We know that a projective conic C has equation f(x) = x^{T}Mx = 0, with M symmetric.
If P =[p] is not on C, then f(p) will be nonzero, and thus either positive or negative.
It turns out that all ppoints inside C have f(p) with the same sign, and all ppoints
outside C have f(p) of the opposite sign to that for the interior ppoints.
the algebraic interiorexterior theorem
Suppose that C is the projective conic f(x) = x^{T}Mx = 0.
Then P = [p] and Q = [q] both lie on the same side of C if and only if
f(p) and f(q) have the same sign.
proof
Note that we can replace M by M in the equation. This allows us to choose
the equation of C so that the interior corresponds to ppoints with f(p) > 0.
We know that the crossratio of four collinear ppoints is a projective invariant.
When the ppoints lie on a chord of a projective conic, we get interesting results.
the crossratio theorem for a projective conic
Suppose A, B are distinct ppoints on the projective conic C,
and that P,Q are distinct ppoints on AB, but not on C. Then
P,Q both lie inside C or both lie outside C
if and only if (A,B,P,Q) is positive.
proof
This is related to
The polarchord theorem
If a ppoint P lies on the chord AB of a pconic C, then the polar of P
with respect to C cuts the pline AB at Q, where (A,B,P,Q) = 1.
Combining these, we have the
Corollary
If a ppoint P lies on the chord AB of a pconic C and the polar of P
cuts the pline AB at Q, then exactly one of P,Q lies inside C .
Observe that this is trivial if P is inside C, for then the polar of P
does not cut C, so Q must lie outside C.
Suppose that P and Q lie inside C. Then the pline PQ cuts C twice.
We can label these A and B in either order. By the theorem, we know
that (A,B,P,Q) is
positive. From Remarks(1),(3), we see that
(B,A,P,Q) = 1/(A,B,P,Q), and the ratios are unequal as neither is 1.
It follows that one of the crossratios is less than 1. We make the
Definition
Suppose that P and Q are distinct ppoints in the interior of a pconic C.
Then D(P,Q) = (A,B,P,Q), where A and B are the ppoints in which PQ
meets C, labelled so that (A,B,C,D) < 1. We set D(P,P) = 1.
We know that, for a pconic C, the projective symmetry group S(C,P(2))
maps the interior of C to itself. We also know that any projective
transformation preserves crossratio. These remarks prove
the invariance theorem for D
For any projective conic C the function D is an invariant of S(C,P(2)).
In the geometry defined on
the interior of C by the symmetry group
d = log(D) is
essentially a distance function since we have
 d(P,P) = 0,
 d(P,Q) > 0 if P ≠ Q,
 d(P,Q) = d(Q,P).
Only the last needs comment. The proof uses Remark(1).
If PQ meets C in A and B with D(P,Q) = (A,B,P,Q) < 1, then
(A,B,Q,P) = 1/(A,B,P,Q). But this is greater than 1, so that
D(Q,P) = (B,A,Q,P) = 1/(A,B,Q,P) = D(P,Q).
We shall not pursue the triangle inequality. We already know
that the geometry is a model of hyperbolic geometry.
As a final example of the use of projective geometry to understand this
model of hyperbolic geometry, we will look at the projective analogue
of the interchange lemma, and some related ideas.

