Representation theory, exercise sheet 5

Alex Bartel

Throughout, G denotes a finite group.

Section A

1. Recall the following presentation of Q_{8}, and its standard representation:

$$
Q_{8}=\left\langle x, y \mid x^{4}=1, y^{2}=x^{2}, y x y^{-1}=x^{-1}\right\rangle
$$

and

$$
\begin{aligned}
\rho: Q_{8} & \rightarrow \mathrm{GL}_{2}(\mathbb{Q}(i)) \\
x & \mapsto\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \\
y & \mapsto\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
\end{aligned}
$$

By writing $\mathbb{Q}(i)$ as a 2-dimensional vector space over \mathbb{Q}, write this map as a 4-dimensional representation over \mathbb{Q}. What is the complex representation that you have thus realised over \mathbb{Q} ?
2. Repeat the above exercise (including the last question) for $G=C_{3}$, and $\rho: G \rightarrow \mathrm{GL}_{1}\left(\mathbb{Q}\left(e^{2 \pi i / 3}\right)\right)$ one of the two non-trivial one-dimensional representations.
3. The following are not very well-defined questions, they are just supposed to get you thinking, while standing in the queue:
(a) Does Artin's induction theorem say anything about Schur indices of irreducible characters?
(b) Suppose that N is a normal subgroup of a normal subgroup of $G(N$ itself need not be normal in G). If χ is an irreducible character of G, what can you say about $\operatorname{Res}_{N} \chi$?

Section B

1. Let $H \leq G$, and suppose that there exists a subgroup $U \leq G$ such that $H U=G$ and $U \cap H=\{1\}$. Let $\phi \in \operatorname{Irr}(H)$ and suppose that $\chi=\operatorname{Ind}^{H} \phi$ is irreducible. Show that $m_{\mathbb{Q}}(\chi)$ divides $\phi(1)$.
2. For a positive integer n, define $r_{n}: G \rightarrow \mathbb{Z}$ by

$$
r_{n}(g)=\#\left\{h \in G \mid h^{n}=g\right\}
$$

(a) Show that r_{n} is a class function and find the coefficients $a_{\chi} \in \mathbb{C}$ in the decomposition $r_{n}=\sum_{\chi \in \operatorname{Irr}(G)} a_{\chi} \chi$.
(b) Show that if $n \geq 3$, then these coefficients can be unbounded, as G and χ vary.
(Hint: for a prime number p, consider the finite group

$$
\left\{\left(\begin{array}{ccc}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right)\right\} \subseteq \mathrm{GL}_{3}\left(\mathbb{F}_{p}\right),
$$

which has order p^{3} and exponent p.)
3. Let $X \subseteq G$ be a subset with the property that for every $g \in G$, either $g X g^{-1}=X$ or $g X g^{-1} \cap X \subseteq\{1\}$ (note that this is a generalisation of the condition that X is a Frobenius complement). Let N be the normaliser of X in G, and let θ be a class functions on N that vanishes on $N \backslash X$ and on 1 (in particular, θ cannot be a character, but it could be a difference of two characters of the same dimension).
(a) Show that for all $x \in X, \operatorname{Ind}^{G} \theta(x)=\theta(x)$.
(b) Show that if ϕ is any other class function on N that vanishes on $X \backslash N$, then $\left\langle\operatorname{Ind}^{G} \theta, \operatorname{Ind}^{G} \phi\right\rangle_{G}=\langle\theta, \phi\rangle_{N}$.
(c) Let M be a normal subgroup of $H \leq G$, and suppose that $H \cap$ $x H x^{-1} \subseteq M$ for all $x \notin H$. Show that there exists a normal subgroup N of G such that $N H=G$ and $N \cap H=M$.
(Hint: note that the set $X=H \backslash M$ satisfies the above conditions; mimic the proof of Frobenius's theorem on Frobenius complements.)
4. Let F be a subfield of \mathbb{C}. Define an F-triple to be a triple (H, N, θ), where

- H is a group, N is a normal subgroup that is equal to its own centraliser in H (in particular N is abelian), and $\theta \in \operatorname{Irr}(H)$ is a faithful character, such that
- the irreducible (1-dimensional) constituents of $\operatorname{Res}_{N} \theta$ are all Galois conjugate over $F(\theta)$, meaning that for any two such irreducible constituents λ_{1} and λ_{2}, there is a field automorphism of $F(\theta)$ that sends λ_{1} to λ_{2}.

Let (H, N, θ) be such an F-triple, and let λ be an irreducible (1-dimensional) constituent of $\operatorname{Res}_{N} \theta$.
(a) Show that λ is faithful, and in particular N is automatically cyclic.
(b) Show that $\operatorname{Stab}_{H}(\lambda)=N, \operatorname{Ind}^{H} \lambda=\theta$, and $F(\theta) \subseteq F(\lambda)$.
(c) θ_{N} is realisable by a simple $F(\theta)[N]$-module.
(d) (Optional:) H / N is isomorphic to the Galois group of $F(\lambda) / F(\theta)$.

Remark: Such F-triples are used to algorithmically compute Schur indices (see section C).

Section C

1. (Not easy!) Let F be a subfield of $\mathbb{C}, \chi \in \operatorname{Irr}(G)$, and suppose that p^{a} divides $m_{F}(\chi)$ for some prime p and some integer a. Show that there exists an F-triple (H, N, θ) such that
(a) N is a subquotient of G, i.e. there are subgroups $M_{1} \leq M_{2} \leq G$ such that M_{1} is normal in M_{2} and $M_{2} / M_{1}=H$,
(b) p^{a} divides $m_{F}(\theta)$,
(c) H / N is a p-group,
(d) p does not divide the degree $[F(\chi, \theta): F(\chi)]$.
(Hints: note that if (H, N, θ) is an E-triple for some field E containing F, then it is also an F-triple, so you can replace F by $F(\chi)$ (why?). Now, argue by induction on $|G|$. You will need Solomon's induction theorem at some point.)
2. (Easier - use questions 1 of sections B and C:) Let $\chi \in \operatorname{Irr}(G)$ and suppose that $p \mid m_{\mathbb{Q}}(\chi)$ for some prime p. Show that then the Sylow p-subgroups of G are not elementary abelian, and have order at least $p \cdot m_{\mathbb{Q}}(\chi)$.
