
On certain invariants of rational and integral
representations and their number-theoretic

applications

Alex Bartel
Supervisor: Dr. Tim Dokchitser

Abstract

In this essay, we study certain invariants that can be attached to rational and
integral representations of a finite group. These invariants arise naturally in a num-
ber theoretic context, more specifically in the theory of elliptic curves. We will
investigate the behaviour of these invariants and then apply our representation the-
oretic results to the theory of elliptic curves. Our main number theoretic result says
that p-Selmer groups of elliptic curves which are defined over Q can be arbitrarily
large in Galois extensions of degree 2p.

Extent of originality. Section 1 is introductory, none of this material is original, but
was developed in [5] and [7]. The content of section 2 is original. It was inspired
by the proof of [6, Lemma 3.2]. All the results of section 3 are original work except
for the statement of Theorem 3.4. In section 3.2, everything following the statement
of Conjecture 3.8 is original. Conjecture 3.8 itself was proposed to me by Tim and
Vladimir Dokchitser in oral communication. In section 4 everything is original work
except for the classification of indecomposable integral representations of D2p which
was done in [9]. All of the last section is original work, except for theorems 5.7 and
5.14, which are quoted with citations.

In summary, all results which are given with proof are original. For all results
which are not due to me, citations are provided.

No part of this work was done in collaboration. But to formulate conjectures and
to test approaches, I have made extensive use of MAGMA programs written by Tim
Dokchitser.
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Introduction
Suppose that E/K is an elliptic curve over a number field and let F/K be a finite
Galois extension with Galois group G. Let Hi and H′j be subgroups of G such that
we have an isomorphism of permutation representations

⊕
i C[G/Hi] �

⊕
j C[G/H′j].

Then Artin formalism for L-functions implies that we have an equality of L-functions∏
i L(E/Li, s) =

∏
j L(E/L′j, s), where Li = FHi , L′j = FH′j are the corresponding

intermediate subfields of F. In such a case, the products of the leading coefficients of
the L-functions at s = 1 are equal and so the famous conjecture of Birch, Swinnerton-
Dyer and Tate as formulated in [17] predicts that we should have an equality of the
corresponding quotients∏

i

#X(E/Li)Reg(E/Li)C(E/Li)
|E(Li)tors|

2 =
∏

j

#X(E/L′j)Reg(E/L′j)C(E/L′j)
|E(L′j)tors|

2 . (1)

where C(E/L) is the product of the Tamagawa numbers at the finite places of L, X
is the Tate-Shaffarevich group and Reg(E/L) is the regulator, i.e. the determinant of
the Néron-Tate height pairing evaluated on a basis of E(L)/E(L)tors. Other quantities
featuring in the conjectural expression for the leading coefficients of the L-functions at

s = 1 cancel in a relation such as that above. In particular, we see that
∏

i Reg(E/Li)∏
j Reg(E/L′j)

is

predicted to be a rational number, while, for all we know, each regulator itself might
be transcendental. In fact, equation (1) really holds, provided all Tate-Shaffarevich
groups are finite ([5, Theorem 2.3]), and so then the regulator quotient really is a ra-
tional number. This is explained by the fact that this regulator quotient is independent
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of the pairing that is used to evaluate it and only depends on the Galois representation
E(F)/E(F)tors ([7, Theorem 2.17]). In particular, the value is the same as if the regula-
tors were computed with respect to a Q-valued pairing, rather than the height pairing.
Since this is a purely representation theoretic quantity, it is important to understand
the connections between the representation and the associated regulator quotient. Such
an understanding should lead to connections between the Galois module structure of
E(F)/E(F)tors and other invariants of E such as the Tamagawa numbers, the size of the
Tate-Shaffarevich group and the size of the torsion subgroup.

In [5] and [7] Tim and Vladimir Dokchitser have considered the rational represen-
tations E(F)/E(F)tors ⊗ Q instead of the integral representations E(F)/E(F)tors. The
corresponding regulator quotient is then only well-defined up to rational squares. But
considering equation (1) up to rational squares gets rid of the Tate-Shaffarevich groups
and the torsion subgroups. Thus, understanding some of the relationships between ra-
tional representations and their associated regulator quotients, Tim and Vladimir Dok-
chitser have been able to make statements about connections between parities of certain
ranks and certain local data. In this essay we will further our understanding of such
regulator quotients for rational representations and initiate the study of regulator quo-
tients for integral representations. The two theories present very different features. We
will then apply the representation theoretic result to the arithmetic of elliptic curves.

In section 1 we recall the definition of regulator constants from [5], the central
object of our investigation, and quote some of its properties from [5] and [7].

In section 2 we give an alternative definition of regulator constants. It will enhance
our understanding of the nature of regulator constants, as well as being more satisfac-
tory in a certain sense, on which we remark at the beginning of the section.

We then proceed to derive several general results on the behaviour of regulator
constants in section 3. The theory of regulator constants of integral representations
differs widely from the theory of regulator constants of rational representations. Our
main result on the former is a bound on the growth of regulator constants as a function
of the Z-rank of the representation. The main result on the latter is the proof of a
very general conjecture of Tim and Vladimir Dokchitser in a special case. This part is
very much work in progress, since we hope that the technique used in the special case
should, with more work, yield much more general results.

As the content of section 3.2 will show, a very important family of groups for the
understanding of regulator constants is that of the dihedral groups D2p for p a prime
number. In section 4 we compute all regulator constants of all integral representations
of D2p. As we remark at the beginning of that section, it is not clear a priori that this
can be done at all or at least, that it is not extremely difficult.

Finally, in the last section we apply our representation theoretic results to study the
growth of Selmer groups of elliptic curves in extensions of number fields. Our first
main result is that p-Selmer groups of elliptic curves over Q can become arbitrarily
large over Galois extensions of Q with Galois group D2p. The second result is a lower
bound on the growth as a function of the number of primes with certain ramification
behaviour and certain type of reduction of the elliptic curve. This section can be read
independently of sections 2-4 provided the reader is prepared to take the representation
theoretic results on trust.

Acknowledgements. We would like to thank Arno Fehm for useful stylistic re-
marks on this manuscript, Antonio Lei for many helpful discussions, Vladimir Dok-
chitser for his keen interest in this work and Tim Dokchitser for his invaluable guid-
ance, without which this work would not have been possible.
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1 Relations and regulator constants
In this section we will introduce regulator constants, following [5] but using a slightly
more flexible language. We will then quote some of the properties of regulator con-
stants that we will need later.

1.1 Definitions
Let G be any finite group. We recall the following standard definitions (see e.g. [4]):

Definition 1.1. The Burnside ring of G is defined as the ring of formal Z-linear com-
binations of isomorphism classes [S ] of finite G-sets modulo the relations

[S ] + [T ] = [S t T ], [S ][T ] = [S × T ],

where S t T denotes the disjoint union and S × T denotes the cartesian product.

The set of isomorphism classes of transitive G-sets is in bijection with the set of
conjugacy classes of subgroups of G via the map which assigns to the subgroup H the
set of cosets G/H.

Definition 1.2. Let A be either Q or Z(p), the localisation of Z at a prime p. The repre-
sentation ring of G over A is the ring of formal Z-linear combinations of isomorphism
classes [M] of A-free finite dimensional AG-modules1 modulo the relations

[M] + [N] = [M ⊕ N], [M][N] = [M ⊗ N].

We have a natural map from the Burnside ring to the representation ring that sends
a G-set S to the AG-module A [S ] with A-basis indexed by the elements of S and the
natural G-action. If we take A to be Q then the image of the Burnside ring in the
representation ring has finite index (called the Artin index of the group G).

Definition 1.3. We will call an element Θ of the kernel of the above map from the
Burnside ring of G to the representation ring over A an AG-relation. If A = Q then we
will drop A from the notation and just say that Θ is a G-relation.

Example 1.4. The symmetric group on 3 letters, S 3 has three irreducible representa-
tions over C, the trivial representation 1, the 1-dimensional sign representation ε and
a 2-dimensional representation ρ, all of which are already defined over Q. Since there
are four conjugacy classes of subgroups in S 3, comparing the Z-ranks of the Burnside
ring and the representation ring we see that the kernel of the natural map must have at
least rank 1. Since this map has finite cokernel, the rank of the kernel is in fact exactly
1. We have the decompositions

Q [S 3/1] � 1 ⊕ ε ⊕ ρ⊕2,

Q [S 3/C2] � 1 ⊕ ρ,

Q [S 3/C3] � 1 ⊕ ε,

Q [S 3/S 3] � 1,

1Here and in the rest of the essay, AG denotes the group algebra of the group G over A
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whence we obtain the relation

[S 3/1] − 2[S 3/C2] − [S 3/C3] + 2[S 3/S 3],

which, being not divisible by an integer, generates the 1-dimensional lattice of S 3-
relations.

In general, the number of irreducible QG-representations is equal to the number
of conjugacy classes of cyclic subgroups of G. Since the number of transitive G-sets,
which form a Z-basis for the Burnside ring of G, is equal to the number of conjugacy
classes of all subgroups, the lattice of G-relations has Z-rank equal to the number of
conjugacy classes of non-cyclic subgroups of G.
Notation. For an AG-relation

∑
k αk[G/Hk] we will just write

∑
k αkHk. Collecting

the positive and the negative coefficients, we may also write
∑

i Hi −
∑

j H′j where
neither the Hi nor the H′j need be distinct. For example the relation from the previous
example can then be written as 1 + 2S 3 − (2C2 + C3).

Definition 1.5. Let G be a finite group, let Θ =
∑

i Hi −
∑

j H′j be an AG-relation and
let R be a principal ideal domain such that its field of fractions K has characteristic not
dividing |G|. Given an R-free finite dimensional RG-module Γ such that Γ ⊗ K is self-
dual we fix a non-degenerate G-invariant bilinear pairing 〈, 〉 on Γ. For any subgroup
H of G, the fixed points ΓH are also R-free since R is a PID, and the pairing is also
non-degenerate when restricted to ΓH by [7, Lemma 2.15]. We may thus define the
regulator constant of Γ with respect to Θ to be

CΘ(Γ) =

∏
i det
Ä

1
|Hi |
〈, 〉 |ΓHi

ä
∏

j det
(

1
|H′j |
〈, 〉 |ΓH′j

) ∈ K̄×/(R×)2,

where each inner product matrix is evaluated with respect to some basis on the fixed
submodule. If the matrix of the pairing on ΓH with respect to some fixed basis is M
then changing the basis by the change of basis matrix X ∈ GL(ΓH) changes the matrix
of the pairing to XtrMX. So the regulator constant is indeed a well-defined element of
K̄×/(R×)2.

Convention. From now on, R will be assumed to be a PID with field of fractions K
of characteristic not dividing |G|, all RG-modules that we will consider will be assumed
to be free over R of finite rank and their base change to K will be assumed to be self-
dual. When we refer to subgroups we will always mean subgroups up to conjugation.
So the subgroups H and H′ will be treated as being the same if the G-sets G/H and
G/H′ give the same element of the Burnside ring.

The choice of pairing is not present in the notation of regulator constants and indeed
we have:

Theorem 1.6. The value of CΘ(Γ) is independent of the choice of the pairing.

Proof. See [7, Theorem 2.17]. �

In particular, the pairing can always be chosen to be K-valued and so we see that
the regulator constant is in fact an element of K×/(R×)2. Note that if R = Z then the
regulator constant is just a rational number. If R = Zp then at least the p-adic order of
the regulator constant is well-defined. If on the other hand R = Q then the regulator
constant is only defined up to rational squares, and if R = Qp then only the parity of
the p-adic order is defined.
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Example 1.7. If G = S 3 then we saw in Example 1.4 that there is, up to integer
multiples, a unique relation

1 − 2C2 −C3 + 2S 3

and it is easy to check that the corresponding regulator constants of all three irreducible
representations are equal to 3 modulo rational squares. The representations 1 and ε
contain a unique G-invariant Z-lattice each (up to isomorphism) and their regulator
constants are 1/3 and 3, respectively. The 2-dimensional representation ρ contains two
non-isomorphic G-invariant Z-lattices. Both can be visualised as hexagonal lattices,
generated by two shortest distance vectors P and Q, on which the 3-cycles act as rota-
tions by 120◦.

On one, the 2-cycles act by reflection through a shortest distance vector (eg. through
P) and on the other the 2-cycles act by reflection through the long diagonal of the
fundamental parallelograms (which are P + Q and its rotations by 120◦ in the sketch).
Each one of the two can be embedded into the other G-equivariantly with index 3, but
there is no G-equivariant bijection between them. The regulator constants of the two
lattices are easily computed to be 1/3 and 3, which incidentally provides a quick proof
that they are not isomorphic as ZG-representations.

1.2 Some properties of relations and regulator constants
We will collect here some results from [5] and [7] about regulator constants.

Proposition 1.8 ([7], Corollary 2.18). CΘ(Γ) is multiplicative in Θ and in Γ, i.e.

CΘ(Γ ⊕ Γ′) = CΘ(Γ)CΘ(Γ′),
CΘ+Θ′ (Γ) = CΘ(Γ)CΘ′ (Γ).

In particular, if we want to determine all regulator constants of all RG-modules, it
suffices to determine them for indecomposable representations. Moreover, the follow-
ing result shows that, at least for QG-modules, only finitely many primes p can appear
in the regulator constants:

Proposition 1.9. If R = Q or Qp and p - |G| then ordp(CΘ(Γ)) is even for any G-
relation Θ.

Proof. See [7, Corollary 2.28]. �

In section 3.1 we will generalise this statement to R = Z and R = Zp and we will
further restrict the possible primes.

Relations can be restricted to subgroups, induced from subgroups and lifted from
quotients as follows: let Θ =

∑
i Hi −

∑
j H′j be an AG-relation.

• Induction. If G′ is a group containing G then by transitivity of induction, Θ can
be induced to a relation Θ↑G′=

∑
i Hi −

∑
j H′j of G′.

6



• Inflation. If G � G̃/N then each Hi corresponds to a subgroup H̃i of G̃ contain-
ing N and similarly for H′j and, inflating the permutation representations from a
quotient, we see that Θ̃ =

∑
i H̃i −

∑
j H̃′j is a G̃-relation.

• Restriction. If H is a subgroup of G then by Mackey decomposition Θ can be
restricted to an AH-relation Θ↓H=

∑
i

∑
g∈Hi\G/H

H ∩ Hg
i −
∑

j

∑
g∈H′j\G/H

H ∩ H′gj .

We have the following compatibility between these operations and the corresponding
operations applied to representations Γ:

Proposition 1.10. Let G be a finite group and Γ an RG-representation.

• If H < G and Θ is an AH-relation then CΘ(Γ↓H) = CΘ↑G (Γ)

• If G � G̃/N and Θ is an AG-relation with Θ̃ the lifted relation then CΘ(Γ) =

CΘ̃(Γ) where Γ can also be regarded as a G̃-representation.

• If G < G′ and Θ is an AG′-relation then CΘ(Γ↑G′ ) = CΘ↓G (Γ).

Proof. See [7, Proposition 2.45]. �

2 Alternative definition of regulator constants
The definition of regulator constants that we have given above is somewhat unsatisfac-
tory, since it involves making an arbitrary choice (that of a pairing) on which the result
does not depend. It would be nice to have a definition that avoids any arbitrary choices.
As a first step in the investigation of the properties of regulator constants, we will pro-
vide an alternative definition which depends on fixing more specific information about
the relation (on which the result again does not depend) but not on any choices con-
nected with the representation. This construction is inspired by the proof of [6, Lemma
3.2].

Let Θ =
∑

i Hi −
∑

j H′j be an AG-relation. Define the G-sets S 1 =
⊔

i G/Hi and
S 2 =

⊔
j G/H′j. Then to say that Q[S 1] � Q[S 2] is equivalent to saying that there exists

an embedding of ZG-modules

φ : Z[S 1] ↪→ Z[S 2]

with finite cokernel. Also, to say that Z(p)[S 1] � Z(p)[S 2] is equivalent to saying that
there is such a φ with finite cokernel of order coprime to p.

With these remarks in mind, let R be a PID containing Z, let Γ be an RG-module
and fix an injection

φ : R[S 1] ↪→ R[S 2].

Since permutation modules are canonically self-dual, we also have a map

φtr : R[S 2] ↪→ R[S 1]

and we get induced maps

φ∗ : HomR(R[S 2],Γ)→ HomR(R[S 1],Γ)

and
(φtr)∗ : HomR(R[S 1],Γ)→ HomR(R[S 2],Γ).

7



Upon restricting to the G-invariant subspaces we obtain maps φ∗G and (φtr)∗G between
the coresponding spaces of G-homomorphisms. Since R is a PID, the spaces of G-
homomorphisms are R-free. Also, since φ ⊗ K and φtr ⊗ K are both isomorphisms, so
are φ∗G ⊗ K and (φtr)∗G ⊗ K. Thus both φ∗G and (φtr)∗G have non-zero determinants.

Definition 2.1. Define the regulator constant of Γ with respect to Θ to be

CΘ(Γ) =
det(φtr)∗G
det φ∗G

∈ K×/(R×)2

with both determinants computed with respect to the same bases on HomR[G](R[S 1],Γ)
and on HomR[G](R[S 2],Γ). If we change the basis on HomR[G](R[S 1],Γ), say, then the
quotient changes by the square of the determinant of change of basis, so it really is a
well-defined element of K×/(R×)2.

The injection φ is not present in the notation and indeed:

Proposition 2.2. The value CΘ(Γ) is independent of the choice of injection.

Proof. Let S 1 = {s1, . . . , sn} and choose a basis γ j, j = 1, . . . , r for Γ. Define fi, j ∈
HomR(R[S 1],Γ) by fi, j(si) = γ j, fi, j(s) = 0 ∀s , si. Then fi, j, i = 1, . . . , n, j = 1, . . . , r
is a basis of HomR(R[S 1],Γ). Fix the analogous basis f ′i, j for HomR(R[S 2],Γ) where
S 2 =

{
s′1, . . . , s

′
n

}
. If M is the matrix of φ with respect to the bases corresponding to

si, s′j then the matrix N of φ∗ with respect to the corresponding bases just described is
block diagonal with dim(Γ) blocks, each equal to Mtr and the matrix of (φtr)∗ is equal
to N tr.

Let v′1, . . . , v
′
m be a basis of HomR[G] (R[S 2],Γ) and extend it to a basis v′1, . . . , v

′
nr

of HomR (R[S 2],Γ) and let X2 be the nr × nr matrix of change of basis from v′k to
f ′i, j. Similarly, extend a basis v1, . . . , vm of HomR[G] (R[S 1],Γ) to a basis v1, . . . , vnr of
HomR (R[S 1],Γ) and let X1 be the matrix of change of basis from vk to fi, j. Then the ma-
trix of φ∗G with respect to v′1, . . . , v

′
m and v1, . . . , vm is obtained by taking the submatrix

of X2NX−1
1 consisting of the first m rows and the first m columns. We will write this as

(X2NX−1
1 )m×m. With this notation, the matrix of

(
φtr
)∗

G with respect to the same bases
is given by (X1N trX−1

2 )m×m. It is clear that these matrices do not depend on the way
we have extended the bases of the G-invariant subspaces to the whole homomorphism
spaces. Moreover, it suffices to extend these bases to bases of HomK (K[S i],Γ ⊗ K),
i = 1, 2 and the result will be the same. With this remark in mind we consider two
cases:

Case 1: Suppose, that the basis v′1, . . . , v
′
m of HomR[G] (R[S 2],Γ) can be chosen to

be orthogonal and that the basis v1, . . . , vm of HomR[G] (R[S 1],Γ) can be chosen to be
orthogonal, where we use the inner products which make the basis f ′i, j, respectively the
basis fi, j orthonormal. Each of these bases can be extended to an orthogonal basis of
HomK (K[S i],Γ ⊗ K), i = 1, 2 (this is not true over R, in general). We get that

det((X2NX−1
1 )m×m) = det((X2NX−1

1 )tr
m×m)

= det(((X−1
1 )trN trXtr

2 )m×m)

=

∏m
i=1 ai∏m
i=1 bi

· det((X1N trX−1
2 )m×m)

where ai =
〈
v′i , v

′
i

〉
and bi = 〈vi, vi〉 with the inner products as indicated above. It is

now clear that in this case

CΘ(Γ) = det((X1N trX−1
2 )m×m)/ det((X2NX−1

1 )m×m) =

∏m
i=1 bi∏m
i=1 ai
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does not depend on the matrix N and so is independent of φ.
Case 2: If there is no orthogonal basis of HomR[G] (R[S i],Γ) for i = 1 or 2 then

we can still choose orthogonal bases of HomR[G] (R[S i],Γ) ⊗ K, i = 1, 2 and the same
argument as in Case 1 applies. Computing the determinants of φ∗G ⊗ K and

(
φtr
)∗

G ⊗

K with respect to these bases gives a wrong result since it changes it by squares of
determinants of change of bases but does not make it dependant on the choice of φ. �

We will now prove that the definition of regulator constants given in this section is
equivalent to the one in section 1.1:

Theorem 2.3. Let G be a finite group, R a principal ideal domain, Θ =
∑

i Hi−
∑

j H′j
an AG-relation, where A is either Q or Z(p), and Γ an R-free RG-module. Fix an
injection φ : R[S 1] ↪→ R[S 2] and obtain φ∗G and (φtr)∗G as above. Fix a G-invariant
non-degenerate bilinear pairing 〈, 〉 on Γ. Then

det(φtr)∗G
det φ∗G

≡

∏
i det
Ä

1
|Hi |
〈, 〉 |ΓHi

ä
∏

j det
(

1
|H′j |
〈, 〉 |ΓH′j

) mod (R×)2.

Proof. Define a pairing (, )1 on HomR(R[S 1],Γ) by

( f1, f2)1 =
1
|G|

∑
s∈S 1

〈 f1(s), f2(s)〉

and define an analogous pairing (, )2 on HomR(R[S 2],Γ). It is immediate that this pair-
ing, when restricted to the spaces of G-homomorphisms, is G-invariant. We first claim
that (φtr)∗ is the adjoint of φ∗ with respect to these pairings. Indeed, it suffices to check
this for the bases fi, j(sk) = δi,kγ j and f ′i, j(s′k) = δi,kγ j from the proof of Proposition 2.2.
So writing S 1 = {s1, . . . , sn} and S 2 =

{
s′1, . . . , s

′
n

}
and φ(si) =

∑
j φi, js′j we compute

|G| · ( fi, j, φ∗ f ′r,t)1 =
∑
s∈S 1

〈
fi, j(s), f ′r,t(φ(s))

〉
=
〈
γ j, f ′r,t(φ(si))

〉
=

〈
γ j, φi,rγt

〉
=
〈
φi,rγ j, γt

〉
=
〈

fi, j(φtrsr), γt
〉

=
∑
s∈S 2

〈
fi, j(φtrs), f ′r,t(s)

〉
= |G| · ((φtr)∗ fi, j, f ′r,t)2 (2)

as required. Next, for a subgroup H of G we can identify HomG(G/H,Γ) with ΓH via
f 7→ f (1). We claim that under this identification, we have

det
(
(, )1|HomR[G](R[S 1],Γ)

)
≡
∏

i

det
Å

1
|Hi|
〈, 〉 |ΓHi

ã
mod (R×)2 (3)

and similarly for S 2. Indeed, if for subgroups Hi , Hk, we have that R[G/Hi] and
R[G/Hk] are summands of R[S 1], then an element of HomR[G](R[S 1],Γ) which is trivial
outside of G/Hi is orthogonal to an element which is trivial outside of G/Hk. So it
suffices to prove the claim for S 1 = G/H. We compute

( f1, f2)1 =
1
|G|

∑
s∈G/H

〈 f1(s), f2(s)〉 =
1
|G|

∑
s∈G/H

〈s · f1(1), s · f2(1)〉

=
1
|G|

∑
s∈G/H

〈 f1(1), f2(1)〉 =
1
|H|
〈 f1(1), f2(1)〉 ,
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which immediately implies the claim. Now, fix bases v1, . . . , vm and v′1, . . . , v
′
m on

HomR[G](R[S 1],Γ) and HomR[G](R[S 2],Γ), respectively. Then∏
i det
Ä

1
|Hi |
〈, 〉 |ΓHi

ä
∏

j det
(

1
|H′j |
〈, 〉 |ΓH′j

) by (3)
≡

det
(
(vi, v j)1|HomR[G](R[S 1],Γ)

)
det
(
(v′k, v

′
l)2|HomR[G](R[S 2],Γ)

)
≡

det
Ä

(vi, φ
∗
Gv′j)1|HomR[G](R[S 1],Γ)

ä
/ det(φ∗G)

det
(
((φtr)∗Gv′k, v

′
l)2|HomR[G](R[S 2],Γ)

)
/ det((φtr)∗G)

by (2)
≡ det((φtr)∗G)/ det(φ∗G) mod (R×)2,

which concludes the proof. �

3 General theory of regulator constants for integral and
rational representations

In this section we will develop the theory of regulator constants in two very different
contexts. Before beginning, we will briefly point out the different difficulties that await
us.

For a finite group G, there exist in general inifintely many non-isomorphic inde-
composable ZG-representations. More precisely, this is the case if and only if there is
at least one prime p for which the Sylow p-subgroups of G are either non-cyclic or of
order greater than p2. There is no known procedure to write down all integral repre-
sentations of a finite group, say in parametric families. It is therefore unreasonable to
expect to be able to compute all regulator constants of all integral representations for
any given group G. This however raises the interesting question, how these regulator
constants can grow with the rank of the representations, which is the subject of the first
subsection. Note that this question is completely trivial for rational representations due
to Proposition 1.8.

In the case of rational representations, there are no great algorithmic difficulties in
determining all regulator constants in a given finite group. However, there are several
theoretical questions. For example, given a prime p and a finite group G, we would
like to have an intrinsic description of the sets of rational representations {ρi} such that
there exists a relation Θ with the property that {ρi} is exactly the set of all those rep-
resentations for which ordp(CΘ(ρi)) is odd. The second subsection will deal with this
problem. This is very much work in progress. We will give a conjectural answer which
we will derive as a consequence of Conjecture 3.8, proposed to us in oral communica-
tion by Tim and Vladimir Dokchitser, and then provide theoretical evidence in certain
important special cases. We will start with a general lemma:

Lemma 3.1. Let G be a finite group, Θ =
∑

H αH H a G-relation and ρ an RG-
representation. Then CΘ(ρ) = CΘ(ρ∩H), where ρ∩H is the subrepresentation of ρ which
is fixed by all subgroups appearing in the relation.

Proof. This is immediate from the definition of regulator constants. �

3.1 Integral representations
If for a given relation Θ there exists a ZG-module Γ0 such that CΘ(Γ0) is non-trivial,
then by taking direct sums of Γ0 we see that there exists a constant c and a sequence
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of ZG-modules Γi of Z-ranks ri such that CΘ(Γi) = cri . But can there be faster growth?
And if not, can we say something about bounds on the constant c? The alternative
definition of regulator constants provides a very satisfactory answer:

Theorem 3.2. Let G be a finite group and Θ =
∑

i Hi −
∑

j H′j a G-relation. Then
there exists a positive constant c such that for all ZG-modules Γ and for all primes p
we have

−rank(Γ) · ordp(c) ≤ ordp(CΘ(Γ)) ≤ rank(Γ) · ordp(c).

Moreover, if
φ : Z[S 1] ↪→ Z[S 2]

is an injection of ZG-modules with finite cokernel then we can take c|| det φ|.

Proof. Let φ be an injection like in the statement of the theorem. Then by Theorem 2.3
we have

CΘ(Γ) =
det(φtr)∗G
det φ∗G

.

It suffices to show that | det φ∗G ||| det φ|rank(Γ). The same will be true for (φtr)∗G by sym-
metry. As in the proof of 2.2, write S 1 = {s1, . . . , sn} and choose a basis γ j, j = 1, . . . , r
for Γ. Define fi, j ∈ HomR(R[S 1],Γ) by fi, j(si) = γ j, fi, j(s) = 0 ∀s , si. Then
fi, j, i = 1, . . . , n, j = 1, . . . , r is a basis of HomR(R[S 1],Γ). Fix the analogous basis
f ′i, j for HomR(R[S 2],Γ) where S 2 =

{
s′1, . . . , s

′
n

}
. Then, as in the said proof, we ob-

serve that if φ is given by the matrix M with respect to the bases corresponding to si, s′j
then the matrix N of φ∗ with respect to the corresponding bases just described is block
diagonal with dim(Γ) blocks, each equal to Mtr. Thus, det φ∗ = (det φ)rank(Γ). To con-
clude the proof we simply note that for a homomorphism of free Z-modules with finite
cokernel, the absolute value of the determinant is equal to the order of the cokernel.
But the cokernel of φ∗G is a subgroup of the cokernel of φ∗, so we are done by taking
c = det φ. �

A natural question arises: how small can c be chosen? According to the above theo-
rem we can take c = det φ for any G- injection φ : Z[S 1] ↪→ Z[S 2] with finite cokernel.
Can we make a judicious choice of a collection of such injections to get good bounds
on ordp(CΘ(Γ)) prime by prime? In particular, when do we have ordp(CΘ(Γ)) = 0 for
all ZG-modules Γ? We will now provide a considerable generalisation of Proposition
1.9. We need a preliminary definition and a result we will use:

Definition 3.3. A finite group is called p-hypo-elementary if it has a normal Sylow
p-subgroup with quotient a cyclic p′-group for some prime p′. Equivalently, a p-hypo-
elementary group is a semi-direct product of a p-group acted on by a cyclic p′-group
for primes p , p′.

Theorem 3.4 (Conlon’s Induction Theorem). Given any finite group H and any com-
mutative ring R̃ in which every prime divisor of |H| except possibly p is invertible, there
exist integers αH′ such that some integer multiple of the trivial representation of H over
R̃ is equal to

∑
H′ αH′R[H/H′] in the representation ring over R, where the sum is taken

over p-hypo-elementary subgroups of H.

A proof can be found e.g. in [4], (80.60).
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Proposition 3.5. Let R = Z or Zp. Let G be a finite group, let N be a normal subgroup
such that the quotient group C = G/N is cyclic. Let p be a prime not dividing the order
of N. Then

ordp(CΘ(Γ)) = 0

for all RG-modules Γ and all G-relations Θ.

Proof. We will be done if we can show that any QG-relation is in fact a Z(p)G-relation
(see Definition 1.3). Then, for any G-relation Θ there exists a G-injection φ : Z[S 1] ↪→
Z[S 2] which is an isomorphism when base changed to Z(p) and the result will follow
from Theorem 3.2 and the Remark following it.

Recall that the rank of the lattice of QG-relations is equal to the number of conju-
gacy classes of non-cyclic subgroups of G. Also, by Conlon’s Induction Theorem, for
any subgroup of G which is not p-hypo-elemetary we get a Z(p)G-relation by induc-
ing Conlon’s relation from this subgroup to G as explained in section 1.2. Explicitely,
for each subgroup H of G which is not p-hypo-elemntary, we get a Z(p)G-relation
αH H −

∑
H′ αH′H′, the sum taken over p-hypo-elementary subgroups of H. All rela-

tions obtained in this way are clearly linearly independent, since each one contains a
unique ’maximal’ subgroup which has the property that all other subgroups featuring
in the relation are contained in this one. In summary, we deduce that the lattice of all
Z(p)G relations has rank greater than or equal to the number of non-p-hypo-elemetary
subgroups of G. Clearly, any Z(p)G-relation is also a QG-relation. The result will now
follow from the claim that the lattice of Z(p)G- relations is a full rank sublattice of
the lattice of QG-relations. This will suffice because it implies that for any G-relation
Θ some integer multiple of Θ is a Z(p)G- relation. But then clearly Θ itself must be
a Z(p)G- relation. In other words, the sublattice of Z(p)G-relations is saturated in the
lattice of G-relations. Thus we need to show that any non-cyclic subgroup is non-p-
hypo-elementary.

So take H = P o Z where P is a p-group and Z is a cyclic p′-group with p′ , p.
Since p does not divide |N | we have that

P � P/P ∩ N � PN/N ≤ G/N

is cyclic. Further, since H/P is abelian, the commutator subgroup H′ of H must lie in
P so it is a p-group. But also, H′ ≤ G′ ≤ N since G/N is abelian and therefore H′ = {1}
since p does not divide |N |. Thus H is abelian, H = P ×C and so cyclic. �

In the most general case, finding tight bounds on the growth of regulator constants
can be rather difficult. The question of finding such bounds is not only of interest in
its own right, but also of importance for number theoretic applications which we will
describe in the last section.

3.2 Rational representations
The most general goal in the theory of regulator constants of rational representations
is to understand, for any finite group G, for which primes p, G-representations ρ and
G-relations Θ we have that ordp(CΘ(ρ)) is odd. From a number theoretic point of view,
the following object is of particular importance (see also [7, 1.iii]):

Definition 3.6. Let G be a finite group and p a prime number. Let Tp be the set of all
self-dual Q̄pG-representations τ for which there exists a G-relation Θ such that

〈τ, ρ〉 ≡ ordp(CΘ(ρ)) mod 2
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for all self-dual QpG-representations ρ, where 〈τ, ρ〉 is the usual inner product of char-
acters. An element of Tp will be called a p-computable representation.

The significance of the set Tp is that in [7] the p-parity conjecture [7, Conjecture
1.2b] for twists by p-computable representations has been proved for a large class of
abelian varieties, including all semi-stable ones when p is odd. This raises the prob-
lem of describing this set of all p-computable representations in purely representation
theoretic terms, without referring to regulator constants.

First, we note that if a representation τ is in Tp then so is τ ⊕ 2ρ for any self-dual
QpG-representation ρ. For any such ρ, 2ρ is trivially in Tp. The elements of Tp that
we are primarily interested in are of the following form: let Θ be a relation and let {ρi}

be the set of all the irreducible self-dual QpG-representations for which ordp(CΘ(ρi))
is odd. For each ρi let ρ′i be an absolutely irreducible summand of ρi. Then

⊕
i ρ
′
i ∈ Tp

(see [7, Remark 1.8]).

Example 3.7. Let p be an odd prime and let G = D2p be the dihedral group of order
2p. The irreducible QpG representations are the trivial representation 1, a non-trivial
1-dimensional representation ε and a p − 1 dimensional representation ρ. All three are
self-dual. There is one unique G-relation up to scalar multiples

Θ̄ = {1} − 2C2 −Cp + 2G

and the regulator constants of all three representations with respect to Θ̄ are p up to
squares. Thus, the ’interesting’ p-computable representations are of the form 1⊕ ε ⊕ ρi

where ρi is any absolutely irreducible 2-dimensional summand of ρ.

We have seen in Proposition 3.5 that if G has a normal subgroup N with cyclic quo-
tient and if p does not divide the order of N then there are no non-trivial p-computable
representations. The following far-reaching conjecture has been proposed by Tim and
Vladimir Dokchitser in oral communication:

Conjecture 3.8. All G-relations Θ for which there exists a self-dualQpG-representation
ρ such that ordp(CΘ(ρ)) is odd come from dihedral sub-quotients. More precisely, there
exists a basis of G-relations in which for every Θ, either ordp(CΘ(ρ)) is even for all
self-dual QpG-representations or Θ is obtained by lifting and then inducing the rela-
tion from Example 3.7 from a sub-quotient isomorphic to D2p.

One consequence of this conjecture would in particular be a complete classificaton
of the sets {

ρ irreducible QpG-representation | ordp(CΘ(ρ)) is odd
}

and thus a representation theoretic description of Tp as follows: if Θ is not lifted and
induced from a dihedral sub-quotient then this set is empty. Otherwise, let K / H ≤ G
be such that H/K � D2p and let Θ be the induction from H to G of the lift Θ̃ of the
D2p-relation Θ̄ from Example 3.7. Then

CΘ(ρ) = CΘ̃(ρ↓H) = CΘ̄((ρ↓H)K)

where (ρ↓H)K is the fixed subrepresentation of ρ↓H under K. The first equality follows
from the Frobenius reciprocity type statement in section 1.2 and the second one from
Lemma 3.1. Example 3.7 then immediately shows that ordp(CΘ(ρ)) is odd if and only
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if (ρ↓H)K decomposes as a sum of an odd number of irreducible D2p-representations,
which is a purely representation-theoretic criterion.

Proposition 3.5 can be regarded as evidence for Conjecture 3.8 since the group G
in the statement of the Proposition has no D2p-subquotients. In fact, the proof of the
Proposition shows that if the only p-hypo-elementary subgroups of a group G are cyclic
(which in particular implies that G has no D2p-subquotients) then ordp(CΘ(Γ)) = 0 for
all G-relations Θ and all ZpG-representations Γ. We will now provide very strong
support for the conjecture in the opposite extreme case: when G itself is p-hypo-
elementary (p odd), i.e. when all subgroups of G are p-hypo-elementary. This is work
in progress and we believe that the strategy that we will now describe should eventually
lead to a proof of the full conjecture.

Given a p-hypo-elementary group G (p odd) we will construct a sublattice of
the lattice of G-relations of large rank such that for any relation Θ in this sublattice,
ordp(CΘ(ρ)) is even for all self-dual QpG-representations ρ. By large rank we mean
that the rank of the sublattice of those relations for which some regulator constant is
divisible by p will always be at most the number of dihedral subquotients of G and
usually much smaller.

Recall that the rank of the lattice of G-relations is equal to the number of non-cyclic
subgroups of G up to conjugation. Let G be a p-hypo-elementary group where p is an
odd prime. For each non-cyclic subgroup H (as usual up to conjugacy) of G, apart
from some of those which have a D2p-quotient, we will construct a G-relation which
will only consist of H and its subgroups. All relations obtained in this way will clearly
be linearly independent since each one will contain a unique maximal subgroup with
the property that all other subgroups in this relation will be contained in the maximal
one.

So let H = P oC be a non-cyclic subgroup of G where P is a p-group and C = 〈x〉
is a cyclic p′-group with p , p′. If p′ is odd then G has odd order and by [7, Theorem
2.47] all regulator constants are trivial. So we will henceforth assume that p′ = 2. It
suffices to construct an H-relation which contains H itself, since this relation can then
be induced to G. Moreover, it suffices to construct a relation in any non-cyclic quotient
of H since we can lift relations from quotients. The construction will procede in 6
steps:

Step 1: We will assign to H a non-cyclic quotient φ(H) of a particular kind. First note
that the Frattini subgroup Φ(P) of P is characteristic in P, so it is fixed by C and
is therefore normal in H.
We claim that H/Φ(P) is also non-cyclic. Indeed, if it is cyclic then in particular,
P/Φ(P) is cyclic, hence P is cyclic, generated by g, say, for it is a general fact
that the Frattini subgroup consists of ’non-generators’ of a p-group. But then the
automorphism of P associated with the generator x of C sends g to some gi, and
since it acts trivially modulo the Frattini subgroup, we must have i = kp + 1 for
some integer k. Since this automorphism must be of order 2m, we get that

(kp + 1)2m
≡ 1 mod pn,

where pn is the order of P. Thus

ordp

(
2m∑
r=1

Ç
2m

r

å
kr pr

)
≥ pn
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and so

ordp (kp) = ordp

ÇÇ
2m

1

å
kp

å
= min

r

Ç
ordp

ÇÇ
2m

r

å
kr pr

åå
= ordp

(
2m∑
r=1

Ç
2m

r

å
kr pr

)
≥ pn

since ordp

Ä(2m

1

)
kp
ä
< ordp

Ä∑2m

r=2
(2m

r

)
kr pr
ä

. We deduce that i = k′pn + 1 and
so gi = g. But this implies that the automorphism of P is trivial, so P o C is in
fact a direct product and thus cyclic, contradicting the choice of H.
So, setting φ(H) = H/Φ(P) we get a p-hypo-elementary quotient of the form
P′ o C where P′ is elementary abelian, i.e. can be regarded as an Fp-vector
space. Thus the action of C on P′ can be viewed as an Fp-representation of C.

Step 2: Consider two cases: if the action of C on P′ is trivial then C is a normal
subgroup and we can replace φ(H) by φ(H)/C. This is a non-cyclic p-group.
By Artin’s induction theorem, there exists a φ(H)-relation which contains φ(H)
and cyclic subgroups of φ(H). Moreover, Artin’s theorem guarantees that the
coefficient of φ(H) in the relation divides the order of φ(H) and so is odd. This
observation will be important later. Let ΘH be the lift of this relation to an H-
relation. By [7, Theorem 2.47], the regulator constants for this relation are trivial.
If the action of C on P′ is non-trivial then the kernel K of the map C → Aut(P′)
is a normal subgroup of φ(H) and we can replace φ(H) by φ(H)/K. This case
will occupy us until Step 6. So, in summary, we now assume that φ(H) = C′ oP′

where P′ is an elementary abelian p-group and the action of C′ on P′ is faithful.

Step 3: If the Fp-representation P′ of C′ is a direct sum of copies of the sign represen-
tation, i.e. if the generator of C′ acts as inversion on all elements of P′, then we
will not create a relation in this case. Note that then H has at least one dihedral
quotient.
Otherwise, any direct summand of the representation P′ of C′ is a normal sub-
group of φ(H) and so we can replace φ(H) by a quotient, such that P′ becomes an
irreducible faithful Fp-representation of C′ which is not trivial and not the sign
representation. In particular, |C′| ≥ 4.

Step 4: Write Ci for the unique index i subgroup of C′, i = 2, 4. We claim that

C4 −C2 − 2C′ − P′ oC4 + P′ oC2 + 2φ(H) (4)

is a φ(H)-relation. To prove this we first recall the description of the irreducible
characters of φ(H) from [13, II 9.2], taking into account that in our case the
action of C′ on P′, and thus also on the group of characters of P′, is faithful.
For simplicity, write H′ = φ(H). There is a natural faithful action of C′ on the
characters of P′ via

x(ρ)(g) = ρ(x−1gx).

Let ρ1, . . . , ρl be a full set of representatives of orbits of non-trivial characters
of P′ under this action. Let 1 = χ1, ε = χ2, χi = χ3, χ̄i = χ4, . . . , χk be the
irreducible characters of C′ � H′/P′, regarded as linear characters of H′, where
χ1, . . . , χ4 are lifted from the quotient of order 4. Then the full set of irreducible
characters of H′ is given by

{
χ1, . . . χk, ρ1↑

H′ , . . . , ρl↑
H′
}

. We can now write
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down the decomposition of the permutation characters that appear in the above
relation:

C[H′/H′] = 1,

C[H′/P′ oC2] = 1 + ε,

C[H′/P′ oC4] = 1 + ε + χi + χ̄i,

C[H′/C′] = 1 + ρ1↑
H′ + . . . + ρl↑

H′ ,

C[H′/C2] = 1 + ε + 2ρ1↑
H′ + . . . + 2ρl↑

H′ ,

C[H′/C4] = 1 + ε + χi + χ̄i + 4ρ1↑
H′ + . . . + 4ρl↑

H′ .

It is now clear that the expression (4) really is a relation. Let ΘH be the inflated
H-relation.

Step 5: We claim that for all relations ΘH that we have constructed so far, we have
CΘH (τ) ≡ 1 mod (Q×p)2 for all self-dual QpH-representations τ. Note that if we
write φ(H) = H/N then all subgroups of H that appear in ΘH contain N, so by
Lemma 3.1 and by Proposition 1.10 it suffices to prove the claim for all φ(H)-
representations, where ΘH is regarded as an H/N-relation. Thus, we already
know this when φ(H) is of odd order (see Step 2) so take φ(H) to be as in Step
4. First, by Lemma 3.1 we may without loss of generality replace τ by τC4 ,
the fixed subrepresentation under C4. But the only irreducible representations of
φ(H) = H′ for which the C4-invariant subspace is not trivial are 1, ε, the two
non-selfdual χi and χ̄i and the induced representations ρ j↑

H′ . For 1 and ε the
claim is trivial to check. For χi + χ̄i it follows from [7, Corollary 2.25]. For
the induced representations, the claim follows from a straighforward but slightly
tedious explicit computation with the following pairing: fix a non-degenerate
bilinear pairing 〈, 〉 on ρ j and define

(u, v) =
1
|H′|

∑
h∈H′/P′

〈u(h), v(h)〉

where u, v are P′-equivariant maps from H′ to the vector space of ρ j, i.e. vec-
tors in the induced representation. (It is a trivial check that this pairing is non-
degenerate and H′-invariant.)

Step 6: We summarise that so far we have assigned to each non-cyclic subgroup H =

P o C of G a quotient φ(H) of H obtained by the above procedure: first divide
out the Frattini subgroup of P, then divide out the kernel K of the map C →
Aut(P/Φ(P)). If the resulting quotient is of odd order, then set this to be φ(H).
Otherwise, divide out all but one representation of C/K = C′ in P′ = P/Φ(P)
such that the remaining representation is not trivial and, if possible, not the sign
representation. Again, divide out the kernel of the resulting map C′ → Aut(P′)
and set φ(H) to be the resulting quotient. So, in summary, φ(H) is always non-
cyclic and either an elementary p-group or the dihedral group D2p or a p-hypo-
elementary group P′ o C′ where C′ is of order at least 4 and acts faithfully,
irreducibly on P′. In the first and the last case, we have assigned a G-relation ΘH

to H such that H itself appears in the relation and in the first case its coefficient
is odd, while in the last case we have written down the relation explicitely in
Step 4. Let Λ be the lattice of relations, spanned by ΘH for all H for which
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φ(H) is not dihedral, the announced lattice of ’large’ rank. We have seen above,
that for all relations in Λ all regulator constants are trivial. However, Λ might
not be saturated in the lattice of all G-relations, i.e. if for some G-relation Θ

an integer multiple of it is in Λ, it does not follow that Θ is in Λ. Since we
are computing the regulator constants up to squares, this fact could potentially
make our construction meaningless, since we could instead have just taken the
sublattice of the lattice of all G-relations consisting of relations that are divisible
by 2. It would be of full rank and would yield trivial regulator constants. So it
remains to show that Λ has odd index in its saturation.
Clearly, the lattice of relations spanned by all those ΘH for which φ(H) is odd
has odd index in its saturation, since in each such ΘH there exists a maximal
group whose coefficient is odd. So, take some H for which φ(H) is even but
not dihedral and suppose that there exists Θ ∈ Λ such that ΘH + Θ is divisible
by 2. In particular, the index 2 subgroup H2 of H must appear in Θ with odd
coefficient, say it appears in ΘH′ for some H′ , H. Since H2 is of even order,
we must have that ΘH′ is as in Step 4 and so H2 must be either of index 2 or 4 in
H′. In the former case, this implies that either H′ = H or 〈H′,H〉, the smallest
group containing both, has a non-cyclic Sylow 2-subgroup, contradicting the
assumption that G is p-hypo-elementary. In the latter case, this implies that
either H is the index 2 subgroup of H′, in which case we can repeat the same
argument with H replaced by H′, or we arrive at the same contradiction that G is
not p-hypo-elementary. This completes our construction.

Although Conjecture 3.8 seems very strong we should remark that it is not the end
of the story as far as the question of p-computable representations goes. For, while
the conjecture gives an explicit representation theoretic method of finding all the p-
computable representations in any concrete case, it gives no theoretical prediction
on the size of Tp. We have explained at the beginning of this subsection that if we
have a basis Θi of the lattice of G-relations then Tp is generated by 2ρ for any QpG-
representation ρ and by representations of the form

⊕
j ρ
′
i, j where ρ′i, j is an absolutely

irreducible summand of ρi, j and for each i, the set
{
ρi, j
}

is precisely the set of those
irreducible self-dual Qp-representations for which ordp(CΘi (ρi, j)) is odd. Conjecture
3.8 gives an upper bound on the number of generators for the p-computable represen-
tations of the latter type, namely the number of D2p-subquotients of G, but this bound
is not tight, as we will demonstrate by an explicit example. This example will also
demostrate our construction in practice:

Example 3.9. Take the p-hypo-elementary group

G =
〈
a, b, x | a3 = b3 = x4 = 1, x−1ax = b−1, x−1bx = a

〉
.

It is a semi-direct product of an elementary abelian 3-group and the cyclic group C4.
The F3-representation of C4 given by its action on C3 × C3 is the two-dimensional
irreducible F3 representation, which decomposes as a sum of two non-selfdual rep-
resentations over F̄3. Here is a list of the non-cyclic subgroups of G (as usual up to
conjugation) together with names that we shall give them:

• 〈a, b〉 = C3,3,

•
〈
a, x2

〉
= S a

3,

•
〈
ab, x2

〉
= S b

3,
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•
〈
a, b, x2

〉
= H18,

• 〈a, b, x〉 = G

We will now demonstrate the above procedure of constructing relations with trivial p-
parts of regulator constants. We have chosen the group in such a way that φ(H) = H
for each non-cyclic subgroup H of G. First we note that the group G has four dihedral
subquotients: there are two subgroups isomorphic to S 3 and the group H18 has two such
quotients. Thus, Conjecture 3.8 predicts that there is a basis of relations in which at
least one relation has trivial p-parts of regulators for all self-dual QpG-representations.
Our construction in fact gives us a basis with two such relations: we do not construct
ΘH when H is S a

3, S b
3 or H18 since they are as at the beginning of Step 3. But we do

obtain the relations

ΘC3,3

Step 2
= 1 − 2Ca

3 − 2Cb
3 + 3C3,3,

ΘG
Step 4

= 1 −C2 − 2C4 −C3,3 + H18 + 2G.

So in a certain sense the construction sometimes does even better than the conjecture.
But it turns out that this is still not good enough. Here is a table with a basis of relations
and all corresponsing regulator constants:

ρ1 ρ2 ρ3 ρ4 ρ5
G 1 1 2 4 4

Ca
3 −Cb

3 −C4 − S a
3 + 3S b

3 − 2H18 + G 1 1 1 1 1
1 − 2Ca

3 − 2Cb
3 + 3C3,3 1 1 1 1 1

Ca
3 −Cb

3 − 2S a
3 + 2S b

3 1 1 1 3 3
Ca

3 − 2S a
3 −C3,3 + 2H18 3 3 1 1 3

1 −C2 − 2C4 −C3,3 + H18 + 2G 1 1 1 1 1
p = 3 ∗ ∗

∗ ∗ ∗

The dimensions of the representations are written underneath their labels. The repre-
sentation ρ3 is not absolutely irreducible but is a sum of two non-selfdual components.
The two lines of stars denote the sets that we referred to as

{
ρi, j
}

just before this ex-
ample. Our construction shows that there are at most three such distinct sets (since
we have constructed 2 lineraly independent relations with trivial 3-parts of regulator
constants and there are 5 lineraly independent relations in total) but in fact there are
only two of them.

4 Regulator constants in the dihedral group D2p

In view of Conjecture 3.8 and for number theoretic applications which will be ex-
plained in the last section, it is important to understand the regulator constants in
G = D2p. Since all the Sylow subgroups of D2p are cyclic of prime order, there is
a finite number of non-isomorphic indecomposable integral G-representations (see re-
marks at the beginning of section 3.1). These were explicitely described in [9]. We
will recall this classification and then compute the regulator constants of all these in-
tegral representations with respect to the relation from Example 3.7. We note that it is
not clear a priori that this is a finite task, since the number of isomorphism classes of
indecomposable integral representations, while finite for a given p, grows with p.
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Let Q(ζp)+ be the maximal real subfield of the p-th cyclotomic field and let O+

be its ring of integers. Let {Ui} be a full set of representatives of the ideal class
group of Q(ζp)+ and take U1 = U = O+ to represent the principal ideals. Write
G =

〈
a, b : a2 = bp = (ab)2 = 1

〉
. Let O be the ring of integers of Q(ζp). Write Ai

for the ZG-module UiO on which a acts as complex conjugation and b as multiplica-
tion by ζp. Let A′i be the module (ζ̄p − ζp)UiO with the same G-action. Set A = A1,
A′ = A′1.

Finally write 1 for the 1-dimensional trivial ZG-module, ε for the 1-dimensional
module sending a to -1 and b to 1 and ρ for the 2-dimensional module Z[G/Cp] which
is an extension of 1 by ε. The following is a complete list of indecomposable ZG-
lattices (see [9]):

• 1;

• ε;

• ρ;

• for each i, Ai;

• for each i, A′i ;

• for each i, a non-trivial extension of 1 by A′i , denoted by (A′i , 1);

• for each i, a non-trivial extension of ε by Ai, denoted by (Ai, ε);

• for each i, a non-trivial extension of ρ by Ai, denoted by (Ai, ρ);

• for each i, a non-trivial extension of ρ by A′i , denoted by (A′i , ρ);

• for each i, a non-trivial extension of ρ by Ai ⊕ A′i , denoted by (Ai ⊕ A′i , ρ);

It is a trivial check that CΘ(1) = 1/p, CΘ(ε) = p, CΘ(ρ) = 1.

Lemma 4.1. The regulator constants of A and of A′ are p and 1/p, respectively.

Proof. The matrices of a, b acting on A′ on the left with respect to the basis (ζ̄p −

ζp){1, ζp, ζ
2
p, . . . , ζ

p−2
p } are

−1 1 0 0 0 · · · 0
0 1 0 0 0 · · · 0
0 1 0 0 · · · 0 −1
0 1 0 · · · 0 −1 0
...

...
... . .. . .. . ..

...
0 1 0 −1 0 · · · 0
0 1 −1 0 · · · 0 0


and



0 0 0 . . . 0 −1
1 0 0 . . . 0 −1
0 1 0 . . . 0 −1
...

...
. . .

. . .
...

...
0 . . . 0 1 0 −1
0 . . . 0 0 1 −1

 ,

respectively. It is immediately seen that the same matrices represent the G-action by
multiplication on the submodule¨

b
p−1

2 − b
p+1

2 , b
p+1

2 − b
p+3

2 , . . . , bp−1 − 1, 1 − b, . . . , b
p−5

2 − b
p−3

2

∂
Z

of Z[G/C2] with respect to the indicated basis. But this is just the submodule〈
1 − bi : i ∈ {1, . . . , p − 1}

〉
Z
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of the permutation lattice Z[G/C2]. We can choose the standard pairing on the latter
which makes the different coset representatives an orthonormal Z-basis. It is easy to
see that the fixed sublattices under 1 and under 〈a〉 = C2 are〈

1 − bi : i = 1, . . . , p − 1
〉
Z

and
≠

2 − bi − bp−i : i = 1, . . . ,
p − 1

2

∑
Z

,

respectively. The subgroup Cp only fixes the trivial lattice. The matrices of the pairing
on these modules with respect to the bases indicated are then

2 1 1 · · · 1
1 2 1 · · · 1
...

. . .
. . .

. . .
...

1 · · · 1 2 1
1 1 · · · 1 2

 and


6 4 4 · · · 4
4 6 4 · · · 4
...

. . .
. . .

. . .
...

4 · · · 4 6 4
4 4 · · · 4 6


of sizes p − 1 and p−1

2 with determinants p and 2
p−1

2 p, respectively, as can be checked
by elementary row operations. So, taking into account the normalisation by the sizes
of the subgroups, we get

det
Ä

1
|1| 〈, 〉 |A

′1
ä

det
Ä

1
|G| 〈, 〉 |A

′G
ä2

det
Ä

1
|C2 |
〈, 〉 |A′C2

ä2
det
Ä

1
|Cp |
〈, 〉 |A′Cp

ä =
p
p2 = 1/p

as claimed.
Now consider the ZG-module Z[G/C2] ⊗Z ε with diagonal G-action. It is now

clear from above that A is isomorphic to the submodule of Z[G/C2] ⊗Z ε given by〈
1 − bi : i = 1, . . . , p − 1

〉
. The fixed submodules under 1 and under C2 are

〈
1 − bi : i = 1, . . . , p − 1

〉
and
≠

bi − bp−i : i = 1 . . .
p − 1

2

∑
,

respectively, and an entirely similar calculation using the same natural pairing as above
shows that CΘ(A) = p. �

Lemma 4.2. We have (A′, 1) � Z [G/C2] and CΘ((A′, 1)) = 1.

Proof. Take the Z-basis {1, b, . . . , bp−1} for Z [G/C2]. Then there is the submodule¨∑p−1
i=0 bi

∂
isomorphic to 1 and the submodule

〈
1 − bi : i ∈ {1, . . . , p − 1}

〉
isomorphic

to A′ but their direct sum is the submodule
{∑

i αibi :
∑
αi ≡ 0( mod p)

}
which is an

index p sublattice. In fact Z[G/C2] is indecomposable since Fp[G/C2] is. Thus it must
be a non-trivial extension of 1 by A′ and the first claim follows from the classification
of integral representations. The regulator constant of (A′, 1) must then be trivial by [7,
Lemma 2.46]. �

By Proposition 3.5 we know that all the regulator constants will be powers of p. It is
instructive to see explicitely that the unique (up to scalar multiples) relation Θ from Ex-
ample 3.7 exists not just over Q but over Z(2). We noted in the proof of Lemma 4.2 that
the lattice Z [G/C2] contains A′ ⊕1 as an index p sublattice. Thus, upon tensoring with
Z(2) we have an isomoprhism. On the other hand Z(2)

[
G/Cp

]
remains indecomposable.
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Write Γ̄ for Γ ⊗ Z(2) for any ZG-lattice Γ. Since Z(2)[G/1] = Z(2)[G/C2] ⊗ Z(2)[G/Cp]
we have

Z(2)[G/1] ⊕ Z(2)[G/G]⊕2 = Z(2)[G/C2]⊕2 ⊕ Z(2)[G/Cp]
⇔

(
Z(2)[G/C2] ⊗ Z(2)[G/Cp]

)
⊕ Z(2)[G/G] ⊕ Z(2)[G/G] =

Z(2)[G/C2] ⊕ Z(2)[G/C2] ⊕ Z(2)[G/Cp]
⇐

(
Ā′ ⊕ 1̄

)
⊗ Z(2)[G/Cp] ⊕ 1̄ ⊕ 1̄ =

Ā′ ⊕ 1̄ ⊕ Ā′ ⊕ 1̄ ⊕ Z(2)[G/Cp]
⇐ Ā′ ⊗ Z(2)[G/Cp] = Ā′ ⊕ Ā′.

Note that if we had worked over Z2 the implications would have gone both ways since
over complete discrete valuation rings the Krull-Schmidt theorem and therefore the
cancellation property hold.

The last equality is easily seen to be true since A′ ⊗ Z[G/Cp] gives upon tensoring
withQ the direct sum of the two rational irreducible representations of dimension p−1.
From the discussion above we see that all the lattices that can be embedded into this
rational representation (Ai and A′i) can be embedded into each other with index a power
of p and so they are all isomorphic over Z(2).

Lemma 4.3. The regulator constants of the remaining lattices in the above list for
i = 1 are as follows:

• CΘ((A, ε)) = 1;

• CΘ((A, ρ)) = 1/p;

• CΘ((A′, ρ)) = p;

• CΘ((A ⊕ A′, ρ)) = 1;

Proof. It is noted in [9] §4 that (A ⊕ A′, ρ) � Z[G/1] and so CΘ((A ⊕ A′, ρ)) = 1 by [7,
Lemma 2.46].

For the other three lattices since we only need to determine the p-parts it suffices to
work up to squares of elements with trivial p-valuation so we will work over Zp rather
than over Z. So write fl(A, ε) = (A, ε) ⊗Z Zp and similarly for the other lattices. Since
1 ⊕ ε is an index 2 sublattice of ρ, over Zp we have 1̃ ⊕ ε̃ � ρ̃. Now, (A, ε) ⊗ ε � (A′, 1)
and so fl(A, ε) ⊕fl(A′, 1) 4.2

= Zp[G/C2] ⊗ (1̃ ⊕ ε̃)
� Zp[G/C2] ⊗ ρ̃
� Zp[G/C2] ⊗ Zp[G/Cp]
� Zp[G/1]

which has trivial regulator constant by [7, Lemma 2.46]. By multiplicativity of regula-
tor constants and by Lemma 4.2 CΘ(fl(A, ε)) = 1. Similarly,fl(A, ρ) � (Ã, 1̃⊕ ε̃) and since
Ext(1, A) = 0 ([9] Lemma 2.1) it is easy to see that

(Ã, 1̃ ⊕ ε̃) � 1̃ ⊕fl(A, ε),
whence, by multiplicativity of regulator constants, we deduce that

CΘ(fl(A, ρ)) = 1/p ∈ Qp/
(
Z×p
)2
.
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Also Ext(ε, A′) = 0 and
(Ã′, 1̃ ⊕ ε̃) � ε̃ ⊕fl(A′, 1),

whence
CΘ(fl(A, ρ)) = p ∈ Qp/

(
Z×p
)2
.

�

Theorem 4.4. The regulator constants of all the indecomposable ZD2p-modules for p
an odd prime are as follows:

Γ CΘ(Γ)

1 1/p
ε p
ρ 1
Ai p ∀i
A′i 1/p ∀i
(A′i , 1) 1 ∀i
(Ai, ε) 1 ∀i
(Ai, ρ) 1/p ∀i
(A′i , ρ) p ∀i
(Ai ⊕ A′i , ρ) 1 ∀i

Proof. For i = 1 this is Lemma 4.1, Lemma 4.2 and Lemma 4.3. It will suffice to show
that CΘ(Ai) = CΘ(A) and CΘ(A′i) = CΘ(A′) for all i. Recall that Ai, A′i are given by
(ζ̄p − ζp) jUiO for j = 0, 1, respectively, where Ui runs through representatives of the
ideal class group of Q(ζp)+. Take each Ui to be of norm coprime to 2p. Then Ai is a
sublattice of A = A1 of index coprime to 2p and the two are therefore isomorphic over
Z2 and over Zp. Thus they have the same regulator constants. Similarly, A′i all have the
same regulator constants as A′ = A′1. �

The proof of the proposition exhibits an important feature of regulator constants
which we will now summarise.

Definition 4.5. Given a finite group G and a principal ideal domain R, two finitely
generated R-free RG-modules M and N are said to lie in the same genus if M ⊗ Rp �
N ⊗ Rp as RpG-modules for all completions Rp at prime ideals p of R. This is clearly
an equivalence relation.

We can summarise the idea of the proof of the proposition as follows:

Theorem 4.6. The regulator constants of an RG-module only depend on its genus.

Proposition 4.7. There exist at most 10 genera of ZD2p-modules. Each genus has a
representative of the kind considered in Lemma 4.1, Lemma 4.2 and Lemma 4.3.

5 Elliptic curves and regulator constants
In this section we want to apply our results on regulator constants to questions about
the growth of Selmer groups of elliptic curves in extensions of number fields. Given a
prime p, an extension of number fields F/K and an elliptic curve E/K, write Sp(E/F)
for the p-Selmer group of E over F. Many papers have been written which deal with
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questions about the possible size of Sp(E/F) subject to restrictions on E or on the
degree of F/K. We refer e.g. to the Introduction in [1] or to [2, section 1.3] for
discussions of known results. The main result of this section is:

Theorem 5.1. Let p be a prime number and M a quadratic number field, M , Q(
√

p)
if p ≡ 1 mod 4. Given any positive integer d there exists a Galois extension F/Q with
Galois group D2p and an elliptic curve E/Q such that F contains M and #Sp(E/F) ≥
pd.

This is already known for p ≤ 7 so we will prove the statement for p > 7. Using
the explicit computations of regulator constants in dihedral extensions we can give a
quantitative result as follows:

Theorem 5.2. Let p > 7 be a prime, let E/Q be a semi-stable elliptic curve and F/Q a
Galois extension with Galois group D2p. Let M be the unique quadratic subfield of F.
Let S be the set of all primes of split multiplicative reduction of E which are either inert
in M/Q and totally ramified in F/M or totally ramified in F/Q. Assume further that
all primes not in S are either primes of good reduction or have cyclic decomposition
groups in F/Q. Then

pr(E/F)/(p−1) · #X(E/F)[p∞] ≥ p|S|−r(E/M)+2r(E/Q).

Before explaining the connection between regulator constants and elliptic curves
we shall fix some notation:
Notation. Throughout the rest of the paper K will be a number field, K̄ will denote an
algebraic closure. If v is a place of K then |.|v will denote the normalised absolute value
at v. The absolute Galois group Gal(K̄/K) of K will be denoted GK . Given an elliptic
curve E/K we use the following notation:

r(E/K) the Mordell-Weil rank of E/K;
cv(E/K) the local Tamagawa number at a place v of K;
cv(E/F) the product of the local Tamagawa numbers at all places of F above

v where F/K is an extension of number fields and v is a place of K;
c(E/K) the product of the local Tamagawa numbers at all finite places of K;
WF/K(E) the Weil restriction of scalars of E from F to K;
Sp(E/F) the p-Selmer group of E/F, defined as

ker
(
H1(GF , E[p])→

∏
v H1(Gv, E)

)
, where Gv = Gal(F̄v/Fv), the

map is the restriction and the product is taken over all places of F.
Fix an invariant differential ω on E. At each finite place v of K take a Néron

differential ω0
v . Then we set Cv(E/K) = cv

∣∣∣ ω
ω0

v

∣∣∣
v

and

C(E/K) =
∏
v-∞

Cv(E/K).

Here we followed [17] in writing ω
ω0

v
for the unique v-adic number δ such that ω =

δω0
v , which exists because the space of holomorphic differentials on a curve is one-

dimensional. The definition of C(E/K) depends on the choice of the invariant differen-
tial ω but this dependence will not cause any ambiguity as long as we always choose
the same differential when we have the analogous expression for number fields Li/K.

5.1 Artin formalism and regulator constants
Our starting point is the conjecture of Birch, Swinnerton-Dyer and Tate [17] the second
part of which predicts that, for an abelian variety A/K, the leading coefficient of the
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L-function of A/K at s = 1 equals a certain expression in terms of arithmetic data of
the abelian variety, which we will call the BSD-quotient of A/F. If, for some elliptic
curves Ei/Ki and E′j/K

′
j, we have an equality∏

i

L(Ei/Ki, s) =
∏

L(E′j/K
′
j, s)

then the conjecture of Birch, Swinnerton-Dyer and Tate predicts an equality of the
corresponding BSD-quotients. In fact, as explained in [7, footnote on page 7], if one
assumes that Tate-Shaffarevich groups of abelian varieties over number fields are finite
then such an equality is a consequence of several deep results like the compatibility of
the conjecture with taking Weil restrictions of scalars and Faltings’s result that abelian
varieties are determined up to isogeny by their Tate modules. Now, let F/K be a Galois
extension with Galois group G and let E/K be an elliptic curve. Let Θ =

∑
i Hi−

∑
j H′j

be a G-relation and write Li = FHi , L′j = FH′j for the corresponding fixed subfields of F
(since the subgroups are only defined up to conjugation, the fields are only defined up to
isomorphism). By Artin formalism for L-functions, we get an equality of L-functions∏

i

L(E/Li, s) =
∏

j

L(E/L′j, s)

and hence an equality of BSD-quotients, assuming that all relevant Tate-Shaffarevich
groups are finite. More precisely, we have∏

i

#X(E/Li)Reg(E/Li)C(E/Li)
|E(Li)tors|

2 =
∏

j

#X(E/L′j)Reg(E/L′j)C(E/L′j)
|E(L′j)tors|

2 . (5)

Moreover, if one only assumes that the p-primary parts of the Tate-Shaffarevich groups
are finite then the same equality holds but with X replaced by its p-primary part.

Note that the real and the complex periods as well as the discriminants of the fields,
which are present in the conjecture of Birch and Swinnerton-Dyer, cancel in our situa-
tion, provided that one chooses the same invariant differential ω over K for each term.
Notation. Let F/K be a Galois extension of number fields with Galois group G. Given
a G-relation Θ as above, set Li = FHi and L′j = FH′j . Write Reg(E/Θ) for the corre-
sponding quotient

∏
i Reg(E/Li)

/∏
j Reg(E/L′j) and similarly for #X(E/Θ), C(E/Θ)

and |E(Θ)tors| or indeed for any function to C associated with E which depends on the
field extension. In this shorthand language equation (5) reads as

#X(E/Θ)Reg(E/Θ) =
|E(Θ)tors|

2

C(E/Θ)
. (6)

Example 5.3. Let G =
〈
a, b : ap = b2 = (ab)2

〉
be the dihedral group of order 2p for

an odd prime p. Then we have the G-relation

Θ = 1 − 2C2 −Cp + 2G

from Example 3.7, which is unique up to scalar multiples. Suppose now that E/K is
an elliptic curve. Take the subgroups H = 〈a〉 = Cp, H′ = 〈b〉 = C2. Let F/K be
a Galois extension of number fields with Galois group G and let L = FH′ , M = FH

be intermediate extensions. Let v be a finite place of K. If E has split multiplicative
reduction at v of K then for any extension K′/K and any place w of K′ above v we have
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cw(E/K′) = −w( j(E)) where j(E) is the j-invariant of the elliptic curve (see e.g. [16,
Ch. IV Cor. 9.2]). Thus, if v is a place of split multiplicative reduction of E with only
one prime of F above v with ramification index p then

cv(E/Θ) =
cv(E/K)2cv(E/F)
cv(E/M)cv(E/L)2 =

pcv(E/K)3

p2cv(E/K)3 =
1
p
.

Similarly, it is easily seen that if a place v of split multiplicative reduction is totally
ramified in F/K then the associated Tamagawa quotient is 1/p and in all other cases it
is 1.

Remark 5.4. Given any relation Θ, if E is semi-stable then C(E/Θ) = c(E/Θ). Indeed,
it is easy to see that in a relation the Tamagawa quotient∏

i

Cv(E/Li)
¿∏

j

Cv(E/L′j)

above each finite place v of K does not depend on the choice of the invariant differential
ω. But when v is a place of semi-stable reduction of E we can choose ω to be a Néron
differential at v. Then ω stays minimal at all places above v and so in a relation we can
replace Cv by cv in this case. Thus, for semi-stable elliptic curves E we can replace the
products C(E/L) of the modified Tamagawa numbers in a relation by just the product
of the local Tamagawa numbers c(E/L).

The quotient of regulators Reg(E/Θ) is precisely equal to the regulator constant
CΘ(E(F)/E(F)tors) of the free part of the F-rational points of E, which is a ZG-module
in a natural way. So, to construct elliptic curves with large Selmer groups, we will
control the Tamagawa quotients and the torsion subgroups of E/F to make the left
hand side of equation (6) large. The result will then follow from Theorem 3.2.

5.2 Proof of Theorem 5.2
We will assume throughout this subsection that the p-primary part of Tate-Shaffarevich
groups of abelian varieties over number fields is always finite. When this is not the case,
the statement of Theorem 5.2 is trivial. We start with a lemma which will help us to
control the quotient of Tamagawa numbers in a relation:

Lemma 5.5. Let G be a finite group and let Θ =
∑

i Hi −
∑

j H′j be a G-relation. Let
E/K be an elliptic curve over a number field and let F/K be a Galois extension with
Galois group G. If v is a place of K which is unramified in F/K (or more generally for
which all decomposition groups are cyclic) then Cv(E/Θ) = 1.

Proof. Quite generally, if D < G is a subgroup and ψ is a function on the Burnside ring
of G (such as Cv : H 7→ Cv(E/FH) for example) which can be written as

ψ(H) =
∏

x∈H\G/D

ψD(Hx−1
∩ D)

for ψD a function on the Burnside ring of D (i.e. if ψ is ”D-local” in the language
of [7]) and if ψD is trivial on all D-relations then ψ is trivial on all G-relations. This
follows from Mackey decomposition and a rather intricate formalism introduced in [7,
2.iii]. In our case, if D is the decomposition group of some w/v in G then the function
Cv is D-local. But we assumed that D was cyclic and cyclic groups have no non-trivial
relations. Therefore we are done. �
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Proof of Theorem 5.2. Let Θ be the D2p-relation from Example 3.7. By Example 5.3
and by Lemma 5.5 we have, under the conditions of the theorem, C(E/Θ) = 1/p|S|.
Since E/Q is semi-stable, by [10] and [11] E/Q has no p-torsion (p > 7) and by
[14, §21 Proposition 21 and remark following Lemma 6] the absolute Galois group
of Q acts on E[p] as GL2(Fp) (this result applies to elliptic curves without complex
multiplication, but that condition is automatic for semi-stable elliptic curves over Q).
Thus adjoining the co-ordinates of a p-torsion point to Q defines an extension which is
the fixed field of a Borel subgroup of GL2(Fp) and so has degree p2 − 1 > 2p over Q.
It follows that E can have no p-torsion over F. We immediately deduce that

CΘ(E(F)/E(F)tors)#X(E/Θ) = p|S|.

Recall that the numerator of #X(E/Θ) is #X(E/Q)2 ·#X(E/F). But by the inflation-
restriction exact sequence, the kernel of

X(E/Q)→X(E/F)

is contained in H1(G(F/Q), E(F)) and the p-part of this is 0 since the p-part of E(F)tors
is 0 as explained above. We get that

CΘ(E(F)/E(F)tors)#X(E/F) ≥ p|S|.

By the computation of regulator constants for dihedral groups, we know that each copy
of the trivial lattice in the Mordell-Weil group of E/F contributes 1/p to the regulator
quotient, while each copy of the one-dimensional lattice ε contributes p to the regulator
quotient. The 2- dimensional lattice Z[D2p/Cp] has trivial regulator constant and the
indecomposable lattice of the next highest rank is p−1-dimensional. But the number of
copies of the trivial lattice is precisely r(E/Q) while r(E/M) is the sum of the number
of trivial lattices and the number of ε. No indecomposable lattice contributes more than
p to the regulator quotient and the result follows immediately. �

To prove Theorem 5.1 under the assumption that Tate-Shaffarevich groups are fi-
nite, all we now need to do is to show that the set S can be arbitrarily large. This
will be done through an explicit construction of the required number fields via class
field theory and by explicitely writing down the required elliptic curves in Legendre
normal form. We also need to replace X[p∞] by X[p] which will be done in the last
subsection.

5.3 Dihedral extension of number fields via class field theory
We will follow the notation in [3] so that the construction is readily implementable on
a computer using the algorithms described there.
Notation. For a number field M we fix the following notation:
m = (m0, m∞) a modulus of M, where m0 is an integral ideal

of the field and m∞ is a set of real embeddings.
Im for a given modulus m, the multiplicative group of

fractional ideals which are coprime to m0.
Pm for a given modulus m, the subgroup of Im generated by all

principal ideals (a), a ∈ M×, such that a ≡ 1 mod ∗m
by which we mean that ordp(a − 1) ≥ ordp(m0) for all p above m0
and σ(a) > 0 for all embeddings σ ∈ m∞.

(m,U) a congruence subgroup, i.e. m is a modulus and Pm ≤ U ≤ Im.

26



Definition 5.6. Two congruence subgroups (m,Um) and (n,Un) are said to be equiva-
lent if Im ∩ Un = In ∩ Um. The smallest n such that (m,Um) is equivalent to (n,UmPn)
is called the conductor associated to (m,Um). This is equivalent to saying that the
conductor is the smallest modulus n such that the natural map Im/Um → In/UmPn is
injective.

The following is one of the main results of global class field theory (see e.g. [8,
Chapter X]):

Theorem 5.7. Given any modulus m of M and any congruence subgroup U, there
exists a unique abelian extension F/M such that

Im/U −̃→ Gal(F/M)
α 7→ (α, F/M)

is a group isomorphism, where for a prime ideal p of M (p, F/M) is the Frobenius
automorphism at p. This isomorphism is called the Artin map. Moreover, two congru-
ence subgroups (m,Um) and (n,Un) give the same field extension if and only if they are
equivalent. We have

(τα, F/M) = τ−1(α, F/M)τ ∀τ ∈ Aut(M). (7)

If K is a subfield of M and M/K is Galois then F/K is Galois if and only if τ(U) is
equivalent to U for all τ ∈ Gal(M/K). If τ(m) = m for all τ ∈ Gal(M/K) then this
condition simplifies to τ(U) = U for all τ ∈ Gal(M/K).

The primes that ramify in F/M are precisely the ones that divide the conductor f of
(m,Um) and a prime p is wildly ramified if and only if p2 divides f.

We will now use this result to construct dihedral extensions of Q with a prescribed
intermediate field and arbitrarily many ramified primes:

Theorem 5.8. Let M = Q(
√

d) be a quadratic number field, and p any odd prime
number. Define the following sets of primes:

S1 :=
{

q rational odd prime : q splits in M/Q, q ≡ 1 mod p
}

S2 :=
{

q rational odd prime : q is inert in M/Q, q ≡ −1 mod p
}
.

Given any positive integers k1 and k2 there exists a Galois extension F/Q with Galois
group D2p such that F contains M and

1. at least k1 primes from S1 ramify in F/Q and

2. unless d = p ≡ 1 mod 4, at least k2 primes from S2 ramify in F/Q.

Proof. We will find infinitely many dihedral extensions Fi of Q containing M with
disjoint sets of ramified primes in Fi/M. By taking ”diagonal” subfields in their com-
positum we will create the required extension. To construct the extensions Fi we will
use the above results from class field theory by constructing moduli m which will be
fixed by the Galois group of M/Q and such that Im/Pm will have a quotient Im/U of or-
der p with U fixed by the Galois group of M/Q and this Galois group acting as x 7→ x−1

on the quotient.
Let U be the group of units of M and for a modulus m = (m0,m∞) of M define

Um = {u ∈ U : u ≡ 1 mod ∗m}.
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Further define
I′m = {a ∈ M× : ordp(a) = 0 ∀p|m0}

and
P′m = {a ∈ I′m : a ≡ 1 mod ∗m}.

Then we have the exact sequence

0→ U/Um → I′m/P
′
m → Im/Pm → Cl(OM)→ 0. (8)

The map I′m/P
′
m → Im/Pm simply sends an element to the ideal it generates (or rather

its equivalence class). We will concentrate on the term I′m/P
′
m for now.

First, we claim that by Dirichlet’s prime number theorem both sets S1 and S2 are
infinite, unless d = p ≡ 1 mod 4, in which case S1 is infinite and S2 is empty. Indeed,
this is clear when p , d. If p = d and p ≡ 3 mod 4 then

q splits in M ⇔
Å

p
q

ã
= 1⇔

Å
q
p

ã
= (−1)

q−1
2

and so again both sets are infinite since the congruence condition modulo 4 and the
congruence condition modulo p can be satisfied simultaneously. If p = d and p ≡
1 mod 4 then

Ä
q
p

ä
=
Ä

p
q

ä
and so q ≡ ±1 mod p⇒

Ä
q
p

ä
=
Ä

p
q

ä
= 1⇒ q splits in M.

We will henceforth assume that both sets are infinite since the proof (or rather the
relevant part) just carries over to the other case. Define the following sequences of
distinct moduli, always taking m∞ to be empty and dropping the subscript from m0 to
avoid index overload:

mi = qiq′i , qi, q′i ∈ S1, m̃ j = ‹q j‹q j
′
, ‹q j,‹q j

′
∈ S2

with all qi, q′i ,‹q j,‹q j
′ distinct. Let τ be the non-trivial element of the Galois group of

M/Q. It is clear that τ fixes all the chosen moduli. We make several easy observations:

• By the Chinese Remainder Theorem there is an isomorphism

I′m/P
′
m �

(
I′m ∩ OM

)
/
(
P′m ∩ OM

)
� (OM/m0)×

� (OM/q)× ×
(
OM/q′

)×
for m = mi or m = m̃ j and q = qi, q′ = q′i or q = ‹q j, q′ = ‹q j

′, respectively.

• If q ∈ S1 then writing (q) = qq′ in M we get that

(O/q)× = (O/q)× ×
(
O/q′

)×
�
(
Fq
)×
×
(
Fq
)×
.

If (O/q)× = 〈x〉 then (O/q′)× = 〈y〉 where y = τ(x). Since q ≡ 1 mod p we have
that Rm = 〈(xp, 1), (1, yp), (x, y)〉 is a subgroup of (O/q)× of index p. Moreover,
τ(Rm) = Rm and τ((x, 1)) = (1, y) ≡ (x, 1)−1 mod Rm.

• If q ∈ S2 then (O/q)× =
(
Fq2

)×
= 〈x〉, say, with the action of τ being given by

τ(x) = xq. Since q ≡ −1 mod p, Rm = 〈xp〉 is a subgroup of index p. Moreover,
τ(Rm) = Rm and τ(x) = xq ≡ x−1 mod Rm.
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• So, for m = mi or m = m̃ j, I′m/P
′
m contains a quotient which is isomorphic

to Z/pZ × Z/pZ on which τ acts as x 7→ x−1. Since, for p an odd prime, in
a quadratic field any quotient of U can contain at most one copy of Z/pZ we
deduce from the exact sequence (8) that there exists a subgroup of Im/Pm which
has a quotient isomorphic to Z/pZ and on which τ acts as x 7→ x−1. The structure
theorem for finitely generated abelian groups now implies that Im/Pm itself has
such a quotient, Im/Um, say.

• By Theorem 5.7 we get, for each m = mi or m = m̃ j, an abelian extension Fm
of M of degree p with conductor dividing m. Moreover, we have chosen Rm and
thus also Um in such a way that the extension Fm/Q is Galois and by equation
(7) the Galois group is D2p.

Since only finitely many of the extensions Fm/M can be unramified, we have con-
structed two sequences of distinct Galois extensions Fi = Fmi and F′j = F‹m j

of Q with
Galois groups D2p with disjoint sets of primes which ramify over M. In one sequence
these primes lie above primes from S1 and in the other from S2. These extensions are
all independent over M. Let qi ramify in Fi/M. We will now inductively construct an
extension of M which is Galois over Q with galois group D2p and in which arbitrarily
many primes from S1 ramify. The case for S2 is completely analogous.

Suppose we have constructed an extension F/M which is Galois overQwith Galois
group D2p and in which the primes q1, . . . , qk ramify. Consider the compositum of F
and Fk+1. Since the two fields are disjoint over M, the Galois group of their composi-
tum is Z/pZ × Z/pZ = 〈g〉 × 〈h〉, say. Clearly, F is the maximal extension of M inside
Fk+1F which is unramified at qk+1 and similarly Fk+1 is the maximal extension which
is unramified at q for any q ∈ {q1, . . . , qk}. Thus, taking the fixed field inside Fk+1F of
(g, h) we get a Galois extension of Q with Galois group D2p which is ramified at all the
primes q1, . . . , qk+1. This inductive procedure completes our construction. �

Remark 5.9. There are algorithms for computing the ray class group of a given mod-
ulus and for computing a defining polynomial for the field associated to a congruence
subgroup. They are particularly well suited in our situation since there is a specialised
efficient algorithm for totally real fields and another one for complex quadratic fields.
Both are described in [3, Chapter 6].

5.4 Elliptic curves in Legendre normal form and main result
The last easy ingredient we need is:

Lemma 5.10. Let E be an elliptic curve over Q given in Legendre normal form by

E : y2 = x(x − 1)(x − λ)

where λ ∈ Z is odd. Then

• E has split multiplicative reduction at all odd q|(λ − 1);

• E has multiplicative reduction at all q|λ and it is split multiplicative if and only
if q ≡ 1 mod 4;

• E has potentially good reduction at 2 if and only if λ . 1 mod 32. Moreover, if
λ ≡ 17 mod 32 then E has good reduction at 2.
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• E has good reduction at all other primes.

Proof. We use the standard notation for the invariants ∆ and c4 associated to a Weier-
strass equation for E (see [15, Ch. III §1]). If E is given in Legendre normal form as
above then we have

c4 = 16(λ2 − λ + 1) and ∆ = 16λ2(λ − 1)2.

Thus the primes of bad reduction must divide λ or λ − 1. Moreover for any such odd
prime q, c4 is a q-adic unit and so E has multiplicative reduction at q ([15, Ch. VII Prop.
5.1]). To determine whether it is split or non-split we use the following criterion ([16, p.
366]): let E/K be given by a Weierstrass equation with the coefficients a1, . . . , a6 and
assume that it has multiplicative reduction at a prime q, the singular point being (0, 0).
Then the reduction is split multiplicative if and only if the polynomial T 2 + a1T − a2
splits over the residue field at q.

In our case, if q|λ then the singular point of the reduction modulo q is (0, 0) and
a1 = 0, a2 = −λ − 1 ≡ −1 mod q. So the polynomial splits if and only if -1 is a square
modulo q.

If q|λ − 1 then perform the change of variables x = x′ + 1. Then the singular point
again becomes (0, 0) and a1 = 0, a2 = 2 − λ ≡ 1 mod q and so the polynomial always
splits.

Finally, E has potentially good reduction at 2 if and only if the j-invariant is a
2-adic integer. But λ is odd, so

j = c3
4/∆ = 162(λ2 − λ + 1)/λ2(λ − 1)2

is a 2-adic integer if and only if λ− 1 is not divisible by 32. If λ ≡ 17 mod 32 then it is
easily seen that the substitution x = 4x′ + 1, y = 8y′ + 4x′ gives a Weierstrass equation
which is integral with respect to 2 and with ∆ a 2-adic unit. �

Theorem 5.11. Let p be an odd prime number, M/Q any quadratic field but if p ≡ 1
mod 4 then assume that M , Q(

√
p). Assume that p-primary parts of Tate-Shaffarevich

groups of elliptic curves over number fields are always finite. Then the quantity

pr(E/F) · #X(E/F)[p∞]

is unbounded as E varies over elliptic curves over Q and F/Q varies over Galois
extensions with dihedral Galois group of order 2p containing M.

Proof. Given any positive integer n, take a dihedral extension F of Q containing M
such that n primes q1, . . . , qn that are inert in M/Q ramify in F/M and no other primes
of M ramify in F. Such an F exists by Theorem 5.8. Take

λ = 16
n∏

i=1

qi + 1.

Then by Lemma 5.10, E : y2 = x(x−1)(x−λ) is semi-stable and has split multiplicative
reduction at all these qi. All other primes are unramified in F/M and thus have cyclic
decomposition groups. The result follows from 5.2. �

We now only need to prove that in fact the p-Selmer gets large in our extensions and
not just the p∞-Selmer. This will be more naturally done in the next subsection. We will
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close this subsection by illustrating the power of the technique of regulator constants
by an explicit example. While classical questions about the arithmetic of elliptic curves
only deal with the order of the torsion subgroups of the Mordell-Weil groups or with
their ranks, ultimatelly one would like to know the full Galois structure of the Mordell-
Weil group, not just the rank of its free component. We will demonstrate that regulator
constants can provide such information, as usual dependent on the knowledge on the
size of the Tate-Shaffarevich group:

Example 5.12. Recall from Example 1.4 that the group G = S 3 has two non-isomorphic
indecomposable 2-dimensional ZG-modules Γ and Γ′ with regulator constants 3 and
1/3, respectively. Let E/K be a semi-stable elliptic curve and F/K a Galois extension
of number fields with Galois group G and set L = FC2 , M = FC3 . Among the primes
of K which are inert in M/K and ramified in F/M, suppose that there are n more of
split multiplicative reduction than of non-split multiplicative reduction. For simplicity,
assume that r(E/K) = r(E/M) = 0. We easily compute that

ord3(C(E/Θ)) = −n.

If we assume that E(Θ)[3∞] = 1 and that 3-primary parts of all relevant Tate-Shaffarevich
groups are finite then we conclude that either

#X(E/K)[3∞]2#X(E/F)[3∞]
#X(E/L)[3∞]2#X(E/M)[3∞]

≥ 3n (9)

or the Galois module E(F)/E(F)tors contains at least one copy of Γ. Moreover, in the
former case, unless we have equality in equation (9), the Galois module E(F)/E(F)tors
must contain at least one copy of Γ′.

5.5 Unconditional proof of the main result
We now want to drop the assumption that Tate-Shaffarevich groups are finite. In this
case we need to replace the usual BSD-quotient by a similar expression involving
Selmer groups instead of Tate-Shaffarevich groups. We recall the relevant result from
[5].

Definition 5.13. Given an isogeny ψ : A→ B of abelian varieties over K, define

Q(ψ) = |coker(ψ : A(K)/A(K)tors → B(K)/B(K)tors)| ×
×|ker(ψ : X(A/K)div →X(B/K)div)|

where Xdiv denotes the divisible part of the Tate-Shaffarevich group.

Theorem 5.14. Let φ : A → B be an isogeny of abelian varieties over a number field
K and φt : Bt → At its dual isogeny. Let ωA and ωB be holomorphic n-forms on A and
B, respectively, where n = dim A and set

ΩA =
∏

v|∞
real

∫
A(Kv)
|ωA|.

∏
v|∞

complex

2
∫

A(Kv)
ωA ∧ ωA

and write X0(A/K) for X(A/K) modulo its divisible part, define ΩB and X0(B/K)
similarly. Then we have

|A(K)tors|

|B(K)tors|
·
|Bt(K)tors|

|At(K)tors|
·

C(A/K)
C(B/K)

·
ΩA

ΩB

∏
p|deg φ

#X0(A/K)[p∞]
#X0(B/K)[p∞]

=
Q(φt)
Q(φ)

. (10)
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Proof. See [5, Theorem 4.3]. �

Now let G be a finite group and

Θ =
∑

i

Hi −
∑

j

H′j

a G-relation. Let E/K be an elliptic curve and F/K be a Galois extension with Galois
group G, let Li = FHi and L′j = FH′j and denote by WLi/K(E), WL′j/K(E) the Weil
restrictions of scalars. As explained in [12, §2] and in [5, §4], given a G-injection

f : ⊕iZ[G/Hi]→ ⊕ jZ[G/H′j]

with finite cokernel of order d, we can construct an isogeny of abelian varieties

φ :
∏

i

WLi/K(E)→
∏

j

WL′j/K(E)

of degree d2. If we set A =
∏

i WLi/K(E) and B =
∏

j WL′j/K(E) then C(A/K)/C(B/K) =

C(E/Θ). We have already shown in Theorem 5.11 that if we take K = Q and G = D2p

then we can choose E and F such that the Tamagawa-quotient gets arbitrarily large and
such that F contains a predetermined quadratic subfield (subject to the restriction in the
theorem). Also, if we take p > 7 and E/Q semi-stable, as in the proof of Theorem 5.2
then the p-part of

|A(K)tors|

|B(K)tors|
·
|Bt(K)tors|

|At(K)tors|

is trivial as explained in the proof of Theorem 5.2. Finally, the real and complex periods
cancel as before since they are equal to the corresponding periods of the elliptic curve
as explained in [12]. Equation (10) implies that then at least one of X0(E/F)[p∞],
|ker(ψ : X(A/K)div →X(B/K)div)| or r(E/F) must get large. But for an isogeny like
φ above of degree d2 there exists an isogeny in the opposite direction such that their
composition is multiplication by d2 and thus induces the multiplication-by-d2 map on
the Tate-Shaffarevich group. Thus φ can kill at most p2ordp(d) elements of the Tate-
Shaffarevich group for each cyclic (divisible or non-divisible) component. It follows
immediately that the p-Selmer group gets arbitrarily large when the Tamagawa quotient
does. We therefore deduce

Theorem 5.15. Given a prime number p > 7, any non-negative integer n and a
quadratic field M (if p ≡ 1 mod 4 then assume M , Q(

√
p)), there exists a semi-

stable elliptic curve E/Q and infinitely many cyclic extensions F/M of degree p which
are Galois over Q such that Sp(E/F) ≥ pn.
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