Topics in Number Theory - 7th exercise sheet

Alex Bartel

November 18, 2012

Solutions to this exercise sheet should not be submitted.

- 1. How many distinct zeros does each of the following polynomials have in \mathbb{Z}_5 ?
 - (a) $f(x) = x^3 + 5x + 5;$ (b) $g(x) = x^5 + 2;$ (c) $h(x, y) = x^2 + y^2;$
- 2. For each of the following quadratic forms, determine whether the form has a non-trivial zero (you do not need to exhibit it). For this particular question, you may assume any results that were stated in the lectures, even if they were not proved:
 - (a) $f(x, y, z) = 2x^2 + 3y^2 6z^2;$
 - (b) $g(x, y, z) = 2x^2 + 3y^2 10z^2;$
 - (c) $h(x, y, z) = x^2 + y^2 64z^2$.
- 3. For the following quadratic forms f, show that if $m, n \in \mathbb{Z}$ are represented by f, then so is mn. Hence, classify all positive integers $n \in \mathbb{Z}$ that are represented by f:
 - (a) $f(x,y) = x^2 + 2y^2$ (hint: this is the *norm* of a complex number of the form $x + y\sqrt{-2}$, $x, y \in \mathbb{Z}$. Recall that the norm of a complex number of the form x + iy was defined as $x^2 + y^2$, and the duplication formula for numbers that are sums of two squares came just from multiplying numbers of the form x + iy, $x, y \in \mathbb{Z}$, and taking the norm of the product.)
 - (b) $f(x,y) = x^2 + 3y^2$ (hint: this is the *norm* of a complex number of the form $x + y\sqrt{-3}$, $x, y \in \mathbb{Z}$);
 - (c) $f(x,y) = x^2 + xy + y^2$ (hint: this is the *norm* of a complex number of the form $x + ye^{2\pi i/3}$, $x, y \in \mathbb{Z}$; first, show that the product of two numbers of the form $x + ye^{2\pi i/3}$ is again of this form).
- 4. For the following pairs of binary quadratic forms, determine whether they are equivalent under the action of $SL_2(\mathbb{Z})$:

(a)
$$f_1(x,y) = 5x^2 + xy + y^2$$
, $f_2(x,y) = 55x^2 + 61xy + 17y^2$;

(b)
$$g_1(x,y) = 3x^2 - 4y^2$$
, $g_2(x,y) = x^2 + 7xy + y^2$;

(c) $h_1(x,y) = x^2 + 5xy + 10y^2$, $h_1(x,y) = 2x^2 + 5xy + 5y^2$.