Representation theory, exercise sheet 4

Alex Bartel

Throughout, G denotes a finite group.

Section A

- 1. For some of your favourite groups (e.g. first few symmetric groups, alternating groups, dihedral groups, some semi-direct products/wreath products), compute an expression for the trivial character as a rational linear combination of characters $\operatorname{Ind}_{H}^{G}\mathbf{1}$, as H ranges over representatives of conjugacy classes of cyclic subgroups of G.
- 2. Let R(G) be the subgroup of the ring of class functions consisting of \mathbb{Z} linear combinations of irreducible characters, let P(G) be the subgroup of R(G) consisting of \mathbb{Z} -linear combinations of permutation characters $\operatorname{Ind}_{H}^{G}\mathbf{1}, H \leq G$. Prove that both R(G) and P(G) are subrings, rather than just subgroups.

Section B

- 1. A character is called monomial if it is induced from a 1-dimensional character. Let M(G) be the subgroup of R(G) consisting of \mathbb{Z} -linear combinations of monomial characters. Show that M(G) = R(G).
- 2. Let H_1, \ldots, H_n be a set of representatives of conjugacy classes of all subgroups of G (so that G/H_i are precisely all the transitive G-sets up to isomorphism). Form the *n*-by-*n* matrix $(\#(G/H_i)^{H_j})$, whose (i, j)-th entry is the number of fixed points under the action of H_j on the set of cosets G/H_i . Show that this matrix is invertible over \mathbb{Q} .

Hint: there is a Mackey theorem for sets: there is an isomorphism of H_i -sets,

$$\operatorname{Res}_{H_j}(G/H_i) = \bigsqcup_{g \in H_i \setminus G/H_j} H_j/(H_j \cap gH_ig^{-1}).$$

- 3. Let S_n naturally act on the set $X = \{1, ..., n\}$. For any $r \le n/2$, write X_r for the set of all subsets of X of size r. Then, G naturally acts on X_r , write π_r for the corresponding permutation representation.
 - (a) Compute $\pi_r(1)$.
 - (b) Show that for $1 \le l \le k \le n/2$

$$\langle \pi_k, \pi_l \rangle = l + 1.$$

(c) Set m = n/2 if n is even and m = (n-1)/2 if n is odd. Show that S_n has distinct irreducible characters

$$\chi^{(n)} = \mathbf{1}_G, \chi^{(n-1,1)}, \chi^{(n-2,2)}, \dots, \chi^{(n-m,m)}$$

such that for all $r \leq m$,

$$\pi_r = \chi^{(n)} + \chi^{(n-1,1)} + \ldots + \chi^{(n-r,r)}$$

In particular, the class functions $\pi_r - \pi_{r-1}$ are irreducible characters of S_n for $1 \le r \le n/2$.

- 4. Construct the character table of S_6 .
- 5. In this exercise, we will show that if G is nilpotent¹ then every irreducible character of G is monomial (see question 1).

Remark: groups for which this is the case are called M-groups. To characterise M-groups purely group theoretically, with no reference to characters, is still an open problem.

- (a) Call a character primitive if it is not induced from a character of a proper subgroup. Show that if χ is a primitive irreducible character of G and N is a normal subgroup, then $\text{Res}_N \chi$ is isotypical, i.e. is a multiple of an irreducible character of N.
- (b) Show that if G has a primitive faithful irreducible character, then any normal abelian subgroup of G is contained in the centre Z(G).
- (c) (Harder:) Using the fact that subgroups and quotient groups of nilpotent groups are also nilpotent, and that any nilpotent group has a normal abelian self-centralising subgroup, show that nilpotent groups are M-groups.

Hint: given an arbitrary irreducible character χ of G, take a minimal subgroup $H \leq G$ such that there exists $\psi \in H$ with $\chi = \text{Ind}^G \psi$. Note that sich a ψ must be primitive.

Section C

1. Let $G = C_3 \rtimes C_8$, where C_8 acts on C_3 non-trivially, through the quotient C_8/C_4 . So a presentation of G is

$$G = \langle a, b \mid a^3 = b^8 = id, bab^{-1} = a^{-1} \rangle.$$

- (a) Classify all the conjugacy classes of G.
- (b) Let χ be a faithful irreducible character of $A = C_3$. What is its stabiliser in C_8 ?

¹There are lots of equivalent definitions of "nilpotent". For example a finite group is nilpotent if it is a direct product of its *p*-Sylow subgroups as *p* runs over the distinct prime divisors of |G|. Or if its lower central series, defined by $G = G_1$, $G_{i+1} = [G_i, G] = \langle hgh^{-1}g^{-1} | h \in G_i, g \in G \rangle$ terminates in the trivial group.

- (c) Extend χ trivially to its stabiliser $S = \text{Stab}_{C_8}(\chi)$, let τ be a faithful irreducible character of $S \cong AS/A$, thought of as a character of AS. Note that by sheet 2, Section B, qn. 4, $\phi = \text{Ind}^G(\chi \otimes \tau)$ is irreducible. Compute this character on all the conjugacy classes.
- (d) The absolute Galois group of \mathbb{Q} acts on the character values of ϕ . Let $\overline{\phi}$ be the sum over all the Galois conjugates of ϕ . So $\overline{\phi}$ is a \mathbb{Q} -valued character. Show that $\overline{\phi}$ is not an integral linear combination of permutation characters.
- (e) (Harder:) Show that $\overline{\phi}$ corresponds to a representation that can be defined over \mathbb{Q} .
- 2. Repeat the last two parts of the previous question for the following situation: $G = Q_8 \times C_3$, $\phi = \tau \otimes (\chi + \bar{\chi})$, where τ is the standard character of Q_8 , and χ is a faithful character of C_3 .