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Preface

The following article describes some of the work I did in the summer 2005
for Prof. Ben Green, Bristol University. The work was very computational
in flavour, partly because computations were the natural first course of attack
for most of the problems Ben Green posed me and partly because two months
turned out to be not enough to complement the computational results by sub-
stantial theoretical work. However, the pictures and numbers I obtained sug-
gested certain conjectures, which I hope to be able to prove or disprove in the
future.

I used the programming language C++ and the Microsoft Visual C++ com-
piler for all computationally ”expensive” tasks and Maple in most cases where I
needed nice pictures at the end. In some cases I combined the two by first out-
putting the numbers into a file and then importing the file in Maple to produce
diagrams. I have not included the source code for the programs here but I will
be very happy to supply it on demand.
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1 Sidon, Singer and finite sets

In 1932 Simon Sidon asked Paul Erdős how large a subset S of {0, 1, . . . , N} can
be if it has the property that every natural number arises in at most one way as
the difference of two elements of S, in other words if ∀ a, b, c, d ∈ S, a−b = c−d ⇒
either a = c, b = d or a = b, c = d. This condition is equivalent to saying that the
representation of a natural number as a sum of two elements of S is essentially
unique if it exists, by which we mean that ∀ a, b, c, d ∈ S, a + b = c + d ⇒ either
a = c, b = d or a = d, b = c. Sets with this property are now referred to as
Sidon sets.

Erdős answered Sidon’s question as follows (see [3], a more general approach
can be found in [6]): if s(N) denotes the size of the largest Sidon subset of
{0, 1, . . . , N} then s(N) = O(N1/2). Subsequently other mathematicians showed
that this bound is tight by finding algorithms which generate Sidon sets with size
about

√
N . All known constructions proceed by first finding a Sidon set modulo

a prime and then ”‘unwrapping”’ it. That is to say if S ⊆ Z/qZ is a Sidon set
(this time the differences are considered modulo q) then define A ⊆ {1, 2, . . . , N}
by saying x ∈ A if and only if x(mod q)∈ S. One of these algorithms is due to
James Singer (for details see [7]). Singer was not actually working on number
theory but on finite projective geometry when he found this algorithm. It was
only after he had proven a theorem in geometry that he realised the number
theoretic application. This is Singer’s theorem in number theoretic terms: Let
p be a prime and let q = p2 + p + 1. Then ∃ A ⊆ Z/qZ with |A| = p + 1 such
that ∀ x ∈ Z/qZ\ {0} ∃ a1, a2 ∈ A such that x = a1 − a2. Such a set, in which
every non-zero difference (modulo q) arises not only at most once but exactly
once is called a perfect difference set.

The construction Singer invented uses properties of finite fields. It works
as follows: Let p be a prime and let µ be a primitive element in Fp3 . Then{
1, µ, µ2

}
is a basis for Fp3 over Fp. Hence every element of Fp3 is uniquely

expressible as a linear combination of 1, µ and µ2 with coefficients in Fp. Now,
take all elements for which the coefficient of µ2 is 0 and the coefficient of µ is
1 and reduce these elements modulo q. The resulting set together with 0 has
p+1 elements and is a perfect difference set.

Now, how would we, or for that matter the computer, go about generating
such sets? First of all we need to find a primitive element µ of Fp3 and we need
to be able to express all elements of Fp3 as a linear combination of 1, µ and µ2

with coefficients in Fp. There are many ways of doing this, some more efficient
than others. We recall that if the element µ is primitive, µn 6= 1∀ n < p3 − 1.
Thus the field Fp3 consists of the elements

{
0, µ, µ2, . . . , µp3−1

}
. So here is a

naive approach to generating Singer sets:

• We start by finding an irreducible polynomial in Fp of degree 3. Again,
there are many ways of checking whether or not such a polynomial is
irreducible. The easiest (although one of the slowest) is to substitute in
all values between 0 and p-1 and to check if any one of them is a root in Fp.
Another method is to use Euclid’s algorithm to find the highest common

2



factor between the polynomial in question and xp−x. This works because
every element of Fp is a root of the latter. Finally, there is a method which
works particularly well for polynomials of degree 2 and 3: Use Cardano’s
formula for the roots of the cubic polynomial. The polynomial is reducible
if and only if all the quadratic roots involved exist. This comes down to
checking if given elements are quadratic residues modulo p and finding
some quadratic roots. Again, there are quite fast methods to do this,
which can not be covered here. For detailed descriptions of these and
other algorithms see [2].

• Once we have found an irreducible polynomial of degree 3 we have to hope
that its roots are primitive and if they are not then we need to try the
next irreducible polynomial. How do we find that out? Let µ be a root
of the polynomial. First, we can use the polynomial itself to express µ3

in terms of its lower powers. Now we use µ4 = µ3 × µ and substitute in
our expression for µ3 twice until we get another expression which involves
only the 0th, 1st and 2nd powers of µ. We can keep going like this until
we have expressed all the powers of µ up to µp3−1 in terms of 1, µ and µ2.
If any one of these expressions apart from the last one turns out to be 1
then µ is not primitive. If it is primitive, then we can use our calculation
in the next step to compute a Singer set. However, we don’t actually need
to check all the powers to find out whether µ is primitive. Since we know
that µp3−1 = 1 it suffices to check only those powers that divide p3 − 1.
In particular, once we know that µn 6= 1 ∀ n ≤ (p3 − 1)/2, we know that
µ is primitive.

• We now have a generator µ for Fp3 over Fp and we have expressions for
all the elements of Fp3 in terms of the basis

{
1, µ, µ2

}
. We are nearly

done. If we write µn = an + bnµ + cnµ2 where n ∈
{
0, 1, . . . , p3 − 2

}
and

an, bn, cn ∈ Fp, then the set {0} ∪ {n : bn = 1, cn = 0} reduced modulo
p2 + p + 1 is the required Singer set!

2 Some properties of Singer sets and some def-
initions

First of all a Singer set is a perfect difference set and thus a Sidon set. It has
p+1 elements for some prime p and every number between 1 and p2 + p occurs
exactly once as a difference of two elements of such a set modulo p2 + p + 1.
Further, if S is a Singer set, a is any natural number and b is a natural number co-
prime to p2 +p+1, then aS+b = {ax + b : x ∈ S} is also a Singer set. However,
it is possible that for certain (a, b) 6= (1, 0) aS+b = S. We will introduce some
useful notions:

Definition 2.1. Let S ⊆ Z/qZ be a Singer set, let (a, q) = 1. We say that the
Singer set aS is S dilated by a, the Singer set S+b is S translated by b.

Definition 2.2. The Singer set S is normal if 0 ∈ S, 1 ∈ S.

Remark 2.3. Note that since for any Singer set S ∃ x, y ∈ S such that x− y =
11, we can always normalise a Singer set by translating it by −y.

1we are still working modulo q here
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(a) Original Singer set (b) translated by 1 (c) translated by 2

Figure 1: The effect of translating a Singer set on its Fourier transform

But the actual focus of this work shall be put onto some more hidden proper-
ties of Singer sets. More information about Singer sets and related publications
can be found in [5].

3 The discrete Fourier transform

Definition 3.1. Let S ⊆ Z/qZ be a Singer set. We define the discrete Fourier
Transform of S by

Ŝ(r) =
∑
x∈S

e2πirx/q

for each r ∈ Z/qZ.

Let us make some observations. First of all Ŝ(0) = |S|. However, more
interestingly we have the following

Lemma 3.2.
|Ŝ(r)| = √

p ∀ r ∈ Z/qZ \ {0} .

Proof. For each r 6= 0

|Ŝ(r)|2 = Ŝ(r)Ŝ(r) =
∑

x,y∈S

e2πi(x−y)/q.

However as x,y range over S, x− y takes each non-zero value modulo q exactly
once and it takes the value 0 exactly p times, so we get

|Ŝ(r)|2 = p +
q−1∑
t=0

e2πirt/q = p.

Hence the result!

Now, what about arg(Ŝ(r))? One question would be how uniform is it
distributed in [0, 2π) as r varies? The first thing to note is that if R = aS

where a is co-prime to q then arg(R̂(r)) = arg(Ŝ(ar)). Since (a, q) = 1, ar
takes all values modulo q as r varies, so dilating the set by a does not change
the distribution of the arguments in [0, 2π) as r varies. On the other hand,
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if T = S + b then arg(T̂ (r)) = arg(Ŝ(r)) + 2πrb/q. This does change the
distribution of the arguments. To illustrate this, consider the Figure 1. Here
p = 7, the original Singer set is 0, 1, 6, 15, 22, 26, 45, 55 and each pictures
shows the values for Ŝ(r) for all values of r in 0,1,...,q-1, each with a different
translation of the original Singer set.

Obviously, we cannot answer any questions about the distribution of the argu-
ment for different r just by looking at pictures. We want to be able to quantify
the extent of uniformity of a distribution, so we make the following

Definition 3.3. Given a finite set P ⊂ [a, b] and α ∈ [a, b), β ∈ (a, b] with
α < β, write D(α, β) = |P | × (β−α)/(b− a)− |P ∩ (α, β)|. Then we can define
the discrepancy of P by D∗(P ) = 1

|P |×
sup
α,β D(α, β).

In particular if the values in P are perfectly uniformly distributed over [a,b],
then D∗(P ) = 1/|P |. If on the other hand x = a ∀ x ∈ P then D∗(P ) = 1. In
our case we need to also take care of the fact that 0 is identified with 2π.

The first natural course of attack in our case is to try to compute the dis-
crepancies of the arguments of the Fourier transforms for different Singer sets
and see if we can notice any regularities as p gets large. Unfortunately, the
discrepancy is a computationally expensive quantity. The algorithm I used to
compute it works as follows:

• Compute the Singer set in question.

• Then compute the arguments of the Fourier transform of this Singer set
for all values of r.

• Sort the arguments in an array.

• Append the same array but each value increased by 2π.

• Look for the biggest interval (α0, β0) containing no values and compute
D(α0, β0). Then do the same for intervals containing exactly one value
and see if D(α0, β0) > D(α1, β1). By continuing like this find n such that
for the biggest interval (αn, βn) containing exactly n values, D(αn, βn) is
maximal among all n.

• Now, D∗ = 1
|S|D(αn, βn).

I ran this computation for various p. I confined myself to p for which p2 + p+1
is prime, so that once the computer found a Singer set, it could experiment with
translating and dilating it without worrying about the dilation factor being co-
prime to q. Unfortunately it is an open question, whether there are infinitely
many such p, but for experimental purposes there are enough small ones. These
are some of the numbers I got:

p highest discr. lowest discr.
5 0.349 0.180
101 0.135 0.018
167 0.057 0.009
173 0.127 0.004
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This led me to make the following

Conjecture 3.4. Given ε > 0 ∃ a prime p0 such that ∀p > p0 there is a Singer
set modulo p2 + p + 1 with its discrepancy being smaller than ε.

Being a bit braver one could go further:

Conjecture 3.5. Given ε > 0 ∃ a prime p0 such that ∀p > p0, the discrepancy
of all Singer sets modulo p2 + p + 1 is less than ε.

However, in my opinion the numbers are not quite enough of a justification
for that. Some information about discrepancies for much larger p would help
here.

4 Litllewood’s conjecture and Singer sets

Obviously, Littlewood made quite a few conjectures and in particular some of
them are called Littlewood’s conjecture [1]. The one we are interested in is the
following:

Conjecture 4.1. (Flat polynomials on the unit circle) There exist constants
0 < c1 < c2, an infinite sequence of integers n, and polynomials pn of the form
ε0 + ε1z + . . . + εn−1z

n−1, where εj ∈ {−1, 1}, such that

c1

√
n ≤ |pn(z)| ≤ c2

√
n

for all z ∈ C with |z| = 1.

No polynomials are known which satisfy just the lower bound, however just
the upper bound can be satisfied with the so called Rudin-Shapiro polynomials.

A rather natural approach to this problem is to try sequences of signs which
fluctuate quite randomly. One example that has been tried (the Fekete polyno-
mials) is to take n = q and εj = (j|q), the Legendre symbol. Unfortunately this
does not work. For details see [4]. Ben Green had the following idea:

Let q = p2 + p + 1 and let A ⊆ Z/qZ be a Singer set. Let B = A + A =
a + a′ : a, a′ ∈ A. From the properties of Singer sets we know that if x = a + a′

then this representation is essentially unique: there is one representation if
a = a′ and there are two if a 6= a′, namely x = a + a′ = a′ + a. Hence we can
compute that |B| = 1

2 (p2 +3p+2), so B consists of about half the residues (mod
q). We have the following result:

Lemma 4.2. Let fq(z) = ε0 + ε1z + . . . + εq−1z
q−1 be the polynomial defined

by εj = 1 if j ∈ B, and εj = −1 otherwise. Then

fq(e2πir/q) = Â(r)2 + Â(2r)

for r = 1, . . . , q − 1 and
fq(1) = 2p + 1.

In particular, in view of 3.2 these polynomials satisfy both the upper and the
lower bound of Littlewood’s conjecture when z is a q-th root of unity.
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Proof.

fq(e2πir/q) =
∑

j∈A+A

e2πirj/q −
∑

j /∈A+A

e2πirj/q

=
∑

j∈A+A

e2πirj/q +
∑

j∈A+A

e2πirj/q −
∑

j∈A+A

e2πirj/q −
∑

j /∈A+A

e2πirj/q

= 2
∑

j∈A+A

e2πirj/q −
q−1∑
j=0

e2πirj/q

︸ ︷︷ ︸
=0

= 2
∑

j=a+a′,
a6=a′

e2πirj/q +
∑
j=2a

a∈A

e2πirj/q

︸ ︷︷ ︸
bA(r)2

+
∑
j=2a

a∈A

e2πirj/q

︸ ︷︷ ︸
bA(2r)

Also

fq(1) =
∑

j∈A+A

1−
∑

j /∈A+A

1

=
1
2
(p2 + 3p + 2)− 1

2
(p2 − p)

= 2p + 1

This observation led Ben Green to suggest that these polynomials could solve
Littlewood’s conjecture. So the main question was, how |fq| behaves between
the q-th roots of unity. Again, we decided to first look at the problem compu-
tationally. Here is for example the plot of the absolute value of this polynomial
on the unit circle for p = 7:

Here is the plot for p = 17:
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It is obvious that it does not make much sense to plot polynomials for higher p
since they fluctuate too much. However, it turns out that while the maximum
does not seem to go far beyond 2p+1 which is the value of the polynomial at 1,
the minimum seems to be very low even for large p. This may seem quite sur-
prising because the absolute value of the polynomials is within a rather narrow
corridor on points that get denser and denser as p gets bigger. But between
these points it ”manages” to get nearly to 0. So, to understand the behaviour
of these polynomials a bit better, we decided to look at the distribution of the
minima between q-th roots of unity, i.e. for each r ∈ {0, ..., q − 1} I computed

min
θ∈[r,r+1) f

(
e

2πiθ
q

)
. Here are two histograms for p = 59 and p = 71, respectively:

It is very clear that the distribution of the minima must be tending to some
distribution as p tends to infinity. My guess would be that it is the turned over
log-normal, but this would have to be proven. What we can say with certainty
by looking at the pictures (also at those for bigger p which I did not plot here)
is that there are always some points that are only just above zero. Hence

Conjecture 4.3. Let fq be as above. Then
sup
|z|=1 |fq(z)| = O(q1/2) but there is

no constant c such that c
√

q ≤ |fq(z)| for all q = p2 + p + 1 and for all z ∈ C
with |z| = 1.

To prove the latter, there might be several possibilities, none of which I have
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fully explored:

• One can try to look at the midpoints between the q-th roots of unity and
show that the minimum of |fq(z)| among these midpoints is smaller than
something of order

√
q. This technique already worked to show that the

Fekete polynomials do not satisfy the lower bound.

• One can look at those points at which d
dt

(
fq(eti)fq(eti)

)
= 0 and show

that the minimum of |fq(z)| among these points is smaller than something
of order

√
q.

The second technique might also work to show that the maximum of |fq(z)| on
the unit circle is of order

√
q. All this belongs to my future projects.

5 Conclusion

There are many other questions that one can ask about Singer sets. Some
questions that I posed and that do not seem to have been answered are the
following:

Definition 5.1. I will call two Singer sets essentially different if their nor-
malized versions are different, i.e. if one cannot be translated into the other.

Problem 5.2. How many essentially different Singer sets of a given order are
there?

This question would be answered by an answer to the following:

Problem 5.3. Given a Singer set S ⊆ Z/qZ and an integer a co-prime to q,
when are S and aS essentially different?

To illustrate the latter, consider the Singer set S = 0,1,3,9 modulo 13. Then
3S = S!
Finally, the third question that I found very natural to ask after having worked
with Singer sets was

Problem 5.4. Sometimes, generators for Fp3 over Fp that arise from differ-
ent irreducible polynomials produce the same Singer set. What is the relation
between such irreducible polynomials?

I think that a good answer to any one of these questions should answer the
other two, as well. All in all, this work certainly taught me much better what
we don’t know rather than what we know, but it opened up lots of perspectives
for further investigations.
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