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Introduction

A Diophantine problem is the problem of finding integer or
rational solutions to a given polynomial equation in one or
several variables with rational coefficients.
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Examples

Find (x , y) ∈ Q2 satisfying x2 − 5y2 = 3.

Find (x , y) ∈ Z2 satisfying x2 + y2 = −3.

Find (x , y , z) ∈ Z3 satisfying x2 − 5y2 = 3z2. This is a
homogeneous equation of degree 2.

Given an integer n ≥ 3, find all (x , y , z) ∈ Z2 satisfying
xn + yn = zn. This is the famous Fermat equation.
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Non-Examples

n! = m(m + 1) is not a Diophantine equation in the above
sense, because of the factorial.

xxy y = zz is a very interesting equation, but not
polynomial in the variables, so not Diophantine.

πx + ey + πez = 0 is not Diophantine, because the
coefficients are irrational.



Solving
Diophantine
equations

Alex Bartel

What is a
Diophantine
equation

The Hasse
principle

Elliptic curves

Birch and
Swinnerton-
Dyer
conjecture

Unique
factorisation

Non-Examples

n! = m(m + 1) is not a Diophantine equation in the above
sense, because of the factorial.

xxy y = zz is a very interesting equation, but not
polynomial in the variables, so not Diophantine.

πx + ey + πez = 0 is not Diophantine, because the
coefficients are irrational.



Solving
Diophantine
equations

Alex Bartel

What is a
Diophantine
equation

The Hasse
principle

Elliptic curves

Birch and
Swinnerton-
Dyer
conjecture

Unique
factorisation

Non-Examples

n! = m(m + 1) is not a Diophantine equation in the above
sense, because of the factorial.

xxy y = zz is a very interesting equation, but not
polynomial in the variables, so not Diophantine.

πx + ey + πez = 0 is not Diophantine, because the
coefficients are irrational.



Solving
Diophantine
equations

Alex Bartel

What is a
Diophantine
equation

The Hasse
principle

Elliptic curves

Birch and
Swinnerton-
Dyer
conjecture

Unique
factorisation

Non-Examples

n! = m(m + 1) is not a Diophantine equation in the above
sense, because of the factorial.

xxy y = zz is a very interesting equation, but not
polynomial in the variables, so not Diophantine.

πx + ey + πez = 0 is not Diophantine, because the
coefficients are irrational.



Solving
Diophantine
equations

Alex Bartel

What is a
Diophantine
equation

The Hasse
principle

Elliptic curves

Birch and
Swinnerton-
Dyer
conjecture

Unique
factorisation

History

A 16th century edition of “Arithmetica” by Diophantus of
Alexandria, translated into Latin:
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We want to find rational solutions to x2 − 5y2 = 3 or,
equivalently, integral solutions to x2 − 5y2 = 3z2 with z 6= 0.
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Idea: Consider the equation x2 − 5y2 = 3z2 modulo 3:

x2 − 5y2 ≡ 0 (mod 3) ⇒

x ≡ y ≡ 0 (mod 3)

⇒ x2 ≡ y2 ≡ 0 (mod 9)

⇒ z ≡ 0 (mod 3)

⇒ x2 − 5y2 ≡ 0 (mod 27)

⇒ . . .
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Since x and y cannot be divisible by arbitrarily large powers of
3, we obtain a contradiction, so there are no integer solutions
to x2 − 5y2 = 3z2.
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This is the method of infinite descent, due to Pierre de
Fermat.
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Moral of the story: for an equation to have integer solutions, it
must have solutions modulo pn for any prime number p and
any n ∈ N. It must also have real solutions.
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Theorem (H. Minkowski): A homogeneous equation of degree
2 has an integer solution if and only if it has a real solution and
solutions modulo all prime powers. In other words, the obvious
necessary conditions are also sufficient.

We say that equations of degree 2 satisfy the Hasse principle.
This reduces the decision problem to a finite computation,
since given an equation, the above condition will be
automatically satisfied for almost all primes.
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Moreover, a quadratic equation in two variables has either no
rational solutions or infinitely many. Once we find one, we find
them all:
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Equations of higher degree often do not satisfy the Hasse
principle.

Famous example, due to Ernst Selmer:

3x3 + 4y3 + 5z3 = 0

has a non-zero solution in the reals and non-zero solutions
modulo all prime powers, but no integral solutions!
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Equations of degree 3 differ from those of degree 2 in many
other ways. E.g. an equation of the form y2 = x3 + ax + b,
a, b ∈ Q, can have 0, or finitely many, or infinitely many
solutions.
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An equation of the form

E : y2 = x3 + ax + b, a, b ∈ Q

describes an elliptic curve.
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Addition law on elliptic curves

Given a point on the curve E , we cannot quite repeat the conic
trick for finding a new point, but given two points, we can find
a third one:
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Under this operation, the set of rational points on the elliptic
curve becomes an abelian group, denoted by E (Q).

Theorem (Mordell): Given any elliptic curve E , the group
E (Q) is finitely generated. Thus, it is isomorphic to ∆⊕ Zr(E),
where ∆ is a finite abelian group, and r(E ) ≥ 0.
The integer r(E ) is called the rank of E and is a very
mysterious invariant.
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One important ingredient in the proof of Mordell’s theorem is
Fermat’s technique of infinite descent. This technique has been
vastly generalised.
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Even though elliptic curves do not satisfy the Hasse principle,
we can still try to count solutions modulo primes. Denote the
number of solutions modulo p by NE (p). It turns out that
NE (p) = p + 1− ap, where

|ap| ≤ 2
√

p.

So, Ne(p) ∼ p as p →∞.
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In the 1960s, Bryan Birch and Peter Swinnerton-Dyer computed

fE (X ) =
∏
p≤X

NE (p)

p

for large X and for many curves E . They plotted the points for
various X on logarithmic paper and obtained plots like this one:
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Birch and Swinnerton-Dyer conjecture

This led them to conjecture that

fE (X ) ∼ cE (log X )r(E).

This is the naive form of the famous Birch and Swinnerton-Dyer
conjecture. It is a very deep kind of local-global principle, of
which the Hasse principle is the simplest example.
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Integral points on elliptic curves

Suppose that we want to find integer solutions to

y2 = x3 − 2.

Idea: Work in the slightly bigger ring
R = Z[

√
−2] = {a + b

√
−2| a, b ∈ Z}.
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Factorise

x3 = y2 + 2 = (y +
√
−2)(y −

√
−2).

Step 1. Show that the two factors (y +
√
−2) and (y −

√
−2)

are coprime in the ring R = Z[
√
−2].

Step 2. Deduce that (y +
√
−2) = u · α3 for a unit u ∈ R×

and some α = a + b
√
−2 ∈ R. But the only units in R are ±1

and they are both cubes, so can be incorporated into α.
Step 3. Expand and equate coefficients to find the only
solutions are b = 1, a = ±1, which correspond to x = 3,
y = ±5.
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This method depended on two facts about the ring R:

We needed to know the units of that ring.

We implicitly used in Step 2 that in R, any element can be
factorised uniquely into irreducibles, just like in Z.
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If we tried to do this for the equation

y2 = x3 − 1,

working in the ring Z[
√
−1], then we would have to be careful

with the units, since there are the additional units ±i (they are
still all cubes, but in other circumstances they might not be).
In fact, if d > 0 is square-free and congruent to 3 modulo 4,
then Z[

√
d ] has infinitely many units!

If we tried to do this for the equation

y2 = x3 − 6,

then things would go completely wrong, since the ring Z[
√
−6]

does not have unique factorisation into irreducibles.
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If we tried to do this for the equation

y2 = x3 − 1,

working in the ring Z[
√
−1], then we would have to be careful

with the units, since there are the additional units ±i (they are
still all cubes, but in other circumstances they might not be).
In fact, if d > 0 is square-free and congruent to 3 modulo 4,
then Z[

√
d ] has infinitely many units!

If we tried to do this for the equation

y2 = x3 − 6,

then things would go completely wrong, since the ring Z[
√
−6]

does not have unique factorisation into irreducibles.
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The rings we considered above are called rings of integers of
quadratic fields. If we adjoin square roots of negative elements,
then the field is called imaginary quadratic. Otherwise, it is real
quadratic.

The failure of unique factorisation is measured by a certain
abelian group, called the class group of the ring. The class
group is 1 if and only if such a a ring has unique factorisation.
There are lots of difficult questions one can ask about class
groups.
Open question: Are there infinitely many real quadratic fields,
whose ring of integers has unique factorisation?
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For imaginary quadratic fields, Kurt Heegner, a German high
school teacher, determined the finite list of those whose rings
of integers have trivial class group in 1952.

To do that, he introduced a new idea, which was later used by
Bryan Birch to produce rational points on elliptic curves. These
so-called Heegner points were then used in the 80’s in a series
of difficult papers by many people to prove a special case of the
Birch and Swinnerton-Dyer conjecture in 1990.
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