Topics in Number Theory - 2nd exercise sheet

Alex Bartel

October 12, 2012

The submission deadlines for the exercise sheet are Oct 15, Oct 22, and Oct 25, always at 3 pm. Each answer will attract full marks if it is perfect, and 0 otherwise. Hopefully, after the third submission everybody will have got full marks for the sheet.

- 1. Find the smallest positive integer x such that $x \equiv 2 \pmod{15}$ and $x \equiv 1 \pmod{4}$. Then characterise the set of all positive integers x satisfying these congruences.
- 2. (a) Show that if $p \equiv 3 \pmod{4}$ is a prime number, then there is no integer a such that $a^2 + 1 \equiv 0 \pmod{p}$.
 - (b) By considering expressions of the form $4(p_1p_2...p_n)^2 + 1$, show that there are infinitely many primes $p \equiv 1 \pmod{4}$.
- 3. (a) Show that if $2^m + 1$ is an odd prime, then $m = 2^n$ for some $n \in \mathbb{N}$.
 - (b) Define $F_n = 2^{2^n} + 1$. By finding a suitable recurrence relation for F_n in terms of F_1, \ldots, F_{n-1} , show that $gcd(F_n, F_m) = 1$ for any $n \neq m$.
 - (c) Show that if p is a prime divisor of F_n , then $2^{n+1}|(p-1)$.
 - (d) Show that for any $n \in \mathbb{N}$, there are infinitely many primes $\equiv 1 \pmod{2^n}$.
- 4. (a) Show that if $2^p 1$ is prime, then p must be prime.
 - (b) Let p be an odd prime, and let q be a prime divisor of $2^p 1$. Show that $q \equiv 1 \pmod{2p}$.
 - (c) Use this to give an alternative proof of the infinitude of primes.
 - (d) A perfect number is a natural number x such that the sum of all its divisors, including 1 and x itself, is equal to 2x. Show that if $2^p 1$ is prime, then $2^{p-1}(2^p 1)$ is a perfect number.
- 5. (a) Show that if p is prime and $m \equiv n \pmod{p-1}$, then for any integer $a, a^m \equiv a^n \pmod{p}$.
 - (b) Show that the above may fail if p is not a prime.