Representation theory, exercise sheet 2

Alex Bartel

Throughout, G denotes a finite group, and K denotes any field.

Section A

- 1. Explicate Mackey's formula in the case $G = S_3$, $H = U = \langle (1,2) \rangle$, and ρ is the non-trivial one-dimensional representation of H over \mathbb{C} . Verify that Mackey is right, by decomposing $\operatorname{Res}_U^G \operatorname{Ind}_H^G \rho$ into irreducible H-representations without using Mackey, and then comparing the result with what Mackey tells you.
- 2. Let $H' \leq H \leq G$. Prove that for any representation ρ of H', $\operatorname{Ind}_{H}^{G} \operatorname{Ind}_{H'}^{H} \rho = \operatorname{Ind}_{H'}^{G} \rho$, i.e. induction is transitive.
- 3. Show that if $H \leq G$, and **1** denotes the trivial representation over K, then $\operatorname{Ind}_{H}^{G} \mathbf{1}$ is isomorphic to the permutation representation K[G/H].

Section B

- 1. Prove that if G has an abelian subgroup of index n, then every irreducible representation of G has dimension at most n.
- 2. A character is called monomial if it is induced from a one-dimensional character. Let χ be a monomial character of G and let $H \leq G$. Show that if $\operatorname{Res}_H \chi$ is irreducible, then it is also monomial.
- 3. Let $H \leq G$, and let $\rho : H \to \operatorname{GL}(V)$ be a representation of H over K. The following is an equivalent definition of $\operatorname{Ind}_{H}^{G} \rho$: define W to be the vector space of V-valued functions on G, satisfying a certain transformation property:

$$W = \{ f : G \to V \mid f(hg) = \rho(h) \cdot f(g) \ \forall h \in H, g \in G \}.$$

Let G act on W by $\sigma \cdot f = (g \mapsto f(g\sigma)) \in W$ for $\sigma \in G, f \in W$.

- (a) Verify that the above really does define a left action of G on W; in other words, verify firstly that $(\sigma\sigma') \cdot f = \sigma \cdot (\sigma' \cdot f)$, and secondly that if $f \in W$, then $\sigma \cdot f \in W$.
- (b) Show that the resulting representation of G is isomorphic to the induced representation as defined in the lectures.

4. This exercise classifies the irreducible representations of semidirect products by abelian groups. Let $A \triangleleft G$ be abelian, $H \leq G$, AH = G, $A \cap H = \{1\}$, so that $G = A \rtimes H$. Then, H acts on the one-dimensional characters of A by ${}^{h}\chi(a) = \chi(h^{-1}ah)$. For a one-dimensional character χ of A, denote by S_{χ} its stabiliser in H. Extend χ to AS_{χ} by

$$\chi(as) = \chi(a)$$
 for $a \in A, s \in S_{\chi}$

(a) Check that this gives a well-defined one-dimensional character χ of AS_{χ} , i.e. verify that this really is a group homomorphism $AS_{\chi} \to \mathbb{C}^{\times}$.

Let τ be an irreducible character of $S_{\chi} \cong AS_{\chi}/A$, lifted to AS_{χ} . Define $\rho_{\chi,\tau} = \operatorname{Ind}_{AS_{\chi}}^{G}(\tau \otimes \chi)$, the induction from AS_{χ} to G.

- (b) Prove that for any one-dimensional χ and any irreducible character τ of S_{χ} , $\rho_{\chi,\tau}$ is an irreducible character of G.
- (c) Show that $\rho_{\chi,\tau} = \rho_{\chi',\tau'}$ if and only if χ and χ' are in the same orbit under the action of H on Irr(A) and $\tau = \tau'$.
- (d) Show that all irreducible characters of G arise as some $\rho_{\chi,\tau}$.
- 5. Let $G = D_{2n}$, the dihedral group of order n (corresponding to rotations and reflections of a regular n-gon), let $C \leq G$ be the normal cyclic subgroup of order n (corresponding to the rotations). Using Mackey's formula, determine for which irreducible characters χ of $C \operatorname{Ind}_{C}^{G} \chi$ is irreducible. Hence, construct the character table of G.

Section C

- 1. Show that a simple group cannot have a two-dimensional irreducible representation. (**Hint:** You might find it helpful to consider the determinant of such a representation.)
- 2. Let χ be a character of G that is constant on $G \setminus \{1\}$. Show that $\chi = a\mathbf{1}_G + b\rho_G$ for some $a, b \in \mathbb{Z}$, where ρ_G is the regular character. Show also that if ker $\chi \neq G$, then $\chi(1) \geq |G| 1$.