Representation theory, exercise sheet 5

Alex Bartel

Throughout, G denotes a finite group.

Section A

1. Recall the following presentation of Q_8 , and its standard representation:

$$Q_8 = \langle x, y \mid x^4 = 1, y^2 = x^2, yxy^{-1} = x^{-1} \rangle,$$

and

$$\begin{array}{rccc}
\rho: Q_8 & \to & \operatorname{GL}_2(\mathbb{Q}(i)) \\
& x & \mapsto & \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \\
& y & \mapsto & \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
\end{array}$$

By writing $\mathbb{Q}(i)$ as a 2-dimensional vector space over \mathbb{Q} , write this map as a 4-dimensional representation over \mathbb{Q} . What is the complex representation that you have thus realised over \mathbb{Q} ?

- 2. Repeat the above exercise (including the last question) for $G = C_3$, and $\rho: G \to \operatorname{GL}_1(\mathbb{Q}(e^{2\pi i/3}))$ one of the two non-trivial one-dimensional representations.
- 3. The following are not very well-defined questions, they are just supposed to get you thinking, while standing in the queue:
 - (a) Does Artin's induction theorem say anything about Schur indices of irreducible characters?
 - (b) Suppose that N is a normal subgroup of a normal subgroup of G (N itself need not be normal in G). If χ is an irreducible character of G, what can you say about $\operatorname{Res}_N \chi$?

Section B

- 1. Let $H \leq G$, and suppose that there exists a subgroup $U \leq G$ such that HU = G and $U \cap H = \{1\}$. Let $\phi \in Irr(H)$ and suppose that $\chi = Ind^H \phi$ is irreducible. Show that $m_{\mathbb{Q}}(\chi)$ divides $\phi(1)$.
- 2. For a positive integer n, define $r_n: G \to \mathbb{Z}$ by

γ

$$r_n(g) = \#\{h \in G \mid h^n = g\}.$$

- (a) Show that r_n is a class function and find the coefficients $a_{\chi} \in \mathbb{C}$ in the decomposition $r_n = \sum_{\chi \in \operatorname{Irr}(G)} a_{\chi} \chi$.
- (b) Show that if $n \ge 3$, then these coefficients can be unbounded, as G and χ vary.

(Hint: for a prime number p, consider the finite group

$$\left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\} \subseteq \operatorname{GL}_3(\mathbb{F}_p),$$

which has order p^3 and exponent p.)

- 3. Let $X \subseteq G$ be a subset with the property that for every $g \in G$, either $gXg^{-1} = X$ or $gXg^{-1} \cap X \subseteq \{1\}$ (note that this is a generalisation of the condition that X is a Frobenius complement). Let N be the normaliser of X in G, and let θ be a class functions on N that vanishes on $N \setminus X$ and on 1 (in particular, θ cannot be a character, but it could be a difference of two characters of the same dimension).
 - (a) Show that for all $x \in X$, $\operatorname{Ind}^{G} \theta(x) = \theta(x)$.
 - (b) Show that if ϕ is any other class function on N that vanishes on $X \setminus N$, then $\langle \operatorname{Ind}^G \theta, \operatorname{Ind}^G \phi \rangle_G = \langle \theta, \phi \rangle_N$.
 - (c) Let M be a normal subgroup of H ≤ G, and suppose that H ∩ xHx⁻¹ ⊆ M for all x ∉ H. Show that there exists a normal subgroup N of G such that NH = G and N ∩ H = M.
 (Hint: note that the set X = H\M satisfies the above conditions; mimic the proof of Frobenius's theorem on Frobenius complements.)
- 4. Let F be a subfield of \mathbb{C} . Define an F-triple to be a triple (H, N, θ) , where
 - *H* is a group, *N* is a normal subgroup that is equal to its own centraliser in *H* (in particular *N* is abelian), and $\theta \in Irr(H)$ is a faithful character, such that
 - the irreducible (1-dimensional) constituents of $\operatorname{Res}_N \theta$ are all Galois conjugate over $F(\theta)$, meaning that for any two such irreducible constituents λ_1 and λ_2 , there is a field automorphism of $F(\theta)$ that sends λ_1 to λ_2 .

Let (H, N, θ) be such an *F*-triple, and let λ be an irreducible (1-dimensional) constituent of $\operatorname{Res}_N \theta$.

- (a) Show that λ is faithful, and in particular N is automatically cyclic.
- (b) Show that $\operatorname{Stab}_H(\lambda) = N$, $\operatorname{Ind}^H \lambda = \theta$, and $F(\theta) \subseteq F(\lambda)$.
- (c) θ_N is realisable by a simple $F(\theta)[N]$ -module.
- (d) (Optional:) H/N is isomorphic to the Galois group of $F(\lambda)/F(\theta)$.

Remark: Such *F*-triples are used to algorithmically compute Schur indices (see section C).

Section C

- 1. (Not easy!) Let F be a subfield of \mathbb{C} , $\chi \in \operatorname{Irr}(G)$, and suppose that p^a divides $m_F(\chi)$ for some prime p and some integer a. Show that there exists an F-triple (H, N, θ) such that
 - (a) N is a subquotient of G, i.e. there are subgroups $M_1 \leq M_2 \leq G$ such that M_1 is normal in M_2 and $M_2/M_1 = H$,
 - (b) p^a divides $m_F(\theta)$,
 - (c) H/N is a *p*-group,
 - (d) p does not divide the degree $[F(\chi, \theta) : F(\chi)]$.

(Hints: note that if (H, N, θ) is an *E*-triple for some field *E* containing *F*, then it is also an *F*-triple, so you can replace *F* by $F(\chi)$ (why?). Now, argue by induction on |G|. You will need Solomon's induction theorem at some point.)

2. (Easier - use questions 1 of sections B and C:) Let $\chi \in Irr(G)$ and suppose that $p|m_{\mathbb{Q}}(\chi)$ for some prime p. Show that then the Sylow p-subgroups of G are not elementary abelian, and have order at least $p \cdot m_{\mathbb{Q}}(\chi)$.