A ROUGH GUIDE TO SCHEMES

ANDREW BAKER

1. PRESHEAVES AND SHEAVES

We will define presheaves and sheaves on a topological space X (of course we implicitly
assume the topology as part of the data included in X). The open sets of X can be viewed
as objects in a category Tx with a unique morphism U — V whenever U C V. For any two
open sets U’, U” there are morphisms U’ — U'UU" + U", so Tx is a filtered category (this is
important for obtaining good properties of (co)limits).

It is also sometimes useful to consider Tx as ordered by reverse inclusion < where

VXU «<— UCV

For any two open sets U’,U" their intersection satisfies U’ X U' N U" and U" X U' N U", so
(Tx, =) is a filtered ordered set (this is important for obtaining good properties of colimits).

Now let C be a category which for simplicity we assume to be concrete, i.e., it admits a
faithful functor into Set (so every object can be viewed as a set with additional structure and
morphisms are actually functions). This is true for most of the categories we will encounter such
as the categories of sets Set, groups Gp, abelian groups AbGp, rings Ring and commutative
rings CoRing; notice in each of these categories, the one element objects are terminal. It is
possible to define (pre)sheaves taking values in more general categories including non-concrete
ones. Many of the categories that occur are abelian and lead to abelian categories of sheaves
which tend not to be concrete.

Presheaves. A C-valued presheaf (or C-presheaf) & on X is a contravariant functor from
Tx to C, i.e., a functor ¥ : TS — C where (—)° denotes the opposite category. More explicitly,
for every open set U there is an object & (U) of C and whenever V C U there is a morphism
p5: F(U) — F (V) so that the following rules are satisfied:

o If W CV C U then pY% = p¥,0%.

e For any U, pY = 1y (the identity morphism for U).

We will often specify the effect of a presheaf  on open sets by writing
Uw— F(U).

If C is the category of sets or abelian groups or commutative rings or ... we say that a presheaf
is a presheaf of sets or abelian groups or commutative rings or .. ..

A morphism of C-presheaves ¥ — % is a natural transformation ¥ - 4. The C-
presheaves on X clearly form a category preShg.

Date: 10/05/2018 — version 1.



Sheaves. Sheaves are presheaves with very strong conditions that allow for gluing of ‘local’
data on open covers to open sets.

A C-presheaf F is a sheaf if for every collection of open sets U; € Tx (j € J) and U = U, Uj,
the following conditions hold:

e For z,y € & (U),
vieJ, pg(z) =pg,(y) = z=y.

e Let z; € F(U;) (j € J) be a collection of elements such that for all j',;"” € J,
pgjijj” (z;1) = pgjj'mUj” (z;4). Then there is an element z € F (U) such that

- U
Vj € J, py,(z) = z;.
These can be combined to give a single equivalent condition:
e Let z; € F(U;) (j € J) be a collection of elements such that for all j',5" € J,
pgjjmuj” (z;1) = pgjj'muj” (z;4). Then there is a unique element z € ¥ (U) such that
. U
Vi e J, pUj(z) =z;.

This can also be stated in terms of the following being an equalizer diagram (this would make
sense in any category with products).

(vY.) (PZ:WUJ')

Hg(Ui)

F(U)

H 8’7([]'z N Uj)
U
(PUszj) (i.g)er?

Remark: If & is a sheaf then % () must be a terminal object in C since & can be expressed
as the empty union. For example: when C = Set, ¥ (&) is a one element set; when C = Gp,
F (o) is a trivial group; when C = CoRing, ¥ (@) is a trivial ring.

Example 1.1 (Constant sheaves). Let A be a set. The constant sheaf Ax on X associated
with A has for Ay (U) the set of continuous maps U — A where A is given the discrete topology.
When U is connected, this is just a copy of A, but if U has path components U; (5 € J) then

J
If A is a group, abelian group, ring,..., then Ay is a sheaf of groups, abelian groups, rings,...

Definition and existence of sheaves. In practise it is possible to define a sheaf by specifying
its values on a basis for the topology, similarly morphisms can be produced once their effect is
specified on basic open sets.

Suppose that B is a basis for the topology on X and assume it is closed under finite inter-
sections. Then 9% can be viewed as a defining a full subcategory of Tx.

Proposition 1.2.
(a) Let F: B° — C be contravariant functor which satisfies

e For any collection of basic sets U; € 9B and elements z; € F(U;) (j € J) such that
UsU; € B and for all §',5" € J, pgjij]_”(zj/) = pg;:'ﬂUj”(zju), there is a unique
element z € F(U) such that

vj € J, pg,(2) = 2
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Then F extends uniquely to a sheaf F on X.

(b) Suppose given two sheaves ¥ and G on X. Then every natural transformation
@: FB = Y between the restrictions of F and 4 to B has a unique eztension to a
morphism of sheaves : F — 4.

The C-sheaves form a full subcategory Shg of preSh¥ (it is abelian if C is). The inclusion
(forgetful) functor (—),: Shg — preSh{ has a left adjoint called the sheafification functor
(—)': preShE — Sh{. Hence for any presheaf ¥ and sheaf ¥, there is a natural bijection

preSh¥(F,4,) = Sh¥(F4,49).

In particular there is a (natural) universal morphism of presheaves % — (¥ Ii)b with the property
that for any sheaf ¢ and morphism of preheaves ¥ — ¥, there is a unique morphism of sheaves
F ¥ — 4 which makes the following diagram of morphisms of presheaves commute (where the
morphisms are those just given).

F (Fh,

N,

Example 1.3 (Constant sheaves as sheafifications). The constant sheaf Ay is the sheafification
of the presheaf Ax which assigns A to each non-empty open set the set A. For any open set U,

Ax(U) can also be interpreted as the set of continuous map U — A (where A has the discrete
topology). This makes it clear that Ax (&) is a one element set.

Given a sheaf &, each morphism A — % (X) induces a unique morphism of presheaves
Ax — F which factors through a unique morphism of sheaves Ay — 7.

Ax F
Ax

Example 1.4. If E is an initial object of C, then the constant sheaf Ey is initial in Shé.

o O, is initial in Shg,.
o {1} 18 initial in Sh)ép for any trivial group {1}. Similarly, {1} s initial in Shﬁpr.
e Ly is initial in Shit;,, and Sh,Ring-

Let & be a C-presheaf on X. For a point z € X we can consider the open sets containing z
which form a filtered directed system (Tx(z), X) under reverse inclusion. The stalk of F at
T is

Fr =colimF = colim F(U), (1.1)
Tx(z) UeTx(z)
where the colimit is taken in C, so we need to assume this makes sense, i.e., that C has colimits.
For each U containing z there is a morphism pU: F (U) — .

Here is a more explicit description of &,;. Consider the set of all pairs (U, s) where U € Tx(z)
and s € ¥ (U). Define an equivalence relation ~ by (U,s) ~ (V,t) if and only if 3IW CUNV
such that oY, (s) = pl;(t). Then ¥, is the set of equivalence classes of ~ and pY(s) is the
equivalence class of (U, s). So the elements of &, are ‘germs defined on open neighbourhoods
of z’.



Given a morphism of presheaves 7: % — 9, for each open set U we can define the diagonal
composition

F(U)
N
U i N N
A
YU) — Y,
and for V' C U there is a commutative diagram of solid arrows

FU) ——FV) ——F,

TU % Tz
\ !

GU)—=Y(V)—4,

and so there is a unique dotted arrow making the whole diagram commute. Therefore 7 induces
a morphism 7, : ¥, — 9,. It turns out that if F is a presheaf the universal morphism & — F!
induces an isomorphism %, — FJ for every z € X.

Example 1.5. The stalks of the constant presheaf Ax are clearly isomorphic to A, hence so is
each Ay ,.

Stalks are useful as they in effect allow us to represent values sheaves in terms of ‘functions’.
Lemma 1.6. Let F be a sheaf of sets on X. Then for each open set U, the function
ev: F(U) = [ Fur e(t) = (o] (2))
zcU
18 1njective.
Proof. Suppose that ey (s) = ey(t) for some s,t € F(U). Then for each z € U, pY(s) = p¥(¢)
so there must be an open neighbourhood U, C U of & for which pfj (s) = p§j (t) = 5. As the

open sets U, (z € U) cover U, the sheaf property of & implies that there is a unique element
of ¥ (U) restricting to r, on each U,. So s = t, hence ey is injective. O

This allows us to interpret an element t € & (U) as a function
U— ] % z — pY ().
zcU

In particular, the set & (X) is the set of global functions of the sheaf. Similarly, elements of a
stalk %, can be viewed as germs of functions defined on small open neighbourhoods of z. This
point of view is often adopted when discussing the étale space of the sheaf.

Naturality of presheaves with respect to continuous maps. Let f: X — Y be a contin-
uous map.
Given a presheaf % on X we may define the direct image f& on Y by

LFW)=F(f W)

If F is a sheaf so is foF. This defines functors f,: preSh& — preShg and f.: ShE — Sh§.
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If 4 is a presheaf on Y we define a presheaf on X by

U — colim 9 = colim (W)
Ty (fU) fucw

where Ty (fU) means the set of open subsets of Y containing fU under reverse inclusion <.
Even when ¢ is a sheaf, this may not be, so to obtain the preimage sheaf f~'% we must
sheafify this presheaf.

The two functors f~! and f, are adjoint.

Proposition 1.7. For sheaves ¥ on X and 4 on Y there is a natural bijection
Sh&(f 'Y, F) = Sh&(Y, f.F).

Algebraic properties of sheaves. Now suppose that C is an abelian category such as AbGp
or the category of modules over a (commutative) ring. Let ¢: F — 9 be a morphism of C-
sheaves. The presheaf

U kerpy: F(U) — 4(U)
is always a sheaf which we denote by ker . On the other hand the presheaf

U~ imey: F(U) — 4(U)

need not be a sheaf, however we can take its sheafification im . Notice that if each ¢y is
surjective then imp = 4.

Using these constructions, Shg, can be seen to be an abelian category.

A sequence of morphisms

F %4
is ezact if ker = im . We can extend this notion to longer sequences by requiring exactness
at each object. It can be shown that this sequence is exact if an only if the induced sequences
of stalks
Fo 22 4, 22 e,
are exact for every z € X. The constant sheaf for the trivial object 0 is also denoted 0. An
exact sequence
0-F 59 %5 -0

is called short ezact; this is equivalent to each sequence of stalks

0= F, 22 b= 50 0

being short exact for every z € X (this uses the fact that filtered colimits preserve exactness).
Given a morphism ¢: ¥ — 9, the presheaf

U %G(U)/im ey = coker py
has sheafification coker ¢. Then there is an exact sequence
0> kerp - F — 4G — coker p — 0.
Given an open set U, there is a functor
Sh¥ - C; F — F(U).
Under this a short exact sequence

0-F 4

o &S
l=
X
1



gets sent to a left exact sequence
0 F(U) LS G4U) 2 s,
In particular we can take U = X and this gives the global sections functor
Sh - C; F — F(X).

Sheaf cohomology involves right derived functors of this functor which are computed using
injective resolutions in Sh)cc (to do this requires that C has enough injectives).

2. LOCALLY RINGED SPACES

A ringed space (X, 0) is a topological space X equipped with a sheaf of commutative rings O
A locally ringed space is a ringed space (X,0) where each stalk O, is a local ring.

A morphism of ringed spaces (f, f1): (X,0x) — (X,0y) consists of continuous map
f: X — Y and a morphism of sheaves of rings f1: Oy — f.0x, or equivalently fi: f 10y — Ox
by Proposition 1.7. Notice that for every z € X, on passing to stalks f% induces a morphism
ik Oy f(z) = Ox 2.

A morphism of locally ringed spaces (f, f%): (X,0x) — (X,0y) is a morphism of ringed
spaces such that for every z € X, fﬂ: Oy, ¢(z) — Ox,z is a local homomorphism, i.e., maps the
maximal ideal of Oy,s(,) into that of Ox .

Given a ringed space (X,0) an O -module (pre)sheaf is a (pre)sheaf of abelian groups 4 so
that for each open set U, A (U) is an G (U)-module and whenever V C U there is a commutative
diagram of the following form.

6U)® M(U) — M(U)
p‘l}@pgl J{p“ﬁ
OC(V)QM(V)— M(V)

An alternative approach is to define the tensor product of two sheaves of abelian groups o, %
by considering the presheaf

U AU) @ B(U),

then defining ¢ ® 9B to be its sheafification. A sheaf of abelian groups ./ equipped with a
morphism of sheaves of abelian groups u: 6 @ M — A is an O -module if u satisfies appropriate
associativity and unital conditions to analogous to those of a module over a ring. The unit
condition depends on a morphism Zx — O and a natural isomorphism of sheaves of abelian
groups

Zx ® M = M.

The category of O-modules Modx ) is an abelian category, and furthermore we can define a
tensor product M ®g N of two G-modules 4/ and .N by sheafifying the presheaf

U M((U) ®@(U)J\/(U).

A morphism of locally ringed spaces (f, f): (X,0x) — (X,0y) induces adjoint functors
fe: Modx,65) — Mod(y,6,) and f*: Mod(y,s,) = Modx ¢,)- The first is familiar:

fell (V) = M(f7V)
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and the Oy-module structure comes from the sequence of natural transformations

Oy @ full 2% £.6x ® foll L5 1

Similarly,
f*Jv = @X ®f71@Y f‘UV
where we use the morphism f%: f~'0Gy — Ox to define the presheaf
Ox(U) ®j-16y ) f TN (U)
whose sheafification is f*.N.

Proposition 2.1. For a morphism of locally ringed spaces (f, f1): (X,0x) — (X,0y), an
Ox-module M and an Oy-module N there are natural bijections

Mod x,6,)(f* N, M) = Mody,g, (N, fetl).

3. SPECTRA OF COMMUTATIVE RINGS AND AFFINE SCHEMES

All rings are assumed commutative and unital, with unital homomorphisms; we allow trivial
(1-element) rings which we usually just denote by 0. These form a category CoRing whose
initial objects are isomorphic to Z and whose terminal objects are trivial. This category has
coproducts, products, colimits and limits. It has a symmetric monoidal structure defined using
its coproduct ® = ®z.

Localisation. Let A be a commutative ring and let S C A be a multiplicative set, ie., 1 € S
and S is closed under multiplication. Then there is a ring homomorphism i: A — A[S7]
which has the following universal property: Given any ring homomorphism f: A — B so that
fS C A, there is a unique homomorphism f: A[S~!] — B making the following diagram
commute.

The ring A[S™!] can be constructed explicitly so that its elements are fractions a/s where a € A
and s € S, subject to the rule that
a; a2

= <= 3t € S such that (a155 —ass1)t = 0.
81 So

Notice that there is a one-to-one correspondence between prime ideals q <1 A[S~!] and satisfying
prime ideals p <1 A satisfying p NS = &, this is given by

q— 1 q.

A very important example occurs when p < A is prime and S = A\ p; in this case we write
A, = A[S"!]. When A is an integral domain, (0) < A is prime and A(o) = Fr(A), the field of
fractions (or quotients) of A.

At the other extreme, if T" is the set of all elements of A which are not zero-divisors then
A[T 1] is the total Ting of fractions of A. Its prime ideals correspond to prime ideals of A
which contain only zero-divisors.



3.1. The spectrum as a topological space. Let A be a commutative ring. The (prime)
spectrum of A is the set of all prime ideals of A,

spec A= {p:p < A prime},
which we interpret as @ if A = 0. The mazimal 1deal spectrum is the subset
max-spec A = {m : m < A maximal} C spec A.
A ring homomorphism f: A — B induces a function
f*: spec B — specA; q+— flq.

Of course this does not usually restrict to a function max-spec B — max-spec A. We can give
spec A the Zarisk: topology: the closed sets have form

V(a) = Va(a) = Vipeca(a) = {p € spec A: a C p}

where a < A; we interpret this as meaning V(A) = @. Notice that for a prime ideal p, the
closure of {p} is

{p} ={a €specA:p Cq};
hence {p} is closed if and only if p is maximal. A prime p is generic if {p} = spec 4; for

example, if A is an integral domain, (0) is generic.
There is a basis of open sets of the form

D(u) = Da(u) = Dgpec a(u) = {p €spec A : u ¢ p}.

Notice that there is a bijection
Da(u) + spec Alu"!],

which is actually a homeomorphism if we view the left hand side as a subspace of spec A. Here
Alu~'] denotes the localisation of A with respect to the multiplicative set of powers of .
The Zariski topology is rarely Hausdorff, but it is always quasi-compact.

Proposition 3.1. For any commutative ming A, spec A s quasi-compact.

Proof. 1t is sufficient to show that any covering of spec A by a collection of basic open sets
contains a finite subcover. So suppose that spec A = {J;¢; D(u;). Let u = (u; : j € J) be the
ideal generated by the u; (this might be A itself).

For any prime ideal p € spec A there is some j for which p € D(u;) and so u; ¢ p, hence
udp.

If u# A, then u is contained in some maximal ideal m # A, but as m is prime this gives a
contradiction; therefore u = A. We can find j71,...,J%x € J and a1,...,ax € A so that

a1uj, + - +apuy, = 1.
Now for any prime ideal p € spec A, since 1 ¢ p, for at least one r, u;, ¢ p, hence p € D(u;,).

Therefore

specA= [ D(uj,). a
1<r<k
8



One technical point that is worth mentioning:
V() CV(a) < +aCVb (3.1)
where
Ve={zcA:Im>1st. 2" cc}

is the nilradical of ¢ < A4; it is a standard result that

Ve= (] w

c¢CpEspec A
It follows that
V() =V(a) <= +a=b.

Taking a = (u) and b = (v) to be principal ideals, these gives

D(u) CD(v) = /(u)C/(v), (3.2)

and this implies that for some k > 1 and z € A, u* = zv, hence there is a ring homomorphism
oY Alv~1] — A[u~!] making the following diagram commute.

Dy(v) < spec A[v 1]

pil

D4(u) < spec Alu 1]
Theorem 3.2. The prime spectrum defines a contravariant functor
spec: CoRing® — Top.
Proof. For a < A,
(f) 7' Va(a) = (f){p €specA:a Cp} ={f"p €spec B:aC p} = Vs(f"a)
by the Correspondence Theorem. So f* is continuous. (]
This functor spec is not very discerning. For example, for any field K,
spec K = max-spec K = {(0)},

so for a homomorphism of fields f: K — K', f*: spec K' — spec K is a homeomorphism.
For a commutative ring let +/0 < A be its nilradical which is the set of nilpotent elements, or
equivalently

Vo= () ».

pEspec A
Then

spec A = spec A/+/0,

s0 spec doesn’t see nilpotents. However, by adding more structure we can overcome such defects.
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3.2. The spectrum as a locally ringed space. Let A be a commutative ring with spec 4
given its Zariski topology. We define a sheaf of commutative rings G4 on spec A as follows. For
each basic open set D4(u), let
Ga(Da(u)) = A1)
Since
Da(u) ND4(v) = Da(uv),
and there are evident ring homomorphisms
Alul = Al(wv) Y] « AT,
By Proposition 1.2 this extends to a sheaf.

Theorem 3.3. There is a unique sheaf of rings O4 on spec A given on basic open sets by
Oa(Da(u)) = Afu™"]
for all u € A. For each p € spec A, the stalk at p s the local ring
Oap = Ay,
hence (spec A,04) is a locally ringed space.

Proof. To compute the stalk at a prime ideal p, notice that p € D4(u) precisely when u ¢ p.
Since these D4(u) form a basis of open neighbourhoods of p, so
Gap= colim Aflu1].
ap = colim [u]

By definition of colimit, the evident homomorphism A — colimyecp,(u) Alu~!] satisfies the
universal property for the localisation of A with respect to the multiplicative set A\ p, therefore
colim Afu~'] = A,

peDa(u)
and so 04, = A,. O

We will set Spec A = (spec 4,0 4); this is the prototypical affine scheme. Notice that the
set of global sections O 4(spec A) = A recovers the ring A.

Definition 3.4. An affine scheme is a locally ringed space isomorphic to some Spec A.

Associated to a point p € spec A are two quotient rings, namely the integral domain A/p and
the residue field x(p) = A,/m, where m, < A, is the unique maximal ideal generated by the
image of p under the localisation homomorphism A — A,. There is an evident commutative
diagram of solid arrows

A A,
| |
Alp g K(p)
\ e /3:
Fr(A/p)

and a unique extension to the larger diagram, where Fr(D) denotes the field of fractions (or
quotients) of an integral domain D. It is straightforward to see that the dashed arrow is an iso-

morphism, i.e., Fr(A/p) = k(p). The one element space spec «(p) gives rise to the affine scheme
10



Spec k(p) and the above homomorphism A — x(p) induces a continuous map spec k(p) — spec A
whose image is {p} which is closed if p is maximal. When p is maximal can think of the mor-
phism of schemes Spec x(p) — Spec A as picking out a ‘geometric point’ in Spec A.

On the other hand, A — A/p induces a continuous injection spec A/p — spec A whose image
is the closed set V(p) (actually it is a homeomorphism onto this image). In each case we have
a morphism of schemes,

Spec k(p) — Spec A, Spec A/p — Spec A.
A ring homomorphism f: A — B induces a continuous map f*: spec B — spec A. For a
basic open set D(u) C spec A4,
(f*) 'D(w) = {q € spec B : f(u) ¢ q} = D(f(u)),

and it follows that there is an induced ring homomorphism f% making the following diagram

commute

0a(D(w)) = (£).05(D(w))

Op((£*)"'D(w))

B[f(u) ']
and where f is induced by f. This extends to give a morphism of sheaves of rings f9: G, —

(f*)«0, hence (f*, f1): Spec B — Spec A is a morphism of ringed spaces. On stalks we have
local ring homomorphisms.

t

Alu1

A quotient homomorphism ¢: A — A/a induces a morphism of affine schemes Spec A/a —
Spec A where ¢*: spec A/a — spec A is injective and has closed image

¢*spec A/a = V(a).
Example 3.5. A non-trivial idempotent a € A induces an epimorphism
A — Ae; 1z ae,

inducing an embedding Spec Ae — Spec A which is both closed and open. Indeed, together with
the complementary idempotent 1 — e, the Chinese Remainder Theorem gives an isomorphism

AS Aex Al —e)
and then
spec A = spec Ae Il spec A(1 —e)
where spec Ae and spec A(1 — e) are both clopen subsets. Notice that we also have
A(1—e)7 = de, Al A(1-¢),

so these are also localisations of A.
11



Example 3.6. Recall the ring of Gaussian integers Z[¢]; this is a principal ideal domain. Here
are its non-zero prime ideals (they are all maximal):
e (1+9)<Z[f]and (1 +)NZ=(2) <7
e if p =3 mod 4 is a prime then (p) < Z[7] is prime with (p) N Z = (p) < 7,
e if p = 1 mod 4 is a prime then there are integers a,b satisfying a® + > = p and there
are two distinct prime ideals (a + b4) < Z[4] satisfying (a £ b1) N Z = (p) < Z.

The inclusion Z — ZJ[i] induces a finite covering map spec Z[:] — spec Z with

(1+1) = (2),
(p) — (p) if p = 3 mod 4,
(a +b1) — (p) if p=1mod 4 and p = a + b%.

Notice that (2) <1 Z[1] is not prime, and in fact (1 +2)? = (2) so 2 is ramaified in Z[i]; also, if
p = 1 mod 4 then (a + b2)(a — bi) = (p) so p is split in 7Z[3].

Theorem 3.7. The functor Spec: CoRing® — AffSch is an equivalence of categories.
Furthermore, Spec sends finite coproducts to products and finite products to coproducts.

Proof. The main point to observe is that a morphism of affine schemes Spec B — Spec A
determines a ring homomorphism

f

A —— O 4(spec A) — O p(spec B) B

which induces (f*, f9). This shows that there is a natural bijection
AffSch(Spec B, Spec A) = CoRing(A4, B),

therefore Spec provides an equivalence of categories. In particular this implies that any mor-
phism of affine schemes (X,0x) — (Y, Oy) is determined by the associated ring homomorphism
Oy(Y) — Ox(X).

The statements about products and coproducts can be verified by construction. O

Corollary 3.8. Let (X,0) and Spec A be affine schemes. Then there is a natural bijection
AffSch((X,0), Spec A) = CoRing(4, 0 (X)).

These results show that Spec captures more that just the topology of spec. For example, given
two fields K, L, a morphism Spec L — Spec K corresponds to ring homomorphism K — L, and
an isomorphism corresponds to ring isomorphism. For any commutative ring A, there is always
a closed embedding spec A/+/0 — spec A induced by the quotient homomorphism A — A/+/0,
but the induced morphism of Spec A/+/0 — Spec A4 is only an isomorphism when /0 = (0),
ie., Ais reduced.

The category of CoRing has finite coproducts. The coproduct of A and B is just A® B:
given ring homomorphisms f: A — C and g: B — C there is a unique ring homomorphism
f®g: A® B — C making the following diagram commute.

unit unit

A ARZ "™ 4@B™ 79B<— B

\ ifj/
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The functor Spec sends coproducts to products so Spec A x Spec B = Spec A ® B. But it is
not always true that the underlying space of Spec A x Spec B, spec A ® B, is homeomorphic to
spec A x spec B. For example, if A =7/m and B = Z/n,

specZ/m ® Z/n = spec Z/ gcd(m,n) = {p : p prime, p | m and p | n},
spec Z/m x spec Z/n = {(p,q) : p,q prime, p | m, g | n}.

When m, n are coprime, Z/m®Z/n = 0 so spec Z/m®Z/n = & but specZ/m x spec Z/n # &.
We can also define pushouts in CoRing. The pushout of the ring homomorphisms p: R — A
and ¢q: R — B is A®pg B. As Spec sends pushouts to pullbacks,

Spec A Xspec g Spec B = Spec A ®g B.

Spec A®r B —— Spec B

s

Spec A Spec R

*

Notice that a morphism of affine schemes Spec A — Spec R is equivalent to a ring homo-
morphism R — A, so A is an R-algebra. This allows us to relativise affine schemes. For
S = Spec R, a morphism of affine schemes p: T' — S is an affine scheme over S; given another
such p': T' — S, a morphism of affine schemes over S is a morphism f: T — T' so that the
following diagram commutes.

f

N

S

T T

If T = Spec A and T' = Spec A’ then f is induced by a ring homomorphism A’ — A which
makes the following diagram commute,

R

SN

i.e., it is a homomorphism of R-algebras. We can define the category of affine schemes over S to

A A

be the subcategory AffSchg of AffSch whose objects are schemes over S and whose morphisms
are morphisms over S. There is a forgetful functor

AffSchg — AffSch; (T'— S)— T,

and this has a left adjoint as we will see. Notice that if S = SpecZ then AffSchgpecz = AffSch
since every commutative ring is a Z-algebra because it has a unit homomorphism 7Z — A which
induces a morphism Spec A — SpecZ. It is normal to suppress mention of 7Z or SpecZ in

notation.
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Another useful construction is to take an affine scheme over S say p: T' — S, and a morphism
g: 8" — S. Then we can form the pullback S’ x ¢ T which is an affine scheme over S'.

SIX5T4>T

T

S —35

If T = Spec A, S = Spec R and S’ = Spec R we have
S' xsT = SpecR' ®p A.

This process of turning an R-algebra into an R’-algebra is called base change.
Base change over Z provides a left adjoint for the forgetful functor AffSchgs — AffSch where
S = Spec R. Given T € AffSch we can form S Xgpecz T. When T' = Spec A4,

S Xgpecz Spec A = S x Spec A = Spec(R® A)
where R ® A is clearly an R-algebra or equivalently there is a morphism S x Spec A — S.

Theorem 3.9. Base change over 7 provides a right adjoint to the forgetful functor
AffSchg — AffSch, so for an affine scheme V and a scheme U over S there s a natural
byjection
AffSchg(U — 5,8 xV — S) = AffSch(U, V).
Underlying this bijection is a natural bijection

CoAlgz(R ® A, B) = CoRing(4, B)

for a commutative ring A and a commutative R-algebra R — B.

Notice that if p € spec R then there is a morphism of affine schemes Specx(p) — Spec R
and we can do base change from R to the field x(p) by forming Spec k(p) Xspec g T Thus if
T = Spec A where A is an R-algebra,

Spec £(p) Xspec & Spec A = Speck(p) ®r A.

So we can pull back an affine scheme to the residue field at each prime ideal; this amounts to
looking at points of T' above the residue fields; when p <1 R is maximal, this means looking at
points above geometric points of Spec R.

When R = Z, there are two types of prime ideals, namely (0) and (p) for a prime number p.
These have residue fields £(0) = Q and k(p) = F,. For a commutative ring A,

Spec k(0) x Spec A = Spec(Q ® A), Speck(p) x Spec A = Spec(F, ® A) = Spec(A4/(p)).

Affine n-space. Let R be a commutative ring and S = Spec R. Then affine n-space over S
(or over R) is the affine scheme

AffS = Aff; = Spec R[X1,...,X,].

The inclusion of constants R — R[X}, ..., X,| makes the polynomial ring into an R-algebra so
this is a scheme over S. For any affine scheme T over S,

Affs (T) = Affschs (T, Affg)
14



is the set of T-valued points of Aff%. If T'= Spec A for an R-algebra A,
Aff%(Spec A) = CoAlgr(R[X1,...,Xn], A) = A"

since an R-algebra homomorphism ¢: R[X1,...,X,] — A is uniquely determined the vector
(p(X1),...,9(X,)) € A™. Classical algebraic geometry focuses on this situation for R = K a
field (often algebraically closed) where Aff%(K) = K.

This idea of taking an affine scheme U over S and then considering its set of T'-points
AffSchg(T,U) for any scheme T over S leads to the idea that a scheme defines a functor
AffSchg(—,U). When S = Spec R, U = Spec A and T = Spec B for R-algebras A, B,

AffSchs(T, U) = CoAlg (A, B)

where CoAlgr (A4, —) is a covariant functor defined on CoAlgpy.

4. GLOBAL SCHEMES

A locally ringed space (X,0) is a (global) scheme if every z € X has an open neighbour-
hood U and an isomorphism of affine schemes

(U,6,) % Spec A

for some commutative ring A (which depends on z). In other words, each z has an affine
neighbourhood so (X, 0) is locally affine.

So a (global) scheme is a locally ringed space together with an open cover U; (5 € J) where
(Uj:@luj) = Spec A; for suitable rings A;.

When U; NU; # &, each element z € U; N U; has an open neighbourhood V;; C U; N Uj; for
which

Spec A;[u; '] = (Vij’@lvij) & Spec A; ['u,]_l]

for suitable elements u; € A; and u; € A;.

X

there is a commutative diagram of morphisms of affine schemes

(Ui, 0,) (Vi3,0p,,) (U5, 01,,)

~i p N | 15

where
A=0U), A =0(U)), Al 1=0(V;) = Ajlu; ']
It follows that the dashed arrows
Spec A;[u; ] Spec Aj[uj*l]

15



are inverse isomorphisms of schemes which identify the corresponding open subschemes of
Spec A; and Spec A;. Of course this is similar the way smooth manifolds are defined in terms
of local patching data.

A morphism of schemes (X,0x) — (Y,0y) is a morphism of locally ringed spaces between
two schemes. These form a category Sch and there is a forgetful functor

AffSch — Sch; Spec A (spec 4,0 4).

Here is an important result which shows how morphisms from a scheme into an affine scheme
are controlled by ring theory.

Proposition 4.1. Let (X,0) be a scheme and A a commutative ring. Then there is a
natural bijection

Sch((X,0),Spec A) +» CoRing(4,0(X)); (f,f") — (f'+ 4 6(X)).
Here we use the fact that A = G4(spec A).

Sketch of proof. By definition, X is covered by open sets U; (¢ € J) which are affine, i.e.,
(U;,0y,) = SpecO (U;). Each restriction gives a morphism Spec G (U;) — Spec A determined
by a ring homomorphism ¢;: A — O(U;). For each a € A the elements ;(a) € O(U;) are
compatible on restrictions to intersections so give rise to a unique element of O(X). It is
routine to verify that the resulting function ¢: A — 0 (X) is a ring homomorphism. O

If (X,0) is a scheme and W C X is an open subset, then the inclusion function ¢: W — X
is continuous and we can define a sheaf of rings O w on W by setting

0, (U)=0(U).
Then for an open set V C X,
40, (V) = 0,,,(:7'V) = 6y,, (V. nW)O (V n W)
and taking i = p“me we obtain a morphism of locally ringed spaces
(i,3%): (W,0,,) — (X,0).

This defines an open subscheme of (X,0) and we write (W,0),,) — (X,0) to indicate the
inclusion morphism of such a subscheme. Two subschemes intersect when their underlying
open sets do and we can then define another open subscheme on their intersection.

Gluing schemes. An important way to produce schemes is by gluing a collection of schemes
using some sort of compatibility data. We require the gluing conditions listed below to be
satisfied.

e A collection of schemes (X;,0;) (¢ € I).
e For all pairs 7,7 € I, open subschemes (X;;,0;; — (X;, O;) together with gluing iso-
morphisms (Xij;@i,j ﬂ) (in;ﬁj,i~
e The following conditions are satisfied for all triples ¢,7,k € I:
— i =1id.

— @ji o pi; = id.
16



— The following diagram commutes in the sense that ¢;r = @;x o ¢;; when restricted
to the subset of X; where both sides are defined.

Xij—— X; =— X4
®i; Pik

X;i X; X o X = X Xpi

Here is the precise statement about gluing.

Theorem 4.2. Suppose that a collection of schemes (X;,0;) (¢ € I) satisfies the gluing
conditions. Then there is a scheme (X,0) and morphisms of schemes (1/Ji,z/)E): (X,0) —
(X,0) (i € I) satisfying
e for alli,7 €1, (z/)i,z/)f) 18 an somorphism onto an open subscheme (X;,@|X{) and
P X5 = le N X]/-,' '
e for alli,7 € I, the following diagram commutes.

Pij
Xij Xji

1!11)(”\\ Aﬂ

XinX;

Example 4.3. Let R be a commutative ring. Take two copies of the affine line over R,
X = Spec R[X], Y = SpecR[Y].
The open subsets
Dx(X) CspecR[X], Dy(Y) C specR[Y]
define open subschemes of X and Y.
Notice that R[X][X 1] = R[X, X ] and R[Y][Y ] = R[Y,Y ] and there is a ring isomor-
phism
RX, X Y1 =R, Y'; XevY i
This induces a homeomorphism
Dy(Y) = spec R[Y, Y '] = spec R[X, X~!] = Dx(X)

and an isomorphism between open subschemes of Y and X.

If we glue these X and Y by identifying these open subschemes we obtain the projective line
over R, Proj}2 = ProjépeCR. The underlying space proj}2 is covered by the open sets U, and
U_ corresponding to X and Y whose overlap corresponds to spec R[X, X ~!] 2 spec R[Y,Y ~1].
The sheaf of rings Op_.;1 has values

JR
@Proj}q(U+) = R[X]i @Proj}q(U*) = R[Y]

while on the overlap
Op.oit (U NU_) = R[X, X}

Proj}2

with restrictions given by

U U_ _
pUiﬁU_(X) =X, ppw (Y)=X .
It follows that

@Proj}? (pI‘OJ}:l) =R.
17



This can be generalised to Proj% for all n > 1.

Example 4.4. Another related but different example is obtained by again setting
X = Spec R[X], Y = SpecRI[Y].

and identifying the open subsets Dx(X) and Dy (Y’) using the ring isomorphism
RY,Y S RX, X, YoX

The resulting schemes is a copy of Affy, with an additional point at the origin.

See [EHOO, exercise I-44] for a picture. A similar construction can be made for manifolds thus
showing that it is necessary to insist on a manifold being Hausdorff to avoid such pathological
examples. For schemes we can eliminate such cases using a notion of separability which we will
meet soon.

5. CATEGORICAL CONSTRUCTIONS FOR SCHEMES

Coproducts of schemes (or schemes over a given scheme) are easy to construct by taking
coproducts of underlying spaces. On the other hand, products are more interesting.

From now on we denote a scheme by writing X = (]X|,0x) so |X| is the underlying space
and Ox is the sheaf of rings. In particular,

Spec A = (| Spec A, Ogpec 4) = (spec A,04).
Recall that given three topological spaces and continuous maps
P R&Q,

their pullback or fibred product over R is a space P x g @ which fits into a commutative diagram

Pxp@Q—@Q
T
P R

called a pullback diagram and has the following universal property. Given a diagram of solid
arrows

(5.1)

there is a unique dashed arrow making the resulting diagram commute. It is easy to see that
an explicit model for such a fibred product is given by

PxpQ=A{(z,y) € PxQ:p(z) =q(y)}

given the subspace topology as a subset of the product space P x Q; the maps to P and @ are
the obvious projections. However, for any other example

P—W-—>Q
18



there is a unique homeomorphism (the dashed arrow) making the following diagram commute.

PxrQ

N

[

[

\
=13

|
|
y
w
It is useful to note that in the diagram
W —=PxpQ —@Q

I A

P’ p R

the big rectangle is a pullback diagram if and only if the left hand square is a pullback diagram.
This means that

P'xp(PxpQ)=P xpQ.
The notion of a fibred product makes sense Sch or more precisely in Schg for a given
scheme S. A commutative diagram of schemes

W —Y
X—S5

is a pullback diagram if for any commutative diagram of solid arrows

§
_—

w Y
X—S
there is a unique dashed arrow making the resulting diagram commute. Such a W is unique up
to scheme isomorphism compatible with the morphisms to X and Y and it is usual to denote

this fibred product over S by X xgY although this is really only defined up to isomorphism.
It is note immediately clear that such objects exist in full generality.

Theorem 5.1. Let X — S and Y — S be schemes over scheme S. Then there 1s a fibred
product
X+ XxgY Y.

For affine schemes we already know this is true and by Proposition 4.1, Spec A Xspec RSPeC B
is also the fibred product in AffSchg.

Given a fibred product of schemes X xg Y, there are maps |X| — |S| and |Y| — |S|, hence
we can form the space |X| x5/ |Y| and a map | X xs Y| — |X]| x5/ [V].

Lemma 5.2. The map canonical map |X xsY | — |X| x5 |Y| is always surjective but not

injective in general.
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For a scheme over S, X — S, the universal property of X xgs X applied to two copies of
the identity morphism X — X leads to a diagonal morphism A: X — X xg X making the
following diagram commute.

X
id i id
X x S X
pr; pry
X X

Fibred products have various ‘obvious’ properties.

Proposition 5.3. Let X,Y,Z be S-schemes, we also view S as an S-scheme using the
identity morphism.

(a) XXSS%XgSXSX.

(b) X xs Y 2Y x5 X.

() (X xsY)xsZ=2X x5 (Y xg Z).

Example 5.4. When X = Spec 4, S = Spec R and A is an R-algebra,
Spec A Xgpec r Spec A = Spec AQr A

and A: Spec A — Spec A®g A is induced by the multiplication map p: AQr A — A (this is an
R-algebra homomorphism) which factors through the quotient ring A ® g A/ ker u = A (since
4 is surjective). This means that

Aspec A= V(kerp) C spec AQgr A
so Aspec A is a closed subset.

In general, the diagonal A: X — X xg X does not have closed image A|X| C |X xg X|.
This leads to a very important notion.

The S-scheme X — S is separated if A|X| C |X xg X]| is a closed subset. In particular, an
affine schemes over another is always separated. When S = SpecZ, X is called (absolutely)
separated.

The notion of separability of an S-scheme X can be reformulated in terms of morphisms
into X.

Lemma 5.5. The S-scheme X — S 1s separated if and only if for any S-scheme Y and

f
S-morphisms Y —= X , the subset
g

{velY|: fly) =9(y)} CIY]

15 closed.

6. SUBSCHEMES AND IMMERSIONS

We have already seen a definition of an open subscheme of a scheme X corresponding to an
open subset of | X|. Similarly, for an affine scheme Spec A, a closed subscheme corresponds to
the closed subset V(a) associated with an ideal a <t A. To extend this to an arbitrary scheme X

we need to introduce sheaves of ideals.
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Let X = (]X|,0) be a scheme. Then a sheaf .¥ on |X]| is a sheaf of ideals if it is a sheaf
of O-submodules of 0. This means that where for every open subset U C |X|, $(U) <O (U)
and when V C U the ring homomorphism o3 : O (U) — O (U) restricts to p%: F(U) — (V)
so that the multiplications restrict making the following diagram commute.

OU)® $(U) —— 9(U)
#@#i lp“}
OWV)® $(V) —= F(V)
For example, if X = Spec A and a <1 A, then there is a sheaf of ideals a satisfying
A(D(u)) = Alu Ya < Alu?]
for all w € A. More generally, an A-module M has an associated 0 4-module sheaf M for which
M(D(u)) = Alu™ ] ®4 M.

For a scheme X = (|X|,0), an G-module sheaf ./ is quasi-coherent if for every affine open
subset U C | X, the restriction ., is isomorphic to M for some O (U)-module M (depending
on U). For a sheaf of ideals .¥ we have an important characterisation of what it means to be
quasi-coherent.

Lemma 6.1. The O-module .9 is quasi-coherent if and only if for every affine open subset
U C |X|, J), is isomorphic to @ for some ideal a <O (U).

Now for a quasi-coherent sheaf of ideals . we can define a ‘zero set’ V(.$) C | X|. If U C | X]|
is affine open subset (so U = specO(U)) let .9}, = @ for some ideal a < O(U). Then we can
define the closed subset

Vy($) = V(a) C specO(U) = U.
Then we define
V(I) =JVu(F) C|X].
U

In fact V(.$) C |X] is closed (exercise!). This turns out to agree with the support of the
quotient sheaf O /J, where the support of any sheaf of abelian groups & on |X]| is

suppF ={z € |X|: F, # 0} C |X]|.
Then (exercise!)
(supp@/F)NU = V(a).

We can view the sheaf of rings 0 /¥ as a sheaf of O-algebras. It has the property that for each
affine open subset U C |X|, (0/.%)), is associated to the G (U)-module O (U)/.9(U), so it is a
quasi-coherent O-algebra. Every quasi-coherent 0 -algebra ¢/ has an associated scheme Spec oA
which has a morphism Spec ¢/ — X, in particular there is a morphism Spec0 /¢ — X and

| SpecO /.9 | = suppC/F =V (F).

So we can view supp 0 /.¥ = V(.¥) as defining a closed subscheme of X.

In fact every closed subset arises in this way.
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Proposition 6.2. Let Y C |X| be a closed subset. Then there is a quasi-coherent ideal
sheaf Jy of O given by

U {tecOGU):YzeYnU, pl(t) =0}

and satisfying
V(%) =Y.
Then there is a subscheme (Y,0y) of X where (Y,0y) = SpecO /Yy .

This scheme is sometimes referred to as the canonical reduced subscheme for Y because
O / 9y has no nilpotent elements.

Now we can give the definition of an immerston. A morphism of schemes f: (Y,0y) —
(X,0x) is an open/closed tmmersion if there is an open/closed subscheme Y’ = (Y, 0y/) of
X = (X,0x) and a factorisation of f through an isomorphism ¥ = Y.

f

YooV —— X
mnc

Here are some results on immersions.

Proposition 6.3. Let f: Y — Spec A be a morphism of schemes. Then the following are
equivalent:

o f 1s a closed immersion,
o Y 15 affine, so Y = Spec B and f 1s induced by a surjective ring homomorphism
A— B.

Proposition 6.4. Let f = (f,f!): Y — X be a morphism of schemes. Then the following
are equivalent:

o f 1s a closed 1mmersion;

e for every affine open subset U C X, the induced morphism f~*U — U is a closed
1mmersion, so by Proposition 6.3 f U is affine and Ox(U) — Oy(f 'U) s a
surjective ring homomorphism;,

e there is an affine open covering U; (1 € I) of X such that each f~1U; — U; a closed
immersion, so f1U; is affine and induced from a surjective ring homomorphism

@X(Ui) — @Y(fflUi).

There is another important notion of a locally closed subscheme. First we recall a topological
notion: Let X be a topological space and Y C X a subset. Then Y is locally closed if for every
y € Y, there is an open neighbourhood U, C X such that Uy, NY C Uy is a closed subset; in
particular this means that ¥ C ey Uy is a closed subset.

Now let X be a scheme. Then a scheme Y is a locally closed subscheme of X is there is
an open subscheme U C X so that Y is a closed subscheme of U. A morphism of schemes
f:Y — X is a locally closed immersion if it factorises as

f

vy oy o x
f! inc

where Y’ is a locally closed subscheme of X.
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By Proposition 6.2, every locally closed subset ¥ C |X| can be viewed as the underlying
space of a locally closed subscheme of X.

Proposition 6.5. Let f: Y — X be a locally closed immersion and U C X and open
subscheme such that f|Y| C |U| s a closed subset. Then the restriction to Y — U s a
closed 1mmersion.

Proposition 6.6. Open, closed and locally closed immersions are all preserved under
compositions and base change.

Now we return to separated schemes.

Proposition 6.7. Let X — S be a scheme over a scheme S. Then X — S 1s separated if
and only if the diagonal morphism A: X — X xg X 1s a closed immersion.

Proposition 6.8. Let X — S be a scheme over an affine scheme S = Spec R. Let U; (1 € I)
be an affine open covering of | X|. Then the following are equivalent:

o X — S 1s separated,

e for all 1,5 € I, the diagonal morphism A induces a closed immersion U; N U; —
U; X8 Uj,‘

e forall1,j €I, U;NU; s affine and A 1nduces a surjective ring homomorphism

@X(Ui) ®r @X(Uj) — @X(Ui N Uj).

Corollary 6.9. Let X — S be a separated scheme over an affine scheme S. If U and V
are affine open subschemes of X then UNV 1s also an affine subscheme.

6.1. Base change and separation. Let X — S < Y be morphisms of schemes and let S — T
be another morphism of schemes. Then the diagonal A: S — S x5 induces a pullback square.

XxsY > XxpY

S

S%ASXTS

It follows that 7: X xgY — X X7 Y is a locally closed immersion. If S — T is separated then
T is closed immersion.

Proposition 6.10. Let f: X — Y be a morphism of schemes over a scheme S. Then the
graph morphism I'y: X — X XgY 18 an immersion, and if — S 18 separated I'y 18 a closed
1MMersion.

If f: X — S is a morphism of schemes, a section is a morphism s: S — X such that
fos=1idg. Then the graph I';: S — S x5 X = X coincides with s. So s is an immersion and
even a closed immersion if f is separated.

From this various results follow.

Proposition 6.11.
(a) The composition of separated morphisms is separated.
) If f: X - Y and f': X' — Y' are separated morphisms of schemes over S then

fxfl:XxsX =Y xsgY' is separated.
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(c) Separated morphisms of schemes over S are stable under base change.
(d) Let f: X =Y and g: Y — Z be morphisms of schemes. If go f is separated then so

1s f.
7. FPINITENESS CONDITIONS

Let ¢: A — B be a ring homomorphism.
@ is finite if B is a finitely generated A-module where for a € A and b € B,

a-b=p(a)d.

It is standard that a finite homomorphism makes B integral over A, i.e., every ¢ € B satisfies
a polynomial identity of form

2"+ an 12" ' +--a1-2+ap.l1=0

for some a; € Aand n > 1.
@ is of finite type if it factors as

A B

o~ 47

ATy, ... Tyl

where ¢’ is surjective; if also ker¢’ < A[Ty,...,T,] is finitely generated then ¢ is of finite
presentation. In practise we think of B as an A-algebra and then refer to B as a finite or
finitely presented A-algebra. Of course if A is Noetherian, then every finite type algebra is
finitely presented.

If s € A then the localisation A — A[s '] is of finite type since it factors as

A Als™1] st
Ny /
A[T] T

where the right hand homomorphism is surjective. More generally, localisations with respect

to finitely many elements have finite type.
A morphism of schemes f = (f, ff): X = Y is

e affine if there is an affine open cover {V;};c; of Y for which each f V; is affine;
e finite if there is an affine open cover {V;}ic; of Y for which each f 'V; is affine and
each ring homomorphism f: Oy (V;) — Ox(f~1V;) is finite.

Lemma 7.1. Let f = (f, f1): X = Y be a morphism of schemes where Y is affine. Then
o f 15 affine if and only if X s affine;
e f 1s finite if and only if X is affine and the induced ring homomorphism Oy (Y) —
Ox(X) is finte.

A morphism of schemes f: X — Y is locally of finite type/presentation at z € | X| if there
are affine open subschemes U C X and V C Y such that z € U C f~'V and the induced
ring homomorphism Oy (V) — Ox(U) is of finite type/presentation. f is locally of finite

type/presentation if locally of finite type/presentation at every point of X.
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A morphism of schemes f: X — Y is closed if the image fZ C |Y| of every closed subset
Z C |X]| is closed; f is universally closed if for every base change Y' — Y,

nyidylZXXyYI—)Ynylgyl

is closed. f is proper if it is separated, of finite type and universally closed, and similarly an
S-scheme X — S is proper if the morphism is proper.

Lemma 7.2.

(a) Every finite morphism of schemes s proper.

(b) Let X Ny morphisms of schemes so that go f s proper. Then
e if g 1s separated, f 1s proper,
e if g 1s separated and of finite type and f is surjective, g 1S proper.

Recall that the Zariski topology is not usually Hausdorff but is compact in the sense that
every open cover has a finite subcover. This combination of properties is often called quasi-
compactness rather than compactness although outwith algebraic geometry the latter is com-
mon.

Let X be a scheme; then an open subset of X is quasi-compact if and only if it is a finite
union of affine open subsets of X.

A morphism of schemes f: X — Y is quasi-compact if for every quasi-compact subset
V C|Y|, f~1V C|X]| is quasi-compact. f is quasi-separated if the diagonal morphism A: X —
X Xy X is quasi-compact.

Lemma 7.3. Let f: X — Y be a morphism of schemes.

(a) f s quasit-compact if and only if Y has an affine open covering {V;};cs such that every
presmage f1V; C | X| is quasi-compact.

(b) f s quasi-separated if and only if Y has an affine open covering {Wi}trex such that
for every pair of affine open subsets U,V C |X| where fUU fV C Wy, for some k, UNV 1s
quast-compact.

Here is an important result.

Proposition 7.4. Suppose that f: X — Y 1s a morphism of schemes which s quasi-
compact and quasi-separated. If M 1is a quasi-coherent Ox-module then f. Al 1s a quasi-
coherent Oy -module.

8. GROTHENDIECK TOPOLOGIES

A good source for this material is the collection [FGI105].

Let C be a category with products and pullbacks. A Grothendieck topology on C assigns
to each object U of C a collection of sets of morphisms {U; — U};cr called coverings of U
satisfying the following conditions.

e If V — U is an isomorphism then {V — U} is a covering.

e If {U; — U}ics is a covering and V' — U is a morphism, then the set of projections
{U; xy V — V}icr is a covering.

o If {U; — U}icr is a covering and for each ¢ € I there is a covering {V;; — U;};cy;, then

the set of compositions {V;; — U; — U}licr, jey; is a covering of U.
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A category with a Grothendieck topology is called a site.

Notice that in a Grothendieck topology, if {U; — U}icr and {V; — U};cs are two coverings
of U then it follows that the set of projections {U; xy V; — U}icr, jcu is also a covering of U.

Here are some important examples.

A set of morphisms {U; — U}icr of spaces or schemes is called jointly surjective if the
set-theoretic union of the images is equal to U.

Example 8.1 (The topological site of a space). Let X be a space and let Tx be its category
of open sets. Then we associate to each open set U its open coverings {U; — U};c; where each
U; — U is the inclusion of an open subset and fibred products are given by intersections, i.e.,

U, Xy Uj :UiﬂUj.

Example 8.2 (The global classical topology). Take C = Top the category of spaces and
continuous maps. Then a covering {U; — U};c; of a space U is a jointly surjective collection
of open embeddings (i.e., open continuous injections).

Example 8.3 (The global étale topology for spaces). Take C = Top the category of spaces and
continuous maps. Then a covering {U; — U};c; of a space U is a jointly surjective collection
of local homeomorphisms.

Example 8.4 (The global Zariski topology for schemes over a base). Take C = Schg, the
category of schemes over a scheme S. Then a covering {U; — U}ier of U — S is a collection of
open embeddings covering U, where an open embedding means a morphism V — U giving an
isomorphism of V to an open subscheme of U.

A morphism of schemes f: X — Y is flat if for each z € |X|, the induced stalk homomor-
phism Oy,¢;) — Ox. makes Ox, a flat Oy,s(;)-module; it is fasthfully flat if it is flat and
surjective. A flat morphism which is locally of finite presentation is open.

Example 8.5 (The fppf = fidelement plat et de presentation finie topology). Take C = Schg.
Then a covering {U; — U};cr of U — S is a jointly surjective collection of flat maps locally of
finite presentation.

Finally we mention an important topology which we won’t completely define.

Example 8.6 (The global étale topology). Take C = Schg. Then a covering {U; — U};cr of
U — S is a jointly surjective collection of étale maps locally of finite presentation.

Sheaves on a site. Suppose we have a site on category C. Let & : C° — Set be a functor.
Then F is a sheaf on the site if the following conditions is satisfied:
e For every covering {U; — U};cr and collection of elements a; € F (U;) (¢ € I) for which
the projections pr;: U; xy U; — U; and pry: U; xy U; — U satisfy
pri @i = prjaj,
there is a unique element a € & (U) such that pgi(a) = qa; for every ¢ € I.

A morphism of sheaves is just a natural transformation.
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