilpotent since Ls = Ys
L
⊗
R

K[0] and Y s are K[0]-nilpotent.

Therefore, Y s is a K[0]-nilpotent chain complex for each s ≥ 1 and hence (i) is

satisfied. Next we show (ii) holds. We have the following distinguished triangle

Ys // Y // Y s // Ys[−1]

for each s ≥ 1. Let N be a K[0]-nilpotent chain complex. Then by Remark 2.3.6,

we have the following long exact sequence

· · · −→ colim
s

HomD+(fg)(R)(Ys, N)n−1 −→ colim
s

HomD+(fg)(R)(Y
s, N)n

−→ HomD+(fg)(R)(Y,N)n −→ colim
s

HomD+(fg)(R)(Ys, N)n −→ · · ·

Note that

colim
s

HomD+(fg)(R)(Y,N)n = HomD+(fg)(R)(Y,N)n.

It suffices to show that colims HomD+(fg)(R)(Ys, N)? = 0. We prove this by induction

using the filtration of the class C of K[0]-nilpotent chain complexes. If N ∈ C0, then

N ∼= K[0]
L
⊗
R
X for some chain complex X. So

HomD+(fg)(R)(Ys,K[0]
L
⊗
R
X)n −→ HomD+(fg)(R)(Ys+1,K[0]

L
⊗
R
X)n

is trivial map for each n since any morphism ϕ : Ys −→ K[0]
L
⊗
R
X factors through

Ls. Assume that HomD+(fg)(R)(Ys, N)n −→ HomD+(fg)(R)(Ys+1, N)n is zero for each

N ∈ Cn−1. Now let A ∈ Cn such that W ∼= A⊕B where W ∈ Cn−1. Since A is a

direct summand of W , id : A −→ A factors through W . Therefore, any morphism

HomD+(fg)(R)(Ys, A)n −→ HomD+(fg)(R)(Ys+1, A)n

factors through W and so it is trivial since

HomD+(fg)(R)(Ys,W )n −→ HomD+(fg)(R)(Ys+1,W )n
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is trivial by the assumption. While if there is a distinguished triangle

X
ϕ // N // Z // X[−1]

with X,Z ∈ Cn−1. Then we have the following commutative diagram

...

��

...

��
colims HomD+(fg)(R)(Y

s, X)n
∼= //

��

HomD+(fg)(R)(Y,X)n

��
colims HomD+(fg)(R)(Y

s, N)n //

��

HomD+(fg)(R)(Y,N)n

��
colims HomD+(fg)(R)(Y

s, Z)n

��

∼= // HomD+(fg)(R)(Y, Z)n

��
...

...

in which each column is exact. Using Five Lemma, we deduce that

colim
s

HomD+(fg)(R)(Y
s, N)n ∼= HomD+(fg)(R)(Y,N)n.

for each n. Hence, the tower {Y s}s≥1 is a K[0]-nilpotent resolution of Y .

Now we recall the definition of a pro-category and some related results needed

later. Let C be a category. A pro-object (tower) in C is a sequence of objects Xi ∈ C

for i > 0 together with maps Xi+1 −→ Xi for i > 0. We can think of a pro-object

X = {Xi}i∈Z+ as an inverse system of objects of C. Pro-objects of C form a category

Tower-C where

Hom(X, Y ) = lim
j

(colim
i

Hom(Xi, Yj)).

There is a canonical functor

C −→ Tower-C

taking the object Y to the constant tower {Y }. In this way C becomes a full

subcategory of Tower-C.

The following lemma is proved in [2, App.3.2]
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Lemma 4.3.5. Let X and Y be pro-objects in C. Then a morphism f : X −→ Y

can be represented up to isomorphism by an inverse system of maps {fi : Xi −→ Yi}.

This representation is called level representation.

Remark 4.3.6. A pro-isomorphism f : X −→ Y between two pro-objects X, Y

amounts to the following: for each s there exists a t > s and a morphism hts : Yt −→

Xs such that the following diagram

Xt
//

��

Yt

��~~}}
}}

}}
}}

Xs
// Ys

is commutative. In effect, the maps hts represent the inverse of f . See [17, Lemma

3.2].

Therefore, it follows that if {Xj(i)} is a cofinal subtower of {Xi}, then {Xj(i)} ∼=

{Xi} in Tower-C.

Definition 4.3.7. A morphism f : {Xs} −→ {Ys} in Tower-D+(fg)(R) is called a q-

isomorphism if the induced morphism f? : {HiXs} −→ {HiYs} is a pro-isomorphism

in Tower-R-mod for each i, where R-mod is the category of R-modules.

The following lemmas are analogous to [7, Lemma 5.10, Lemma 5.11, Proposition

5.8].

Lemma 4.3.8. If {Ws} is a K[0]-nilpotent resolution of the chain complex Y in

D+(fg)(R), then there exists a unique pro-isomorphism e : {Y s} −→ {Ws} in Tower-

D+(fg)(R) such that

{Y } id //

��

{Y }

��
{Y s} e // {Ws}

commutes.

Lemma 4.3.9. Let f : {Xs} −→ {Ys} be a q-isomorphism in Tower-D+(fg)(R). If

X∞, Y∞ ∈ D+(fg)(R) are homotopy limits of {Xs}, {Ys} respectively, then there
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exists an isomorphism u : X∞ ∼= Y∞ such that

{X∞}
{u} //

��

{Y∞}

��
{Xs}

f // {Ys}

commutes in Tower-D+(fg)(R).

Lemma 4.3.10. Let Y be in D+(fg)(R). Let {Xs} be a K[0]-nilpotent resolution of

Y with homotopy limit X∞. Then X∞ ∼= K∧Y .

4.4 Convergence

In this section, we study the convergence of the Adams spectral sequence. We are

still assuming R is a commutative noetherian local ring with maximal ideal m and

residue field K.

We start by recalling some important results needed to prove the main theorem

of this section.

It is known that m = m1 ⊃ m2 ⊃ m3 ⊃ · · · . If N is an R-module, then N ⊃

mN ⊃ m2N ⊃ · · · . For each i ≤ j, there is a natural R-linear map φji : N/m
jN −→

N/miN . The family of quotient modules N/miN and maps φji for i ≤ j is an inverse

system indexed by the positive integers. Recall the m-adic completion of N , denoted

N̂ , is limiN/m
iN .

Let Lm
n denote the nth left derived functor of the m-adic completion. Then we

have the following result which is proved in [14, Proposition 1.1].

Theorem 4.4.1. There are short exact sequences

0 −→ lim1

s
TorRn+1(R/m

s, N) −→ Lm
n (N) −→ lim

s
TorRn (R/ms, N) −→ 0.

The following result is important and is proved in [14, Proposition 1.5].

Theorem 4.4.2. If N is a finitely generated R-module, then

(i) Lm
0 (N) ∼= N̂ .

(ii) The tower {TorRn (R/ms, N)} is pro-zero, that is, Lm
n (N) = 0 for n > 0.
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In Theorem 4.4.2, if N = R/m, then we have the following result.

Corollary 4.4.3.

Lm
0 (R/m) ∼= R/m,

and for n > 0,

lim
s

TorRn (R/ms, R/m) = 0.

Moreover, for n > 0,

colim
s

ExtnR(R/ms, R/m) = 0.

We end this review by giving the following important theorem.

Theorem 4.4.4. Let F be an inverse system of R-modules for which lims F = 0

if s > 0. If N is an R-module which admits a resolution by finitely generated free

modules, then there is a second quadrant spectral sequence

E2
s,t = lim(-s) TorRt (N,F ) =⇒ TorRs+t(N, limF ).

Now consider the chain complex R[0]. We have the following tower, called m

adic tower in [4],

· · · −→ R/m3[0] −→ R/m2[0] −→ R/m[0].

induced by the tower

· · · −→ R/m3 −→ R/m2 −→ R/m.

Lemma 4.4.5. Let

· · · f4 // X3
f3 // X2

f2 // X1
f1 // X0

be a tower of chain complexes in Ch(R) such that lim1Xi = 0. If we consider the

image of this tower in D(R), then limXi
∼= holimXi.

Proof. First note that we have the following short exact sequence

0 // limXi
//
∏
Xi

id−f //
∏
Xi

// 0.
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Since every short exact sequence in Ch(R) gives rise to a distinguished triangle in

D(R), we have the following distinguished triangle

limXi
//
∏
Xi

id−f //
∏
Xi

// limXi[−1].

Now consider the image of this tower in D(R). Then we have the following distin-

guished triangle

holimXi
//
∏
Xi

id−f //
∏
Xi

// holimXi[−1].

Note that we have the following commutative diagram in D(R).

limXi
//

φ

��

∏
Xi

id
��

id−f //
∏
Xi

id
��

// limXi[−1]

φ[−1]

��
holimXi

//
∏
Xi

id−f //
∏
Xi

// holimXi[−1]

where the morphism φ exists since the middle square commutes. φ is an isomorphism

by the Five Lemma.

The first substantial result of this section is the following.

Lemma 4.4.6. The tower {R/ms[0]}s≥1 is a K[0]-nilpotent resolution of the chain

complex R[0].

Proof. We verify (i) and (ii) of Definition 4.2.10. First we verify (i) using induc-

tion. R/m[0] is K[0]-nilpotent. Assume that R/ms[0] is K[0]-nilpotent. We claim

R/ms+1[0] is K[0]-nilpotent. We have the following distinguished triangle

ms/ms+1[0] −→ R/ms+1[0] −→ R/ms[0] −→ ms/ms+1[−1].

But ms/ms+1[0] is a K-module by Lemma 3.1.10. So ms/ms+1[0] ∼= ⊕R[0]
L
⊗
R

K[0].

Hence, it is K[0]-nilpotent. Therefore, R/ms+1[0] is K[0]-nilpotent.

Next we verify (ii). That is, for each K[0]-nilpotent chain complex N , we show

that for each n,

colim
s

HomD+(fg)(R)(R/m
s[0], N)n −→ HomD+(fg)(R)(R[0], N)n
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First if N = K[0], then using Corollary 4.4.3,

colim
s

HomD+(fg)(R)(R/m
s[0], N)n =

K n = 0,

0 n 6= 0.

But

HomD+(fg)(R)(R[0], N)n =

K n = 0,

0 n 6= 0.

Hence, (ii) holds for K[0]. Assume inductively that for each n,

colim
s

HomD+(fg)(R)(R/m
s[0],⊕m−1

i=0 K[0])n ∼= HomD+(fg)(R)(R[0],⊕m−1
i=0 K[0])n

We show (ii) holds for ⊕mi=0K[0]. Note that we have the following commutative

diagram

...

��

...

��
colims HomD+(fg)(R)(R/m

s[0],K[0])n
∼= //

��

HomD+(fg)(R)(R[0],K[0])n

��
colims HomD+(fg)(R)(R/m

s[0],⊕mi=0K[0])n //

��

HomD+(fg)(R)(R[0],⊕mi=0K[0])n

��
colims HomD+(fg)(R)(R/m

s[0],⊕m−1
i=0 K[0])n

��

∼= // HomD+(fg)(R)(R[0],⊕m−1
i=0 K[0])n

��
...

...

in which each column is exact. Using the Five Lemma, we deduce that for each n,

colim
s

HomD+(fg)(R)(R/m
s[0],⊕mi=0K[0])n ∼= HomD+(fg)(R)(R[0],⊕mi=0K[0])n.

Now let N ∈ C0. Then N ∼= X
L
⊗
R

K[0] for some X ∈ D+(fg)(R). Let P −→ X be

a minimal projective resolution. Then N ∼= P
L
⊗
R

K[0] with 0 differential such that

the degree i part is a finitely generated K-vector space. We use induction to show

that for each n,

colim
s

HomD+(fg)(R)(R/m
s[0], N)n ∼= HomD+(fg)(R)(R[0], N)n.
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It is clear that for each n,

colim
s

HomD+(fg)(R)(R/m
s[0],⊕K[−m])n ∼= HomD+(fg)(R)(R[0],⊕K[−m])n.

Assume inductively that for each n,

colim
s

HomD+(fg)(R)(R/m
s[0], N [m−1])n ∼= HomD+(fg)(R)(R[0], N [m−1])n.

Then we have the following commutative diagram

...

��

...

��
colims HomD+(fg)(R)(R/m

s[0], N [m−1])n

��

∼= // HomD+(fg)(R)(R[0], N [m−1])n

��
colims HomD+(fg)(R)(R/m

s[0], N [m])n //

��

HomD+(fg)(R)(R[0], N [m])n

��
colims HomD+(fg)(R)(R/m

s[0],⊕K[−m])n
∼= //

��

HomD+(fg)(R)(R[0],⊕K[−m])n

��
...

...

in which each column is exact. Using the Five Lemma, we deduce that

colim
s

HomD+(fg)(R)(R/m
s[0], N [m])n ∼= HomD+(fg)(R)(R[0], N [m])n.

Hence, for each n,

colim
s

HomD+(fg)(R)(R/m
s[0], N)n ∼= HomD+(fg)(R)(R[0], N)n.

Assume inductively that for each n,

colim
s

HomD+(fg)(R)(R/m
s[0], N)n ∼= HomD+(fg)(R)(R[0], N)n.

for each N ∈ Ci−1.

Now let N ∈ Ci. Suppose first that W = N ⊕ B where W ∈ Ci−1. In this case,

e : W −→ W is idempotent where

e : W −→ N −→ W.
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Then using Proposition 2.2.25,

N ∼= hocolim(W
e−→ W

e−→ W
e−→ · · · ).

Therefore, we have the following commutative diagram

colims HomD+(fg)(R)(R/m
s[0],W )n

∼= //

e?

��

HomD+(fg)(R)(R[0],W )n

e?

��
colims HomD+(fg)(R)(R/m

s[0],W )n //

e?

��

HomD+(fg)(R)(R[0],W )n

e?

��
colims HomD+(fg)(R)(R/m

s[0],W )n

e?

��

∼= // HomD+(fg)(R)(R[0],W )n

e?

��
...

...

in which e? is idempotent. It follows that the colimits of the two sequences are the

same, that is, for each n,

colim
s

HomD+(fg)(R)(R/m
s[0], N)n ∼= HomD+(fg)(R)(R[0], N)n.

Otherwise there is a distinguished triangle

X −→ N −→ Y −→ X[−1]

with X and Y are in Ci−1. In this case, we have the following diagram

...

��

...

��
colims HomD+(fg)(R)(R/m

s[0], X)n
∼= //

��

HomD+(fg)(R)(R[0], X)n

��
colims HomD+(fg)(R)(R/m

s[0], N)n //

��

HomD+(fg)(R)(R[0], N)n

��
colims HomD+(fg)(R)(R/m

s[0], Y )n

��

∼= // HomD+(fg)(R)(R[0], Y )n

��
...

...

in which each column is exact. Using the Five Lemma, we deduce that for each n,

colim
s

HomD+(fg)(R)(R/m
s[0], N)n ∼= HomD+(fg)(R)(R[0], N)n.

Hence, (ii) is satisfied.
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Since the m-adic tower {R/ms[0]} is K[0]-nilpotent resolution of R[0], then using

Lemma 4.3.8, we have the following result.

Proposition 4.4.7. There exists a unique pro-isomorphism {R[0]s} −→ {R/ms[0]}

in Tower-D+(fg)(R) such that

{R[0]} id //

��

{R[0]}

��
{R[0]s} // {R/ms[0]}

commutes.

Using Lemma 4.3.10, we have the following important result.

Theorem 4.4.8. The m-adic tower {R/ms[0]} has homotopy limit

holim
s

R/ms[0] ∼= K∧R[0].

Now we give the main theorem of this section.

Theorem 4.4.9. The natural map R[0] −→ K∧R[0] induces an isomorphism

H?(R[0],K) ∼= H?(K∧R[0],K)

and therefore

RHomR(K,R[0]) ∼= K∧R[0].

Proof. It suffices to show that

H?(R[0],K) −→ H?(holim
s

R/ms[0],K)

is an isomorphism. Using Theorem 4.4.4, we see that the spectral sequence collapses

to give

lim
s

TorRn (R/ms[0],K[0]) ∼= TorRn (lim
s
R/ms[0],K[0])

∼= TorRn (holim
s

R/ms[0],K[0]).

Using Corollary 4.4.3, we have that

lim
s

TorRn (R/ms[0],K[0]) =

K n = 0

0 n 6= 0.
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Hence,

Hi(R[0],K) −→ Hi(holim
s

R/ms[0],K)

is an isomorphism for each i. Therefore,

H?(R[0],K) ∼= H?(K∧R[0],K)

Using Remark 4.3.3, we have that

RHomR(K,R[0]) ∼= K∧R[0].

We can generalize the previous results for the chain complex ⊕ni=0R[0].

Lemma 4.4.10. The tower {⊕ni=0R/m
s[0]}s≥1 is a K[0]-nilpotent resolution of the

chain complex ⊕ni=0R[0].

Proof. It is the same proof as the proof of Lemma 4.4.6.

Then we have the following result.

Proposition 4.4.11. There exists a unique pro-isomorphism

{⊕ni=0R[0]s} −→ {⊕ni=0R/m
s[0]}

in Tower-D+(fg)(R) such that

{⊕ni=0R[0]} id //

��

{⊕ni=0R[0]}

��
{⊕ni=0R[0]s} // {⊕ni=0R/m

s[0]}

commutes.

Theorem 4.4.12. The tower {⊕ni=0R/m
s[0]} has homotopy limit

holim
s
⊕ni=0R/m

s[0] ∼= K∧ ⊕ni=0 R[0].

Theorem 4.4.13. The natural map ⊕ni=0R[0] −→ K∧ ⊕ni=0 R[0] induces an isomor-

phism

H?(⊕ni=0R[0],K) ∼= H?(K∧ ⊕ni=0 R[0],K)

and therefore

RHomR(K,⊕ni=0R[0]) ∼= K∧ ⊕ni=0 R[0].
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Proof. It is the same proof as the proof of Theorem 4.4.9.

Now let Y be a bounded chain complex consisting of finitely generated free R-

modules in each degree. Then we can generalize Theorem 4.4.13 by induction on

the skeletons of Y as follows.

First we prove an analogous result to Lemma 4.4.10. In the following Lemma,

there is an exception to our convention. That is, Yi means the degree i part of the

chain complex Y .

Lemma 4.4.14. The tower {Y ⊗RR/ms[0]}s≥1 is a K[0]-nilpotent resolution of the

chain complex Y .

Proof. We prove this lemma by induction on s. When s = 1, we see that the chain

complex Y ⊗R R/m[0] is K[0]-nilpotent. Assume inductively that Y ⊗R R/ms[0] is

K[0]-nilpotent. We show that Y ⊗R R/ms+1[0] is K[0]-nilpotent. Now we induct

on the skeletons of Y . We can show that Y [0] ⊗R R/ms+1[0] is K[0]-nilpotent by

induction as in the proof of Lemma 4.4.6. Assume that Y [i] ⊗R R/ms+1[0] is K[0]-

nilpotent. We show that Y [i+1]⊗RR/ms+1[0] is K[0]-nilpotent. We have the following

distinguished triangle

Y [i] ⊗R R/ms+1[0] −→ Y [i+1] ⊗R R/ms+1[0] −→ Yi+1[−i− 1]⊗R R/ms+1[0]

−→ Y [i][−1]⊗R R/ms+1[0].

Therefore, Y [i+1] ⊗R R/ms+1[0] is K[0]-nilpotent. Hence, Y ⊗R R/ms+1[0] is K[0]-

nilpotent.

Next we show that

colim
s

HomD+(fg)(R)(Y ⊗R R/ms[0], N)? −→ HomD+(fg)(R)(Y,N)?

is an isomorphism for each K[0]-nilpotent chain complex N . We induct on the

skeletons of Y . First note that

colim
s

HomD+(fg)(R)(Y
[0] ⊗R R/ms[0], N)? −→ HomD+(fg)(R)(Y

[0], N)?

is an isomorphism by Lemma 4.4.10. Assume inductively that

colim
s

HomD+(fg)(R)(Y
[i] ⊗R R/ms[0], N)? −→ HomD+(fg)(R)(Y

[i], N)?
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is an isomorphism. We show that

colim
s

HomD+(fg)(R)(Y
[i+1] ⊗R R/ms[0], N)? −→ HomD+(fg)(R)(Y

[i+1], N)?

is an isomorphism. We have the following commutative diagram

...

��

...

��
colims HomD+(fg)(R)(Yi+1[−i− 1]⊗R R/ms[0], N)n

��

∼= // HomD+(fg)(R)(Yi+1[−i− 1], N)n

��
colims HomD+(fg)(R)(Y

[i+1] ⊗R R/ms[0], N)n //

��

HomD+(fg)(R)(Y
[i+1], N)n

��
colims HomD+(fg)(R)(Y

[i] ⊗R R/ms[0], N)n
∼= //

��

HomD+(fg)(R)(Y
[i], N)n

��
...

...

in which each column is exact. Using the Five Lemma, we deduce that for each n,

colim
s

HomD+(fg)(R)(Y
[i+1] ⊗R R/ms[0], N)n ∼= HomD+(fg)(R)(Y

[i+1], N)n.

Therefore,

colim
s

HomD+(fg)(R)(Y ⊗R R/ms[0], N)? ∼= HomD+(fg)(R)(Y,N)?.

Hence, {Y ⊗R R/ms[0]}s≥1 is K[0]-nilpotent resolution for Y .

Then the following result is similar to Proposition 4.4.11.

Proposition 4.4.15. There exists a unique pro-isomorphism

{Y s} −→ {Y ⊗R R/ms[0]}

in Tower-D+(fg)(R) such that

{Y } id //

��

{Y }

��
{Y s} // {Y ⊗R R/ms[0]}

commutes.



CHAPTER 4. ADAMS SPECTRAL SEQUENCE FOR CHAIN COMPLEXES132

Also, the following result is similar to Theorem 4.4.12 .

Theorem 4.4.16. The tower {Y ⊗R R/ms[0]} has homotopy limit

holim
s

Y ⊗R R/ms[0] ∼= K∧Y.

Now we give our main result of this chapter. Note that in the following Theorem,

there is an exception to our convention. That is, Yi means the degree i part of the

chain complex Y .

Theorem 4.4.17. The natural map Y −→ K∧Y induces an isomorphism

H?(Y,K) ∼= H?(K∧Y,K)

and therefore

RHomR(K,Y ) ∼= K∧Y.

Proof. We induct on the skeletons of Y . By Theorem 4.4.13, we have that

H?(Y
[0],K) ∼= H?(K∧Y [0],K).

Assume inductively that

H?(Y
[i],K) ∼= H?(K∧Y [i],K).

We claim that

H?(Y
[i+1],K) ∼= H?(K∧Y [i+1],K).

The following degreewise short exact sequence of inverse systems of chain complexes

0 −→ {Y [i] ⊗R R/ms[0]} −→ {Y [i+1] ⊗R R/ms[0]} −→

{Yi+1[−i− 1]⊗R R/ms[0]} −→ 0

gives rise to the following short exact sequence of chain complexes

0 −→ lim
s
Y [i] ⊗R R/ms[0] −→ lim

s
Y [i+1] ⊗R R/ms[0] −→

lim
s
Yi+1[−i− 1]⊗R R/ms[0] −→ 0.
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since

lim1

s
{Y [i] ⊗R R/ms[0]} = 0.

Note that in D+(fg)(R), we have the following commutative diagram

Y [i] //

��

lims Y
[i] ⊗R R/ms[0]

��

Y [i+1] //

��

lims Y
[i+1] ⊗R R/ms[0]

��
Yi+1[−i− 1]

��

// lims Yi+1[−i− 1]⊗R R/ms[0]

��
Y [i][−1] // lims Y

[i] ⊗R R/ms[0][−1]

in which each column is a distinguished triangle. Then we have the following com-

mutative diagram

...

��

...

��
Hn(Y

[i],K)
∼= //

��

Hn(lims Y
[i] ⊗R R/ms[0],K)

��
Hn(Y

[i+1],K) //

��

Hn(lims Y
[i+1] ⊗R R/ms[0],K)

��
Hn(Yi+1[−i− 1],K)

∼= //

��

Hn(lims Yi+1[−i− 1]⊗R R/ms[0],K)

��
...

...

in which each column is a long exact sequence. Using the Five Lemma, we see that

Hn(Y
[i+1],K) −→ Hn(lim

s
Y [i+1] ⊗R R/ms[0],K)

is an isomorphism for each n. But

Hn(lim
s
Y [i+1] ⊗R R/ms[0],K) ∼= Hn(holim

s
Y [i+1]

L
⊗
R
R/ms[0],K).

is an isomorphism for each n by Lemma 4.4.5. Therefore,

H?(Y
[i+1],K) ∼= H?(K∧Y [i+1],K).

Hence,

RHomR(K,Y ) ∼= K∧Y.
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4.5 Examples

In this section, we present some examples.

Example 4.5.1. Let F be an arbitrary field. Let R = F [X](X) be the localization

of the polynomial algebra F [X] at the maximal ideal (X). Note that R is a local

noetherian ring with maximal ideal m = (X)R and residue field K ∼= F . By Propo-

sition 3.1.9, we have that A? = EF (e) where |e| = 1. Consider the chain complex

R[0]. We have that H?(R[0], F ) ∼= F . We can deduce that the following sequence

· · · dn+1 // unA? dn // · · · d2 // uA?
d1 // A?

is an A?-free minimal resolution of F , where unA? is the free A?-module on one

generator un of degree n with dn(u
n) = un−1e. Therefore,

Es,t
2 = Exts,tA?(F, F ) ∼=

F s = t,

0 s 6= t.

Note that we have the following commutative diagram

0 Foo A?oo uA?
d1oo

ε

yytttttttttt
id
��

u2A?
d2oo

id
��

· · ·oo

0 F [−1]oo A?[−1]
ε[−1]oo uA?[−1]

d1[−1]oo

ε[−1]

��

· · ·oo

F [−2]

where ε ∈ Hom0
A?(uA?, F [−1]). We can see that

0 6= ε2 = ε[−1] id ∈ Hom0
A?(u2A?, F [−2]).

Similarly, we can deduce that 0 6= εn ∈ Hom0
A?(unA?, F [−n]). The spectral sequence

collapses and thus

Es,t
∞
∼=

F s = t,

0 s 6= t.

Now we show that ε in Ext1,1
A?(F, F ) detects the map X : R −→ R. Note that the

following sequence

R[0] X // R[0] // cone(X) // R[−1]
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is a distinguished triangle. We can deduce that

H i(cone(X), F ) ∼=

F i = 0, 1,

0 otherwise.

Therefore, we have the following extension

0 // H?(R[−1], F ) // H?(cone(X), F ) // H?(R[0], F ) // 0.

Thus, this sequence identifies the only possible extension that corresponds to ε.

Hence, H0(F
∧R[0]) ∼= F [[X]].

Now let R = F [X1, X2](X1,X2). Then A? = EF (e1, e2) where |e1| = |e2| = 1 by

Proposition 3.1.9. Note that

A? ∼= EF (e1)⊗F EF (e2).

Using Theorem 1.2.10, we have that

Es,t
2 = Exts,tA?(F, F )

∼= Exts1,t1EF (e1)(F, F )⊗F Exts2,t2EF (e2)(F, F ).

where s1 + s2 = s and t1 + t2 = t. Therefore, we can deduce that H0(F
∧R[0]) ∼=

F [[X1, X2]].

Inductively, we can show that if R = F [X1, . . . , Xn](X1,...,Xn), then H0(F
∧R[0]) ∼=

F [[X1, . . . , Xn]]

Example 4.5.2. Let R = F [X]/(X2) where F is a field. First note that R is a

noetherian local ring with maximal ideal m = (X)/(X2) and residue field K ∼= F .

We calculate A?. We construct an R-free minimal resolution of F

· · · d2 // P1
d1 // P0

ε // F // 0.

Let P0 = R with ε(X) = 0. Then Ker(ε) =
〈
X

〉
. Let P1 = R with d1(1) = X. Then

Ker(d1) =
〈
X

〉
. Let P2 = R with d2(1) = X. Continuing this way, we deduce that

the following

· · · X // R
X // R

X // R
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is a minimal R-free resolution of F . For each n ≥ 0,

A? ∼= ExtnR(F [0], F [0]) ∼= F.

Now we determine the ring structure ofA?. Let a be the augmentation in HomR(P1, F ).

Note that we have the following commutative diagram

0 Foo P0
aoo P1

Xoo

id
��

a

~~}}
}}

}}
}}

P2
Xoo

id
��

· · ·oo

0 Foo P0
aoo P1

Xoo

a

��

· · ·oo

F

Then 0 6= a2 = a id ∈ HomR(P2, F ). It is clear that 0 6= an ∈ HomR(Pn, F ). Hence,

A? ∼= F [a], |a| = 1.

Consider the chain complex R[0]. We have that H?(R[0], F ) ∼= F . Note that the

following sequence

0 // uA? ∂ // A? // F // 0

is an A?-free minimal resolution of F , where uA? is the free A?-module on one

generator u of degree one with ∂(u) = a. Therefore,

Es,t
2 =


F s = t = 0,

F s = t = 1,

0 otherwise.

We see that the spectral sequence collapses and thus

Es,t
∞ =


F s = t = 0,

F s = t = 1,

0 otherwise.

Let b ∈ Hom1
A?(uA?, F ). We can show that b detects the map X : R −→ R as proved

in Example 4.5.1. Hence, H0(F
∧R[0]) ∼= R.

Now assume that R = F [X1, X2]/(X
2
1 , X

2
2 ). Note that

R ∼= F [X1]/(X
2
1 )⊗F F [X2]/(X

2
2 ).
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Since

ExtnF [X1]/(X2
1 )(F, F )⊗F ExtnF [X2]/(X2

2 )(F, F ) −→ Ext2n
R (F, F )

is an isomorphism by Theorem 1.2.10, we can deduce that

A? ∼= F [a1, a2], |a1| = |a2| = 1.

Since A? ∼= F [a1]⊗F F [a2] and

Exts1,t1F [a1](F, F )⊗F Exts2,t2F [a2](F, F ) −→ Exts1+s2,t1+t2
A? (F, F )

is an isomorphism by Theorem 1.2.10, we can deduce that H0(F
∧R[0]) ∼= R.

Using induction, if R = F [X1, . . . , Xn]/(X
2
1 , . . . , X

2
n), then

A? ∼= F [a1, . . . , an], |a1| = . . . = |an| = 1.

and H0(F
∧R[0]) ∼= R.

Example 4.5.3. Let R = Z/(p)[X]/Xpi
. First note that R is a noetherian local

ring with maximal ideal m = (X)/(Xpi
) and residue field K ∼= Z/(p). We calculate

A?. We construct an R-free minimal resolution of Z/(p)

· · · d3 // P2
d2 // P1

d1 // P0
ε // Z/(p) // 0.

Let P0 = R with ε(X) = 0. Then Ker ε =
〈
X

〉
. Let P1 = R with d1(1) = X.

Then Ker d1 =
〈
Xpi−1

〉
. Let P2 = R with d2(1) = Xpi−1. Then Ker d2 =

〈
X

〉
. Let

P3 = R with d3(1) =
〈
X

〉
. Then Ker d3 =

〈
Xpi−1

〉
. Let P4 = R with d4(1) = Xpi−1.

Continuing this way, we deduce that for each n ≥ 0,

An ∼= ExtnR(Z/(p)[0],Z/(p)[0]) ∼= Z/(p).

Now we determine the ring structure ofA?. Let a be the augmentation in HomR(P1,Z/(p))

and b the augmentation in HomR(P2,Z/(p)). We show that a2 = 0. We have the

following commutative diagram

0 Z/(p)oo P0
oo P1

oo

id

��

a

||zz
zz

zz
zz

z
P2

Xpi−1
oo

Xpi−2

��

· · ·oo

0 Z/(p)oo P0
aoo P1

Xoo

a

��

· · ·oo

Z/(p)



CHAPTER 4. ADAMS SPECTRAL SEQUENCE FOR CHAIN COMPLEXES138

Hence, a2 = aXpi−2 = 0. We show that bn 6= 0. We have the following commutative

diagram

0 Z/(p)oo P0
oo P1

oo P2
oo

id

��

b

||zz
zz

zz
zz

z
P3

Xoo

id

��

P4
Xpi−1
oo

id

��

· · ·oo

0 Z/(p)oo P0
boo P1

Xoo P2
Xpi−1
oo

b
��

· · ·oo

Z/(p)

Thus, 0 6= b2 = b id ∈ HomR(P4,Z/(p)). Similarly, we can show that bn 6= 0. We

show that 0 6= ba and ab = ba. We have the following commutative diagram

0 Z/(p)oo P0
oo P1

oo

id

��

a

||zz
zz

zz
zz

z
P2

Xpi−1
oo

Xpi−2

��

P3
Xoo

id

��

· · ·oo

0 Z/(p)oo P0
aoo P1

Xoo P2
Xpi−1
oo

b
��

· · ·oo

Z/(p)

Hence, 0 6= ba = b id ∈ HomR(P3,Z/(p)). Also, we have the following commutative

diagram

0 Z/(p)oo P0
oo P1

oo P2
oo

b

||zz
zz

zz
zz

z
id

��

P3
Xoo

id

��

· · ·oo

0 Z/(p)oo P0
boo P1

Xoo

a

��

· · ·oo

Z/(p)

Hence, 0 6= ab = a id ∈ HomR(P3,Z/(p)). Moreover, ab = ba. Also, we can show

that 0 6= abn ∈ HomR(P2n+1, R). Therefore, we deduce that

A? ∼= Z/(p)[a, b]/a2 |a| = 1, |b| = 2.

Consider the chain complex R[0]. We have H?(R[0],Z/(p)) ∼= Z/(p). We construct

a A?-free minimal resolution of Z/(p)

· · · d3 // P2
d2 // P1

d1 // P0
d0 // Z/(p) // 0.

Let P0 = A? with d0(a) = d0(b) = 0. Then Ker d0 =
〈
a, b

〉
. Let P1 = uA? ⊕ vA?

where uA? is the free A?-module on a generator u of degree one and vA? is the free
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A?-module on a generator v of degree two with d1(u) = a and d1(v) = b. We can

deduce that Ker d1 =
〈
au,−av + bu

〉
. Let P2 = u2A? ⊕ uvA? where u2A? is the

free A?-module on a generator u2 of degree two and uvA? is the free A?-module on

a generator uv of degree three with d2(u
2) = au and d2(uv) = −av + bu. We can

deduce that Ker d2 =
〈
au2,−auv+ bu2

〉
. Let P3 = u3A?⊕ u2vA? where u3A? is the

free A?-module on a generator u3 of degree three and u2vA? is the free A?-module

on a generator u2v of degree four with d3(u
3) = au2 and d3(u

2v) = −auv + bu2.

We can deduce that Ker d3 =
〈
au3,−au2v + bu3

〉
. Let P4 = u4A? ⊕ u3vA? with

d4(u
4) = au3 and d4(u

3v) = −au2v + bu3. Continuing this way, we can deduce that

the following sequence

· · · dn+1 // unA? ⊕ un−1vA?
dn // · · · d3 // u2A? ⊕ uvA?

d2 // uA? ⊕ vA? d1 // A?

is a minimal A?-free resolution of Z/(p). Therefore,

Es,t
2 =


Z/(p) s = t,

Z/(p) t− s = 1, s > 0,

0 otherwise.

Note that we have the following commutative diagram

0 Z/(p)oo A?oo uA? ⊕ vA?oo

α

wwoooooooooooo
(id,0)

��

u2A? ⊕ uvA?
d2oo

(id,id)

��

· · ·oo

0 Z/(p)[−1]oo A?[−1]
d0[−1]oo uA?[−1]⊕ vA?[−1]

d1[−1]oo

α[−1]

��

· · ·oo

Z/(p)[−2]

where α = (d0, 0) ∈ Hom0
A?(P1,Z/(p)[−1]). We see that 0 6= α2 ∈ Hom0

A?(P2,Z/(p)[−2]).

Similarly, we can show that 0 6= αn ∈ Hom0
A?(Pn,Z/(p)[−n]). Let β = (0, d0) ∈

Hom0
A?(P1,Z/(p)[−2]). Then we can show that β2 = 0. Also, note that we have the

following commutative diagram

0 Z/(p)oo A?oo uA? ⊕ vA?oo

α

wwoooooooooooo
(id,0)

��

u2A? ⊕ uvA?
d2oo

(id,id)

��

· · ·oo

0 Z/(p)[−1]oo A?[−1]
d0[−1]oo uA?[−1]⊕ vA?[−1]

d1[−1]oo

β[−1]
��

· · ·oo

Z/(p)[−3]
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Hence, 0 6= βα ∈ Hom0
A?(P2,Z/(p)[−3]). Similarly, we can show that 0 6= βαn−2 ∈

Hom0
A?(Pn−1,Z/(p)[−n]). We can show that α detects the map X : R −→ R. There-

fore, for r < pi − 1, dr must be zero and d1,s
pi−1

is an isomorphism for each s > 0.

Hence, H0(Z/(p)∧R[0]) ∼= R.
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