Differentiation Structured Worksheet 1

1. Differentiate $x \sin \frac{1}{x}$ with respect to x, and hence evaluate the derivative of this function at $x=\frac{6}{\pi}$ and $x=-2$.
(You should be able to give exact expressions and do so without the use of a calculator!)
Solution We begin by using the \square Rule. We can write $x \sin \frac{1}{x}$ as $f(x) g(x)$ where $f(x)=\square$ and $\square=\sin \frac{1}{x}$. By the \qquad Rule,

$$
\frac{d}{d x}(f(x) g(x))=\square .
$$

Now $f^{\prime}(x)=$ \square , while to find $g^{\prime}(x)$ we need the \square Rule. We write

$$
g(x)=\sin (u(x)) \text { where } u(x)=\square .
$$

So

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}(\sin u(x)) \\
& =\frac{d}{d u}(\sin u) \frac{d u}{d x} \\
& =\cos u \times \square \cos \frac{1}{x} . \\
& =\square
\end{aligned}
$$

Hence

$$
\frac{d}{d x}\left(x \sin \frac{1}{x}\right)=\square
$$

By substituting in, the derivative at $x=\frac{6}{\pi}$ is \square, while the derivative at $x=-2$ is \square.
2. Differentiate the function

$$
\frac{(2 x+1)^{3}}{(3 x-2)^{5}}
$$

with respect to x, simplifying your answer as far as possible. Hence find the derivative of this function at $x=0$. (Once again it should be possible to give an exact answer without using a calculator.)

Solution We begin by using the \square Rule. We write the function as $\frac{f(x)}{g(x)}$, where $f(x)=\square$ and $g(x)=\square$. By the \square Rule,

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\square
$$

To find $f^{\prime}(x)$ and $g^{\prime}(x)$ we need the \square Rule. We have that $f(x)=(u(x))^{3}$, where $u(x)=$ \square , and $g(x)=(v(x))^{5}$, where $v(x)=$ \square . So

$$
\begin{array}{rlrl}
f^{\prime}(x) & =\frac{d}{d x}\left((u(x))^{3}\right) \quad \text { and } \quad g^{\prime}(x) & =\frac{d}{d x}\left((v(x))^{5}\right) \\
& =\frac{d}{d u}\left(u^{3}\right) \frac{d u}{d x} & & =\frac{d}{d v}\left(v^{5}\right) \frac{d v}{d x} \\
& =3 u^{2} \times \square & & =\square \times 3 \\
& =\square(2 x+1) \square & & =\square(3 x+2) \square .
\end{array}
$$

Thus

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right) & =\square \\
& =\frac{3(2 x+1) \square(3 x-2) \square \square}{(3 x-2) \square} \\
& =\square \frac{3(2 x+1) \square \square}{(3 x-2) \square}
\end{aligned}
$$

Hence the derivative at $x=0$ is \square

