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These questions are not for credit, but nevertheless important. Please do
them!

1. Prove by induction on the degree, or otherwise, that if p is a prime and
f = akx

k + ak−1x
k−1 + . . . + a1x + a0 ∈ Z[x] satisfies p - ak, then the

congruence f(x) ≡ 0 (mod p) has at most k solutions modulo p.

2. (a) Use Euler’s theorem to compute 22012 (mod 21).

(b) Compute the order of 22012 in (Z/17Z)× without determining the
congruence class of 22012 modulo 17.

3. (a) Show that

p + (2k + 1)

2
≡ −

(
p− (2k + 1)

2

)
(mod p)

for any integer k ≥ 0 and odd prime p.

(b) Deduce that(
p + 1

2

)(
p + 3

2

)
· · · (p− 1) ≡ (−1)(p−1)/2

(
p− 1

2

)
! (mod p)

for any odd prime p.

(c) Show that an integer p ≥ 2 is a prime if and only if (p − 1)! ≡ −1
(mod p). (Hint: pair up elements of (Z/pZ)× with their inverses.)

(d) Deduce the value of ((p−1
2 )!)2 modulo p for an odd prime p. What

does this tell you about the values of some Legendre symbols?

4. (a) Show that if n = ab with a and b coprime and both greater than 2,
then there is no primitive root modulo n.

(b) Show (e.g. by induction) than for k ≥ 3, there is no primitive root
modulo 2k.

5. Let n = (6t+1)(12t+1)(18t+1) with t ∈ N such that 6t+1, 12t+1, 18t+1
are all prime numbers. Prove that

an−1 ≡ 1 (mod n),

whenever (a, n) = 1. Find a t satisfying the conditions and hence deduce
that the converse of Fermat’s little theorem is false, i.e. that Fermat’s
little theorem cannot be used as a reliable primality test.
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6. Let R be a complete set of quadratic residues, and N a complete set of
quadratic non-residues modulo an odd prime p.

(a) Show that ∏
r∈R

r ≡ −
∏
n∈N

n ≡ (−1)
p+1
2 (mod p).

(b) Show that if p > 3, then∑
r∈R

r ≡
∑
n∈N

n ≡ 0 (mod p).
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