
Mathematics 2Q – Solutions for Chapter 2

2.1. (a) We have
(

1 2 3 4 5 6
2 3 1 5 6 4

)(
1 2 3 4 5 6
6 4 2 3 1 5

)
=

(
1 2 3 4 5 6
4 5 3 1 2 6

)

(
1 2 3 4 5 6
2 3 1 5 6 4

)−1

=
(

1 2 3 4 5 6
3 1 2 6 4 5

)

(b) There are two disjoint cycles

1 −→ 2 −→ 3 −→ 1, 4 −→ 5 −→ 6 −→ 4,

so (
1 2 3 4 5 6
2 3 1 5 6 4

)
= (1 2 3)(4 5 6) = (4 5 6)(1 2 3).

(c) From (b) we have
(

1 2 3 4 5 6
2 3 1 5 6 4

)
= (1 2 3)(4 5 6) = (1 3)(1 2)(4 6)(4 5).

Using the multiplicativity of sgn and its value on a transposition, we have

sgn
(

1 2 3 4 5 6
2 3 1 5 6 4

)
= sgn(1 3) sgn(1 2) sgn(4 6) sgn(4 5) = (−1)4 = 1.

2.2. We have (2 3 5 6)(1 6 2 3) = (1 2 5 6 3), (2 3)(1 6 2)(5 6 2 4) = (1 6)(2 4 5 3) and
(5 6 2 4)−1 = (2 6 5 4).

2.3. (a) There are five anti-clockwise rotations:

rotation through 0 = ι,

rotation through 2π/5 = (A B C D E),

rotation through 4π/5 = (A C E B D),

rotation through 6π/5 = (A D B E C),

rotation through 8π/5 = (A E D C B).

There are five reflections in lines through O and a vertex:

reflection in OA = (B E)(C D),

reflection in OB = (A C)(B D),

reflection in OC = (A E)(B D),

reflection in OD = (A B)(C E),

reflection in OE = (A D)(B C).
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(b) From (a), these are represented by (B E)(C D) and (A E)(B D). The compositions are

(B E)(C D)(A E)(B D) = (A B C D E),

(A E)(B D)(B E)(C D) = (A E D C B),

which correspond to rotations through 1/5 of a turn in the anti-clockwise and clockwise direc-
tions.
(c) From (a), these are represented by (B E)(C D) and (A D B E C). The compositions are

(B E)(C D)(A D B E C) = (A C)(B)(D E) = (A C)(D E),

(A D B E C)(B E)(C D) = (A D)(B C)(E) = (A D)(B C),

which correspond to reflections in the lines OB and OE.

2.4. On labelling the vertices A–E in each figure, (i) has essentially the same symmetry group
as the regular pentagon of the previous question. On the other hand, symmetries of (ii) must
preserve the direction of the arrows and so only rotational symmetries occur, giving 5 in all,
including the identity.

2.5. (a) If α, β ∈ ΓS,P then

αβ(P ) = α(β(P )) = α(P ) = P,

Id(P ) = P,

α−1(P ) = α−1(α(P )) = α−1α(P ) = Id(P ) = P.

This shows that αβ, Id, α−1 ∈ ΓS,P , so ΓS,P 6 Euc(2)S .
(b) From Example 2.24 in the Notes,

ΓS,D =
{(

A B C D

A B C D

)
,

(
A B C D

C B A D

)
.

}
=

{
ι,

(
A B C D

C B A D

)
.

}

(c) From Example 2.25 in the Notes,

ΓS,D =
{

ι =
(

A B C D

A B C D

)}
= {ι}.

2.6. The direct symmetries of T are all possible rotations about the origin, RotO,θ with θ ∈
[0, 2π), while the indirect symmetries are reflections in lines of the form

x sinϕ− y cosϕ = 0

for ϕ ∈ [0, π). The rotations form the subgroup SO(2) 6 Euc(2), while the reflections form the
subset {[

cos 2ϕ sin 2ϕ

sin 2ϕ − cos 2ϕ

]
: ϕ ∈ [0, π)

}
⊆ Euc(2).

It is easily checked that each dihedral group D2n is a finite subgroup D2n 6 Euc(2).

2.7. Since every similarity transformation is obtained by composing an isometry with a dilation
it is sufficient to verify this when H is a dilation. Expressing H as a Seitz symbol,

H = (δI | (1− δ)c).

Then if P,Q, R are three distinct points we have

H(p) = δp + (1− δ)c, H(q) = δq + (1− δ)c, H(r) = δr + (1− δ)c.

Then
H(q)−H(p) = δ(q− p), H(r)−H(p) = δ(r− p),
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so the cosine of the angle between H(P )H(Q) and H(P )H(R) is

cos∠H(Q)H(P )H(R) =
(H(q)−H(p)) · (H(r)−H(p))
|H(q)−H(p)| |H(r)−H(p)|

=
δ(q− p) · δ(r− p)
|δ(q− p)| |δ(r− p)|

=
q− p · r− p
|q− p| |r− p| = cos∠QPR.

2.8. The Seitz symbol of a similarity transformation has the form (δA | s), where A is or-
thogonal, δ > 0 and s ∈ R2. Given two such transformations (δ1A1 | s1) and (δ2A2 | s2), we
have

(δ1A1 | s1)(δ2A2 | s2) = ((δ1δ2)(A1A2) | s1 + δ1A1s2),

Id = (1 · I2 | 0),

(δA | s)−1 = ((1/δ)A−1 | −(1/δ)A−1s) = ((1/δ)AT | −(1/δ)AT s).

Each of these is a similarity transformation, so (Σ(2), ◦) is a group. Since Euc(2) ⊆ Σ(2) it is
clearly a subgroup. Another subgroup consists of all the scalings centred at the origin,

{(δI2 | 0) : δ > 0} 6 Σ(2).

2.9. If the lines are parallel, then following the ideas of Example 2.29, let p1,p2 be the position
vectors of points P1, P2 on these lines. Setting

t = p2 − p1 =
−−−→
P1P2,

we have

ReflL2 = Transt ◦ReflL1 ◦Trans−t,

so ReflL2 is similar to ReflL1 .
If the lines are not parallel then they meet at a point M say. There is then a rotation about

M , RotM,θ say, which maps L1 into L2. Then

ReflL2 = RotM,θ ◦ReflL1 ◦RotM,−θ = RotM,θ ◦ReflL1 ◦RotM,θ
−1.

2.10. From the Notes, the Seitz symbol of RotC,θ is (R | (I −R)c) where R =
[
cos θ − sin θ

sin θ cos θ

]
.

Then the Seitz symbol of Transt ◦RotC,θ is

(I2 | t)(R | (I −R)c) = (R | t + (I −R)c).

This represents rotation through angle θ about the point with position vector c′ where

(R | t + (I −R)c)c′ = c′,

which gives

Rc′ + t + (I −R)c = c′,

and solving this we obtain

c′ = (I −R)−1t + c.
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Expanding out we find

(I −R)−1 =
[
1− cos θ sin θ

− sin θ 1− cos θ

]−1

=
[

2 sin2(θ/2) 2 sin(θ/2) cos(θ/2)
−2 sin(θ/2) cos(θ/2) 2 sin2(θ/2)

]−1

=
1

2 sin(θ/2)

[
sin(θ/2) cos(θ/2)
− cos(θ/2) sin(θ/2)

]−1

=
1

2 sin(θ/2)

[
sin(θ/2) − cos(θ/2)
cos(θ/2) sin(θ/2)

]

=
1
2

[
1 − cot(θ/2)

cot(θ/2) 1

]
.

2.11. (a) Notice that

C =
[

cos(4π/3) − sin(4π/3)
sin(4π/3) cos(4π/3)

]
,

from which it easily follows that (C2 + C + I) = O. Then Γ has the three distinct elements

γ = (C | w),

γ2 = (C | w)2 = (C2 | (C + I)w),

γ3 = (C3 | (C2 + C + I)w) = (I | 0).

Here

C2 =
[ −1/2 −√3/2√

3/2 −1/2

]
, (C + I)w =

[√
3/2

3/2

]

(b) Following the proof of Theorem 2.32 with p = 0 we obtain the fixed point

p0 =
1
3

(w + (C + I)w + 0) =
1
3

[
0
3

]
=

[
0
1

]
.

This is the only fixed point for Γ since γ, γ2 are non-trivial rotations which fix only their common
centre p0.
(c) Take ψ = Trans−p0 .

2.12. Consider the finite subgroup Γ 6 Euc(2) of order 8 generated by the isometries α = (A | u)
and β = (B | v) where

A =
[
0 −1
1 0

]
, u =

[
1
1

]
, B =

[
0 1
1 0

]
, v =

[−1
1

]
.

(a) Writing αr = (Ar | ur), we have

A1 = A, u1 = u, A2 =
[−1 0

0 −1

]
, u2 =

[
0
2

]
,

A3 =
[

0 1
−1 0

]
, u3 =

[−1
1

]
, A4 =

[
1 0
0 1

]
, u4 = 0.

Similarly, writing αrβ = (Br | vr),

B1 =
[−1 0

0 1

]
, v1 = 0, B2 =

[
0 −1

−1 0

]
, v2 =

[
1
1

]
,

B3 =
[
1 0
0 −1

]
, v3 =

[
0
2

]
, B4 =

[
0 1
1 0

]
, v3 =

[−1
1

]
.
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(b) Following the proof of Theorem 2.32 with p = 0 we obtain the fixed point

p0 =
1
8

(u1 + u2 + u3 + u4 + v1 + v2 + v3 + v4) =
1
8

[
0
8

]
=

[
0
1

]
.

This is the only fixed point of Γ since α, α3 are distinct rotations about their common centre.
(c) Take ϕ = Trans−p0 .

2.13. (a) The composition F ◦G is a non-trivial translation which has no fixed points. Hence
Γ has no common fixed points and so cannot be finite.
(b) The only fixed point of the rotation G is p, but F does not fix p. Hence F and G have no
common fixed points, so nor does Γ which therefore cannot be finite.

2.14. If p is fixed by F and G, it is also fixed by their inverses since

F−1(p) = F−1(F (p)) = p, G−1(p) = G−1(G(p)) = p.

Also, any power of F or G fixes p. Hence since any element of Γ is a product of powers of F

and G it fixes p.

2.15. A=6; B=2; C=4; D=6; E=3; F=7.

2.16. (a) pmm; (b) cmm; (c) pm (this is the diagram in the Notes but rotated through π/2);
(d) p2g.


