another characterization of circumcircle

Recall that E(A,B,C) = (s2(AC)+s2(BC)-s2(AB))/2s(AC)s(BC).

theorem
The A,B,C lie on a hyperbolic circle if and only if
-1 < E(A,B,C) < 1.

proof
The condition is equivalent to
(s2(AC)+s2(BC)-s2(AB)) < 2s(AC)s(BC), and
(s2(AC)+s2(BC)-s2(AB)) > -2s(AC)s(BC).

And hence to
(s(AC)-s(BC))2 < s2(AB), and
(s(AC)+s(BC))2 > s2(AB).

All variables are positive so we get
s(AC)-s(BC) < s(AB) and s(BC)-s(AC) < s(AB), and
s(AC)+s(BC) > s(AB).

These are clearly equivalent to
"there is a euclidean (s(AB),s(BC),s(CA)) euclidean triangle".

hyperbolic geometry