Differentiation Structured Worksheet 1 Solutions

1. Differentiate $x \sin \frac{1}{x}$ with respect to x, and hence evaluate the derivative of this function at $x=\frac{6}{\pi}$ and $x=-2$.
(You should be able to give exact expressions and do so without the use of a calculator!)

Solution We begin by using the Product Rule. We can write $x \sin \frac{1}{x}$ as $f(x) g(x)$ where $f(x)=\boldsymbol{x}$ and $\boldsymbol{g}(\boldsymbol{x})=\sin \frac{1}{x}$. By the Product Rule,

$$
\frac{d}{d x}(f(x) g(x))=\boldsymbol{f}^{\prime}(\boldsymbol{x}) \boldsymbol{g}(\boldsymbol{x})+\boldsymbol{g}^{\prime}(\boldsymbol{x}) \boldsymbol{f}(\boldsymbol{x})
$$

Now $f^{\prime}(x)=\mathbf{1}$, while to find $g^{\prime}(x)$ we need the Chain Rule. We write

$$
g(x)=\sin (u(x)) \text { where } u(x)=\frac{\mathbf{1}}{\boldsymbol{x}} .
$$

So

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}(\sin u(x)) \\
& =\frac{d}{d u}(\sin u) \frac{d u}{d x} \\
& =\cos u \times \frac{\mathbf{- 1}}{\boldsymbol{x}^{\mathbf{2}}} \\
& =-\frac{\mathbf{1}}{\boldsymbol{x}^{\mathbf{2}}} \cos \frac{1}{x} .
\end{aligned}
$$

Hence

$$
\frac{d}{d x}\left(x \sin \frac{1}{x}\right)=\sin \frac{\mathbf{1}}{\boldsymbol{x}}-\frac{\mathbf{1}}{\boldsymbol{x}} \cos \frac{\mathbf{1}}{\boldsymbol{x}} .
$$

By substituting in, the derivative at $x=\frac{6}{\pi}$ is $\frac{\mathbf{1}}{\mathbf{2}}-\frac{\boldsymbol{\pi}}{\mathbf{4} \sqrt{\mathbf{3}}}$, while the derivative at $x=-2$ is $\frac{1}{2} \cos \frac{1}{2}-\sin \frac{1}{2}$.
(To get these expressions, we have used the facts that $\sin \frac{\pi}{6}=\frac{1}{2}, \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$, $\cos \left(-\frac{1}{2}\right)=\cos \frac{1}{2}$ and $\sin \left(-\frac{1}{2}\right)=-\sin \frac{1}{2}$. Make sure that you understand why each of these is true.)
2. Differentiate the function

$$
\frac{(2 x+1)^{3}}{(3 x-2)^{5}}
$$

with respect to x, simplifying your answer as far as possible. Hence find the derivative of this function at $x=0$. (Once again it should be possible to give an exact answer without using a calculator.)

Solution We begin by using the Quotient Rule. We write the function as $\frac{f(x)}{g(x)}$, where $f(x)=(\mathbf{2} \boldsymbol{x}+\mathbf{1})^{\mathbf{3}}$ and $g(x)=(\mathbf{3} \boldsymbol{x}-\mathbf{2})^{\mathbf{5}}$. By the Quotient Rule,

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{\boldsymbol{f}^{\prime}(\boldsymbol{x}) \boldsymbol{g}(\boldsymbol{x})-\boldsymbol{g}^{\prime}(\boldsymbol{x}) \boldsymbol{f}(\boldsymbol{x})}{\boldsymbol{g}(\boldsymbol{x})^{2}}
$$

To find $f^{\prime}(x)$ and $g^{\prime}(x)$ we need the Chain Rule. We have that $f(x)=(u(x))^{3}$, where $u(x)=\mathbf{2}+\mathbf{1}$, and $g(x)=(v(x))^{5}$, where $v(x)=\mathbf{3} \boldsymbol{x}+\mathbf{2}$. So

$$
\begin{array}{rlrl}
f^{\prime}(x) & =\frac{d}{d x}\left((u(x))^{3}\right) \quad \text { and } \quad g^{\prime}(x) & =\frac{d}{d x}\left((v(x))^{5}\right) \\
& =\frac{d}{d u}\left(u^{3}\right) \frac{d u}{d x} & & =\frac{d}{d v}\left(v^{5}\right) \frac{d v}{d x} \\
& =3 u^{2} \times \mathbf{2} & & =\mathbf{5} \boldsymbol{v}^{\mathbf{4}} \times 3 \\
& =\mathbf{6}(2 x+1)^{\mathbf{2}} & & =\mathbf{1 5}(3 x+2)^{\mathbf{4}} .
\end{array}
$$

Thus

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right) & =\frac{\mathbf{6}(\mathbf{2} \boldsymbol{x}+\mathbf{1})^{\mathbf{2}}(\mathbf{3} \boldsymbol{x}-\mathbf{2})^{\mathbf{5}}-\mathbf{1 5}(\mathbf{3} \boldsymbol{x}-\mathbf{2})^{4}(\mathbf{2} \boldsymbol{x}+\mathbf{1})^{\mathbf{3}}}{(\mathbf{3} \boldsymbol{x}-\mathbf{2})^{\mathbf{1 0}}} \\
& =\frac{3(2 x+1)^{2}(3 x-2)^{4}(\mathbf{6} \boldsymbol{x}-\mathbf{4}-\mathbf{1 0 x}-\mathbf{5})}{(3 x-2)^{10}} \\
& =-\frac{3(2 x+1)^{2}(\mathbf{4} \boldsymbol{x}+\mathbf{9})}{(3 x-2)^{6}}
\end{aligned}
$$

Hence the derivative at $x=0$ is $-\frac{\mathbf{2 7}}{\mathbf{6 4}}$.

