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Hodge structures of K3 type with real multiplication

a) Hodge structures of K3 type. The complex singular cohomology of smooth, projective varieties ad-
mits the Hodge decomposition. Motivated by this, one defines a rational Hodge structure of weight k to be
a finite-dimensional rational vector space V together with a decomposition

V ⊗Q C =
⊕

p+q=k

V p,q

such that V p,q = V q,p. A polarization of a Hodge structure is a bilinear form on V with certain compatibility
properties with the Hodge structure. This notion just mimics the cup-product of two primitive cohomology
classes with an appropriate power of the class of an ample line bundle.

Definition. A Hodge strucure of K3 type consists of an irreducible, polarized rational Hodge structure (T, q)
of weight 2 such that dimC T 2,0 = 1.

Example. Consider a complex, projective K3 surface S. Denote by NS(S)Q the Q-linear span of the image
of the first Chern class c1 : Pic(S) → H2(S,Q). Then we get an orthogonal decomposition

H2(S,Q) = NS(S)Q ⊕⊥ T (S).

The space T (S) is called the rational transcendental lattice of S, it is a sub-Hodge structure because NS(S)Q
is purely of type (1, 1). The rational transcendental lattice of a K3 surface together with the quadratic form
induced by the cup-product on S is a Hodge structure of K3 type.

b) Endomorphisms of K3 type Hodge structures. Since Hodge structures of K3 type are irreduci-
ble, their endomorphisms form a division algebra. Zarhin (see [Z]) used Albert’s classification to obtain the
following

Theorem (Zarhin). Let (T, q) be a polarized Hodge structure of K3 type and denote by E = EndHdg(T ) its
algebra of endomorphisms of Hodge structures. Then either E is a totally real number field (we say (T, q)
has real multiplication) or E is a purely imaginary quadratic extension of a totally real number field (we say
(T, q) has complex multiplication (CM)).

Somewhat surprisingly, K3 surfaces with complex multiplication (i.e. whose transcendental lattices have
complex multiplication) are better understood than those with real multiplication which a priori have less
endomorphisms of Hodge structures. The reason for this is that in case S has CM, E = EndHdg(T (S)) can
be shown to be spanned by isometries of T (S). Mukai’s theory of moduli spaces of sheaves on K3 surfaces
predicts that self-isometries should correspond to (possibly twisted) Fourier–Mukai partners of S.

In the case of real multiplication very little is known. It is easy to see that there is a countable number
of positive-dimensional subvarieties of the moduli space of polarized K3 surfaces which parametrize surfa-
ces with real multiplication by a field different from Q. The purpose of my work is to search for a better
understanding of K3 surfaces with real multiplication.

Kuga–Satake varieties of K3 type Hodge structures

a) Kuga–Satake varieties. Let A be an Abelian surface and S = K(A) the minimal resolution of its
Kummer surface which is a K3 surface. Then there is a natural isomorphism T (S) ' T (A).
Kuga and Satake found a way to generalize this. They associate to any K3 type Hodge structure (T, q) an
isogeny class of Abelian varieties, in other words a polarizable rational Hodge structure V of weight one,
such that there exists an inclusion of Hodge structures

T ↪→
2∧

V.

Any Abelian variety in the isogeny class of V is called a Kuga–Satake variety for (T, q). Unfortunately, only
for very few examples of K3 surfaces, the Kuga–Satake variety has been shown to be geometrically related
to the surface (see below). In general, the Kuga–Satake construction is purely Hogde-theoretical.

We want to prove that for K3 type Hodge structures with real multiplication there is a natural decomoposi-
tion of the Kuga–Satake variety which enables us to calculate the endomorphism algebra of V in that case.
To formulate the results we need some more preparations.

b) Corestriction of algebras. Let E be a number field, denote by Ẽ its normal closure and by
G := Gal(Ẽ/Q) the Galois group of Ẽ over Q. Let H be the subgroup of G fixing E, such that the set
of cosets G/H parametrizes the different embeddings of E in Ẽ. The corestriction is a construction which
associates with an E-algebra in a natural way a Q-algebra.
Let A be a finite-dimensional E-algebra. For any coset σH denote by AσH the twisted E-algebra

AσH = A⊗E Ẽ

where e ∈ E acts by multiplication with σ(e) on the second tensor factor. There is a natural G-action by
Q-algebra homomorphisms on

⊗
σH∈G/H AσH . Then one defines the corestriction of the E-algebra A to Q to

be the Q-algebra

CoresE/Q(A) :=

 ⊗
σH∈G/H

AσH

G

.

c) The quadratic form Q on a K3 type Hodge structure with real multiplication. Let (T, q) be a
K3 type Hodge structure, assume that E = EndHdg(T ) is a totally real number field. Then T is in a natural
way an E-vector space. There exists an E-bilinear form

Q : T × T → E

having the property that for e ∈ E and t, t′ ∈ T

q(et, t′) = trE/Q(eQ(t, t′)).

Kuga–Satake varieties and real multiplication

a) Decomposition of the Kuga–Satake variety and real multiplication. Again, let (T, q) be a K3
type Hodge structure with E = EndHdg(T ) a totally real number field of degree d. Denote by V the associated
Kuga–Satake Hodge structure.
Denote by C0(Q) the even Clifford algebra of Q. Van Geemen showed in [vG] that there is a natural inclusion
of Hodge structures CoresE/Q(C0(Q)) ↪→ V . This result can be improved to the following

Theorem (US). Under the above assumptions we get the following:

(i) The special Mumford–Tate group of V is ResE/Q(Spin(Q)).

(ii) There is a natural decomposition into sub-Hodge structures

V = CoresE/Q(C0(Q))⊕2d−1

.

(iii) The endomorphism algebra of a Kuga–Satake variety of T is

EndHdg(V ) = Mat2d−1(CoresE/Q(C0(Q)).

b) An application. As mentioned above, in general the Kuga–Satake construction is not geometrically
understood. However, there is a four-dimensional family of projective K3 surfaces for which there exists a
very nice geometric explanation. This is due to work of Paranjape (see [P]).
Let S be a K3 surface with a morphism π : S → P2 such that the branch locus of π in P2 is the union of six
lines in general position. Then Paranjape shows that there exists a triple

(C, E, f : C → E)

where C is a genus five curve, E an elliptic curve and f a (4 : 1) map such that Prym(f)4 is a Kuga–Satake
variety for S. Further, S can be obtained as the resolution of a certain quotient of C × C. This establishes
that the algebraicity of the Kuga–Satake inclusion

T (S) ↪→ H2((Prym(f))4,Q). (1)

As mentioned, the family of K3 surfaces which are double covers of P2 ramified along six lines is four-
dimensional. This is, because the parameter space of six plane lines in general position is four-dimensional
(any four lines in general position can be transformed in given four lines by a linear transformation, so the
space is a subspace of (P2)∗ × (P2)∗).
Paranjape’s proof somehow goes the other way round, he constructs out of a triple (C, E, f) a K3 surface
which is a double cover of P2 ramified along six lines, then he shows that varying the triples, with this
construction he gets precisely the four-dimensional family of K3 surfaces of this type.

Double covers of P2 ramified along six lines

In the four-dimensional moduli space of these K3 surfaces we find the following endomorphism types:

• Real multiplication by Q. This is the generic case.

• Real multiplication by a quadratic extension Q(
√

d) for some d > 0. These surfaces appear in one-
dimensional families, there is a countable number of such curves in the moduli space.

• Complex multiplication by a quadratic extension Q(
√
−d) for some d > 0. These surfaces can appe-

ar either as isolated points or in one-dimensional families. Again, there are countably many of such
subvarieties of the moduli space.

• Complex multiplication by a CM-field of degree four over Q. These surfaces are isolated points in the
moduli space.

With this analysis we are now able to show

Corollary (US). Let S be a K3 surface which is a double cover of P2 ramified along six lines. Then the
Hodge Conjecture holds for S × S.

Sketch of proof: One only has to check the algebraicity of the classes in EndHdg(T (S)). Using Mukai’s results
on moduli spaces of sheaves on K3s, in the above list only the case of real multiplication by a quadratic
extension of Q has to be studied.
So assume now that T (S) has real multiplication by E = Q(

√
d) for some d > 0. The above theorem allows

us to calculate the endomorphism algebra of a Kuga–Satake variety A of T (S) as EndQ(A) = Mat4(D) where
D is a definite quaternion algebra over Q, so A ∼ B4 for some Abelian fourfold B with EndQ(B) = D. This
B can be shown to be of Weil type for the field Q(i), its discriminant is 1. Then by a theorem of van Geemen
the Weil cycles of such Abelian fourfolds are algebraic. Using this, a theorem of Abdulali (see [A]) shows
that any self-product of B satisfies the Hodge Conjecture. This combined with the algebraicity of (1) implies
our result.
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