Differentiation Structured Worksheet 3

1. Show that

$$
\frac{d}{d x}\left((1+\cos x)^{3} \sin x\right)=(1+\cos x)^{3}(4 \cos x-3)
$$

(Hint: you may need to use a famous formula involving trigonometric functions.)

Solution By the \square	
$\frac{d}{d x}\left((1+\cos x)^{3} \sin x\right)$ $=$ $=$ $=$ $=$ $=$ $=$	

2. Show that if $f(x)=\tan x$, the Newton Quotient $N(h)$ for f at the point x is given by

$$
N(h)=\frac{\tan h}{h}\left(\frac{1+\tan ^{2} x}{1-\tan x \tan h}\right)
$$

and hence deduce that

$$
\frac{d}{d x}(\tan x)=1+\tan ^{2} x
$$

Solution The Newton Quotient $N(h)$ is given by

$$
\begin{aligned}
N(h) & =\frac{1}{h}(\\
& = \\
& = \\
& =
\end{aligned}
$$

Since $\lim _{h \rightarrow 0} \tan h=\square$ and $\lim _{h \rightarrow 0} \frac{\tan h}{h}=\square$, we have

$$
\lim _{h \rightarrow 0} N(h)=\square \cdot \square \cdot \square .
$$

